About this Journal Submit a Manuscript Table of Contents
ISRN Ecology
Volume 2013 (2013), Article ID 610126, 9 pages
http://dx.doi.org/10.1155/2013/610126
Research Article

Range Expansion of Ambrosia artemisiifolia in Europe Is Promoted by Climate Change

1Biodiversity Dynamics and Climate Change, Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
2Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany

Received 8 November 2012; Accepted 2 December 2012

Academic Editors: P. Borges, A. Chappelka, P. Ferrandis, and S. N. Francoeur

Copyright © 2013 Sarah Cunze et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. C. G. Rich, “Ragweeds (Ambrosia L.) in Britain,” GRANA, vol. 33, no. 1, pp. 38–43, 1994. View at Scopus
  2. G. Vogl, M. Smolik, L. M. Stadler et al., “Modelling the spread of ragweed: effects of habitat, climate change and diffusion,” European Physical Journal, vol. 161, no. 1, pp. 167–173, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Taramarcaz, C. Lambelet, B. Clot, C. Keimer, and C. Hauser, “Ragweed (Ambrosia) progression and its health risks: will Switzerland resist this invasion?” Swiss Medical Weekly, vol. 135, no. 37-38, pp. 538–548, 2005. View at Scopus
  4. B. Chauvel, F. Dessaint, C. Cardinal-Legrand, and F. Bretagnolle, “The historical spread of Ambrosia artemisiifolia L. in France from herbarium records,” Journal of Biogeography, vol. 33, no. 4, pp. 665–673, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Alberternst, S. Nawrath, and F. Klingenstein, “Biologie, Verbreitung und Einschleppungswege von Ambrosia artemisiifolia in Deutschland und Bewertung aus Naturschutzsicht, Biology, distribution and pathways of introduction of Ambrosia artemisiifolia in Germany and assessment from a nature conservation point of view,” Nachrichtenblatt des Deutschen Pflanzenschutzdienstes, vol. 58, pp. 1–7, 2006.
  6. S. Pompe, J. Hanspach, F. Badeck, S. Klotz, W. Thuiller, and I. Kühn, “Climate and land use change impacts on plant distributions in Germany,” Ecology Letters, vol. 4, pp. 564–567, 2008.
  7. O. Bossdorf, H. Auge, L. Lafuma, W. E. Rogers, E. Siemann, and D. Prati, “Phenotypic and genetic differentiation between native and introduced plant populations,” Oecologia, vol. 144, no. 1, pp. 1–11, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Thuiller, D. M. Richardson, and G. F. Midgley, “Will climate change promote alien invasions?” in Biological Invasions, W. Nentwig, Ed., vol. 193, pp. 197–211, Springer, Berlin, Germany, 2007.
  9. J. J. Hellmann, J. E. Byers, B. G. Bierwagen, and J. S. Dukes, “Five potential consequences of climate change for invasive species,” Conservation Biology, vol. 22, no. 3, pp. 534–543, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. V. Hermoso, M. Clavero, F. Blanco-Garrido, and J. Prenda, “Invasive species and habitat degradation in Iberian streams: an analysis of their role in freshwater fish diversity loss,” Ecological Applications, vol. 21, no. 1, pp. 175–188, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. P. J. Prentis, J. R. U. Wilson, E. E. Dormontt, D. M. Richardson, and A. J. Lowe, “Adaptive evolution in invasive species,” Trends in Plant Science, vol. 13, no. 6, pp. 288–294, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Schrader, “Risikoanalyse von gebietsfremden Pflanzen? Das neue Konzept der EPPO,” Gesunde Pflanzen, vol. 56, no. 3, pp. 75–79, 2004. View at Publisher · View at Google Scholar
  13. P. Steinbauer and B. Grigsby, “Interaction of temperature, light, and moistening agent in the germination of weed seeds,” Weeds, vol. 5, pp. 175–182, 1957. View at Publisher · View at Google Scholar
  14. M. C. Leiblein and R. Lösch, “Biomass development and CO2 gas exchange of Ambrosia artemisiifolia L. under different soil moisture conditions,” Flora, vol. 206, no. 5, pp. 511–516, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Martínez-Meyer, “Climate change and biodiversity: some considerations in forecasting shifts in species’ potential distribution,” Biodiversity Informatics, vol. 2, pp. 42–55, 2005.
  16. A. Guisan and W. Thuiller, “Predicting species distribution: offering more than simple habitat models,” Ecology Letters, vol. 8, no. 9, pp. 993–1009, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Thuiller, D. M. Richardson, P. Pyssek, G. F. Midgley, G. O. Hughes, and M. Rouget, “Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale,” Global Change Biology, vol. 11, no. 12, pp. 2234–2250, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Jiménez-Valverde, J. M. Lobo, and J. Hortal, “Not as good as they seem: the importance of concepts in species distribution modelling,” Diversity and Distributions, vol. 14, no. 6, pp. 885–890, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. P. Austin, “Spatial prediction of species distribution: an interface between ecological theory and statistical modelling,” Ecological Modelling, vol. 157, no. 2-3, pp. 101–118, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. C. F. Randin, et al., “Are niche-based species distribution models transferable in space?” Journal of Biogeography, vol. 33, pp. 1689–1703, 2006. View at Publisher · View at Google Scholar
  21. P. Flemons, R. Guralnick, J. Krieger, A. Ranipeta, and D. Neufeld, “A web-based GIS tool for exploring the world's biodiversity: the Global Biodiversity Information Facility Mapping and Analysis Portal Application (GBIF-MAPA),” Ecological Informatics, vol. 2, no. 1, pp. 49–60, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. R. J. Hijmans, S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis, “Very high resolution interpolated climate surfaces for global land areas,” International Journal of Climatology, vol. 25, no. 15, pp. 1965–1978, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. R. G. Pearson and T. P. Dawson, “Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?” Global Ecology and Biogeography, vol. 12, no. 5, pp. 361–371, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. IPCC, Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment, Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York, NY, USA, 2007.
  25. G. M. Flato, G. J. Boer, W. G. Lee et al., “The Canadian centre for climate modelling and analysis global coupled model and its climate,” Climate Dynamics, vol. 16, no. 6, pp. 451–467, 2000. View at Scopus
  26. A. C. Hirst, H. B. Gordon, and S. P. O'Farrell, “Global warming in a coupled climate model including oceanic eddy-induced advection,” Geophysical Research Letters, vol. 23, no. 23, pp. 3361–3364, 1996. View at Scopus
  27. C. Gordon, C. Cooper, C. A. Senior et al., “The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments,” Climate Dynamics, vol. 16, no. 2-3, pp. 147–168, 2000. View at Scopus
  28. V. D. Pope, M. L. Gallani, P. R. Rowntree, and R. A. Stratton, “The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3,” Climate Dynamics, vol. 16, no. 2-3, pp. 123–146, 2000. View at Scopus
  29. J. Elith, C. H. Graham, R. P. Anderson, et al., “Novel methods improve prediction of species’ distributions from occurrence data,” Ecography, vol. 29, pp. 129–151, 2006. View at Publisher · View at Google Scholar
  30. A. T. Peterson, M. Papes, and D. A. Kluza, “Predicting the potential invasive distributions of four alien plant species in North America,” Weed Science, vol. 51, no. 6, pp. 863–868, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. A. H. Fielding and J. F. Bell, “A review of methods for the assessment of prediction errors in conservation presence/absence models,” Environmental Conservation, vol. 24, no. 1, pp. 38–49, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Elith and J. R. Leathwick, “Species distribution models: ecological explanation and prediction across space and time,” Annual Review of Ecology, Evolution, and Systematics, vol. 40, no. 1, pp. 677–697, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Schröder and O. Richter, “Are habitat models transferable in space and time?” Zeitschrift für Ökologie und Naturschutz, vol. 8, no. 4, pp. 195–205, 1999.
  34. M. Marmion, M. Parviainen, M. Luoto, R. K. Heikkinen, and W. Thuiller, “Evaluation of consensus methods in predictive species distribution modelling,” Diversity and Distributions, vol. 15, no. 1, pp. 59–69, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. D. W. Hosmer and S. Lemeshow, Applied Logistic Regression, John Wiley & Sons, New York, NY, USA, 2000.
  36. J. S. Clark, “Ecological forecasts: an emerging imperative,” Science, vol. 293, no. 5530, pp. 657–660, 2001.
  37. C. Perrings, K. Dehnen-Schmutz, J. Touza, and M. Williamson, “How to manage biological invasions under globalization,” Trends in Ecology and Evolution, vol. 20, no. 5, pp. 212–215, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Makra, M. Juhász, R. Béczi, and E. Borsos, “The history and impacts of airborne Ambrosia (Asteraceae) pollen in Hungary,” GRANA, vol. 44, no. 1, pp. 57–64, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. O. Broennimann, U. A. Treier, H. Müller-Schärer, W. Thuiller, A. T. Peterson, and A. Guisan, “Evidence of climatic niche shift during biological invasion,” Ecology Letters, vol. 10, no. 8, pp. 701–709, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Dullinger, I. Kleinbauer, J. Peterseil, M. Smolik, and F. Essl, “Niche based distribution modelling of an invasive alien plant: effects of population status, propagule pressure and invasion history,” Biological Invasions, vol. 11, no. 10, pp. 2401–2414, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Essl, S. Dullinger, and I. Kleinbauer, “Changes in the spatio-temporal patterns and habitat preferences of Ambrosia artemisiifolia during its invasion of Austria,” Preslia, vol. 81, no. 2, pp. 119–133, 2009. View at Scopus
  42. G. Kazinczi, I. Béres, R. Novák, K. Bíró, and Z. Pathy, “Common ragweed (Ambrosia artemisiifolia L.): a review with special regards to the results in Hungary. Taxonomy, origin and distribution, morphology, life cycle and reproduction strategy,” Herbologia, vol. 9, pp. 55–91, 2008.
  43. Á. Tóth, P. Z. Hoffmanné, and L. Szentey, “Ambrosia situation in Hungary in 2003. Difficulties of pollen reduction in the air,” in Proceedings of the 10th Plant Protection Days, Budapest, Hungary, 2004.
  44. D. Pimentel, R. Zuniga, and D. Morrison, “Update on the environmental and economic costs associated with alien-invasive species in the United States,” Ecological Economics, vol. 52, no. 3, pp. 273–288, 2005. View at Publisher · View at Google Scholar · View at Scopus