About this Journal Submit a Manuscript Table of Contents
ISRN Ecology
Volume 2013 (2013), Article ID 610126, 9 pages
http://dx.doi.org/10.1155/2013/610126
Research Article

Range Expansion of Ambrosia artemisiifolia in Europe Is Promoted by Climate Change

1Biodiversity Dynamics and Climate Change, Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
2Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany

Received 8 November 2012; Accepted 2 December 2012

Academic Editors: P. Borges, A. Chappelka, P. Ferrandis, and S. N. Francoeur

Copyright © 2013 Sarah Cunze et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Ambrosia artemisiifolia L., native to North America, is a problematic invasive species, because of its highly allergenic pollen. The species is expected to expand its range due to climate change. By means of ecological niche modelling (ENM), we predict habitat suitability for A. artemisiifolia in Europe under current and future climatic conditions. Overall, we compared the performance and results of 16 algorithms commonly applied in ENM. As occurrence records of invasive species may be dominated by sampling bias, we also used data from the native range. To assess the quality of the modelling approaches we assembled a new map of current occurrences of A. artemisiifolia in Europe. Our results show that ENM yields a good estimation of the potential range of A. artemisiifolia in Europe only when using the North American data. A strong sampling bias in the European Global Biodiversity Information Facility (GBIF) data for A. artemisiifolia causes unrealistic results. Using the North American data reflects the realized European distribution very well. All models predict an enlargement and a northwards shift of potential range in Central and Northern Europe during the next decades. Climate warming will lead to an increase and northwards shift of A. artemisiifolia in Europe.