About this Journal Submit a Manuscript Table of Contents
ISRN Physiology
Volume 2013 (2013), Article ID 619319, 17 pages
http://dx.doi.org/10.1155/2013/619319
Review Article

Neurophysiological Basis of Sleep’s Function on Memory and Cognition

Department of Psychology and Neuroscience and Behavior Program, University of Massachusetts, Amherst 419 Tobin Hall, 135 Hicks Way, Amherst, MA 01003, USA

Received 17 February 2013; Accepted 19 March 2013

Academic Editors: X. Gasull, A. W. Midgley, Y. Ootsuka, and A. Tse

Copyright © 2013 Rebecca M. C. Spencer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Rolls, “The men who didn't sleep: the story of Peter Tripp and Randy Gardner,” in Classic Case Studies in Psychology, A. Rolls, Ed., pp. 69–76, Trans-Atlantic Publications, 2010.
  2. R. Gallassi, A. Morreale, P. Montagna et al., “Fatal familial insomnia: behavioral and cognitive features,” Neurology, vol. 46, no. 4, pp. 935–939, 1996. View at Scopus
  3. T. T. Dang-Vu, M. Schabus, M. Desseilles et al., “Spontaneous neural activity during human slow wave sleep,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 39, pp. 15160–15165, 2008. View at Publisher · View at Google Scholar
  4. K. Donohue and R. M. C. Spencer, “Continuous re-exposure to environmental sound cues during sleep does not improve memory for semantically unrelated word pairs,” Journal of Cognitive Education and Psychology, vol. 10, no. 2, pp. 167–177, 2011. View at Publisher · View at Google Scholar
  5. M. A. Tucker and W. Fishbein, “Enhancement of declarative memory performance following a daytime nap is contingent on strength of initial task acquisition,” Sleep, vol. 31, no. 2, pp. 197–203, 2008. View at Scopus
  6. J. M. Ellenbogen, J. C. Hulbert, Y. Jiang, and R. Stickgold, “The sleeping brain's influence on verbal memory: boosting resistance to interference,” PLoS One, vol. 4, no. 1, Article ID e4117, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J. K. Wilson, et al., “Sleep modulates word-pair learning but not motor sequence learning in healthy older adults,” Neurobiology of Aging, vol. 33, no. 5, pp. 991–1000, 2012. View at Publisher · View at Google Scholar
  8. S. Diekelmann and J. Born, “The memory function of sleep,” Nature Reviews Neuroscience, vol. 11, no. 2, pp. 114–126, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. D. J. Cai, S. A. Mednick, E. M. Harrison, J. C. Kanady, and S. C. Mednick, “REM, not incubation, improves creativity by priming associative networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 25, pp. 10130–10134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. U. Wagner, S. Gais, H. Haider, R. Verleger, and J. Born, “Sleep inspires insight,” Nature, vol. 427, no. 6972, pp. 352–355, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. E. F. Pace-Schott, G. Nave, A. Morgan, and R. M. C. Spencer, “Sleep-dependent modulation of affectively guided decision-making,” Journal of Sleep Research, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. W. D. S. Killgore, T. J. Balkin, and N. J. Wesensten, “Impaired decision making following 49 h of sleep deprivation,” Journal of Sleep Research, vol. 15, no. 1, pp. 7–13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Diekelmann, I. Wilhelm, and J. Born, “The whats and whens of sleep-dependent memory consolidation,” Sleep Medicine Reviews, vol. 13, no. 5, pp. 309–321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. P. Walker and R. Stickgold, “Overnight alchemy: sleep-dependent memory evolution,” Nature Reviews Neuroscience, vol. 11, no. 3, p. 218, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Buhry, A. H. Azizi, and S. Cheng, “Reactivation, replay, and preplay: how it might all fit together,” Neural Plasticity, vol. 2011, Article ID 203462, 11 pages, 2011. View at Publisher · View at Google Scholar
  16. J. H. Sadowski, M. W. Jones, and J. R. Mellor, “Ripples make waves: binding structured activity and plasticity in hippocampal networks,” Neural Plasticity, vol. 2011, Article ID 960389, 11 pages, 2011. View at Publisher · View at Google Scholar
  17. M. S. Dickman, “von Economo encephalitis,” Archives of Neurology, vol. 58, no. 10, pp. 1696–1698, 2001. View at Scopus
  18. C. von Economo, “Encephalitis lethargica,” Archives of Neurology, vol. 18, no. 3, pp. 325–328, 1968. View at Publisher · View at Google Scholar
  19. C. B. Saper, T. E. Scammell, and J. Lu, “Hypothalamic regulation of sleep and circadian rhythms,” Nature, vol. 437, no. 7063, pp. 1257–1263, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Hartmann, “The 90-minute sleep-dream cycle,” Archives of General Psychiatry, vol. 18, no. 3, pp. 280–286, 1968. View at Scopus
  21. E. Stern, A. H. Parmelee, Y. Akiyama, M. A. Schultz, and W. H. Wenner, “Sleep cycle characteristics in infants,” Pediatrics, vol. 43, no. 1, pp. 65–70, 1969. View at Scopus
  22. AASM, The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology, and Technical Specifications, American Academy of Sleep Medicine, Westchester, Ill, USA, 2007.
  23. S. S. Cash, E. Halgren, N. Dehghani et al., “The human K-complex represents an isolated cortical down-state,” Science, vol. 324, no. 5930, pp. 1084–1087, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. C. L. Nicholas, J. Trinder, and I. M. Colrain, “Increased production of evoked and spontaneous K-complexes following a night of fragmented sleep,” Sleep, vol. 25, no. 8, pp. 882–887, 2002. View at Scopus
  25. T. T. Dang-Vu, M. Bonjean, M. Schabus, et al., “Interplay between spontaneous and induced brain activity during human non-rapid eye movement sleep,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 37, pp. 15438–15443, 2011. View at Publisher · View at Google Scholar
  26. M. Schabus, T. T. Dang-Vu, D. P. Heib et al., “The fate of incoming stimuli during NREM sleep is determined by spindles and the phase of the slow oscillation,” Frontiers in Neurology, vol. 3, no. 40, pp. 1–11, 2012. View at Publisher · View at Google Scholar
  27. L. De Gennaro and M. Ferrara, “Sleep spindles: an overview,” Sleep Medicine Reviews, vol. 7, no. 5, pp. 423–440, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Schabus, T. T. Dang-Vu, G. Albouy et al., “Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 32, pp. 13164–13169, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Marshall and J. Born, “The contribution of sleep to hippocampus-dependent memory consolidation,” Trends in Cognitive Sciences, vol. 11, no. 10, pp. 442–450, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Steriade, “Grouping of brain rhythms in corticothalamic systems,” Neuroscience, vol. 137, no. 4, pp. 1087–1106, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Aserinsky, “The discovery of REM sleep,” Journal of the History of the Neurosciences, vol. 5, no. 3, pp. 213–227, 1996. View at Scopus
  32. C. Brown, “The stubborn scientist who unraveled a mystery of the night,” Smithsonian, vol. 34, no. 7, pp. 92–100, 2003. View at Scopus
  33. P. Maquet, J. M. Peters, J. Aerts et al., “Functional neuroanatomy of human rapid-eye-movement sleep and dreaming,” Nature, vol. 383, no. 6596, pp. 163–166, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. P. McNamara, D. McLaren, and K. Durso, “Representation of the Self in REM and NREM dreams,” Dreaming, vol. 17, no. 2, pp. 113–126, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. E. F. Pace-Schott and J. A. Hobson, “The neurobiology of sleep: genetics, cellular physiology and subcortical networks,” Nature Reviews Neuroscience, vol. 3, no. 8, pp. 591–605, 2002. View at Scopus
  36. H. Kametani and H. Kawamura, “Alterations in acetylcholine release in the rat hippocampus during sleep-wakefulness detected by intracerebral dialysis,” Life Sciences, vol. 47, no. 5, pp. 421–426, 1990. View at Publisher · View at Google Scholar · View at Scopus
  37. M. E. Hasselmo, “Neuromodulation: acetylcholine and memory consolidation,” Trends in Cognitive Sciences, vol. 3, no. 9, pp. 351–359, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. M. P. Walker, “A refined model of sleep and the time course of memory formation,” Behavioral and Brain Sciences, vol. 28, no. 1, pp. 51–64, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. R. W. McCarley, “Neurobiology of REM and NREM sleep,” Sleep Medicine, vol. 8, no. 4, pp. 302–330, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Ebbinghaus, Memory: A Contribution to Experimental Psychology, Dover, New York, NY, USA, 1964.
  41. J. G. Jenkins and K. M. Dallenbach, “Oblivescence during sleep and waking,” American Journal of Psychology, vol. 35, no. 4, pp. 605–612, 1924. View at Publisher · View at Google Scholar
  42. S. Gais, G. Albouy, M. Boly et al., “Sleep transforms the cerebral trace of declarative memories,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 47, pp. 18778–18783, 2007.
  43. L. Marshall, M. Mölle, M. Hallschmid, and J. Born, “Transcranial direct current stimulation during sleep improves declarative memory,” Journal of Neuroscience, vol. 24, no. 44, pp. 9985–9992, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. M. A. Tucker, Y. Hirota, E. J. Wamsley, H. Lau, A. Chaklader, and W. Fishbein, “A daytime nap containing solely non-REM sleep enhances declarative but not procedural memory,” Neurobiology of Learning and Memory, vol. 86, no. 2, pp. 241–247, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. O. Lahl, C. Wispel, B. Willigens, and R. Pietrowsky, “An ultra short episode of sleep is sufficient to promote declarative memory performance,” Journal of Sleep Research, vol. 17, no. 1, pp. 3–10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Postma, R. P. C. Kessels, and M. van Asselen, “How the brain remembers and forgets where things are: the neurocognition of object-location memory,” Neuroscience and Biobehavioral Reviews, vol. 32, no. 8, pp. 1339–1345, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. E. A. Maguire, D. G. Gadian, I. S. Johnsrude et al., “Navigation-related structural change in the hippocampi of taxi drivers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 8, pp. 4398–4403, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. E. A. Maguire, K. Woollett, and H. J. Spiers, “London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis,” Hippocampus, vol. 16, no. 12, pp. 1091–1101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. B. Rasch, C. Büchel, S. Gais, and J. Born, “Odor cues during slow-wave sleep prompt declarative memory consolidation,” Science, vol. 315, no. 5817, pp. 1426–1429, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. J. D. Rudoy, J. L. Voss, C. E. Westerberg, and K. A. Paller, “Strengthening individual memories by reactivating them during sleep,” Science, vol. 326, no. 5956, p. 1079, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. S. K. Rhodes, K. C. Shimoda, L. R. Waid et al., “Neurocognitive deficits in morbidly obese children with obstructive sleep apnea,” Journal of Pediatrics, vol. 127, no. 5, pp. 741–744, 1995. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Stores, “Psychosocial impact of narcolepsy in children and adolescents,” in Narcolepsy: A Clinical Guide, M. Goswami, S. R. Pandi-Perumal, and M. J. Thorpy, Eds., Springer, New York, NY, USA, 2010.
  53. R. P. Millman, “Excessive sleepiness in adolescents and young adults: causes, consequences, and treatment strategies,” Pediatrics, vol. 115, no. 6, pp. 1774–1786, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Gais, B. Lucas, and J. Born, “Sleep after learning aids memory recall,” Learning and Memory, vol. 13, no. 3, pp. 259–262, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Backhaus, R. Hoeckesfeld, J. Born, F. Hohagen, and K. Junghanns, “Immediate as well as delayed post learning sleep but not wakefulness enhances declarative memory consolidation in children,” Neurobiology of Learning and Memory, vol. 89, no. 1, pp. 76–80, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. I. Wilhelm, S. Diekelmann, and J. Born, “Sleep in children improves memory performance on declarative but not procedural tasks,” Learning and Memory, vol. 15, no. 5, pp. 373–377, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. L. Kurdziel, K. Duclos, and R. M. C. Spencer, “Classroom naps benefit spatial learning in preschool children,” in Association of Profession Sleep Societies, Association of Profession Sleep Societies, Boston, Mass, USA, 2012.
  58. J. M. Donlea, M. S. Thimgan, Y. Suzuki, L. Gottschalk, and P. J. Shaw, “Inducing sleep by remote control facilitates memory consolidation in Drosophila,” Science, vol. 332, no. 6037, pp. 1571–1576, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. S. M. J. McBride, G. Giuliani, C. Choi et al., “Mushroom body ablation impairs short-term memory and long-term memory of courtship conditioning in Drosophila melanogaster,” Neuron, vol. 24, no. 4, pp. 967–977, 1999. View at Scopus
  60. I. Ganguly-Fitzgerald, J. Donlea, and P. J. Shaw, “Waking experience affects sleep need in Drosophila,” Science, vol. 313, no. 5794, pp. 1775–1781, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. S. S. Shank and D. Margoliash, “Sleep and sensorimotor integration during early vocal learning in a songbird,” Nature, vol. 458, no. 7234, pp. 73–77, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. T. P. Brawn, H. C. Nusbaum, and D. Margoliash, “Sleep-dependent consolidation of auditory discrimination learning in adult starlings,” Journal of Neuroscience, vol. 30, no. 2, pp. 609–613, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. G. Martin-Ordas and J. Call, “Memory processing in great apes: the effect of time and sleep,” Biology Letters, vol. 7, no. 6, pp. 829–832, 2011. View at Publisher · View at Google Scholar
  64. J. O'Keefe and J. Dostrovsky, “The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat,” Brain Research, vol. 34, no. 1, pp. 171–175, 1971. View at Scopus
  65. M. A. Wilson and B. L. McNaughton, “Reactivation of hippocampal ensemble memories during sleep,” Science, vol. 265, no. 5172, pp. 676–679, 1994. View at Scopus
  66. W. E. Skaggs and B. L. McNaughton, “Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience,” Science, vol. 271, no. 5257, pp. 1870–1873, 1996. View at Scopus
  67. D. Bendor and M. A. Wilson, “Biasing the content of hippocampal replay during sleep,” Nature Neuroscience, vol. 15, no. 10, pp. 1439–1444, 2012.
  68. G. Buzsaki, “Hippocampal sharp waves: their origin and significance,” Brain Research, vol. 398, no. 2, pp. 242–252, 1986. View at Scopus
  69. G. Buzsaki, “Two-stage model of memory trace formation: a role for “noisy” brain states,” Neuroscience, vol. 31, no. 3, pp. 551–570, 1989. View at Publisher · View at Google Scholar · View at Scopus
  70. G. Buzsaki, “Memory consolidation during sleep: a neurophysiological perspective,” Journal of Sleep Research, vol. 7, supplement 1, pp. 17–23, 1998. View at Scopus
  71. A. Ylinen, A. Bragin, Z. Nadasdy et al., “Sharp wave-associated high-frequency oscillation (200 hz) in the intact hippocampus: network and intracellular mechanisms,” Journal of Neuroscience, vol. 15, no. 1, part 1, pp. 30–46, 1995. View at Scopus
  72. G. Girardeau and M. Zugaro, “Hippocampal ripples and memory consolidation,” Current Opinion in Neurobiology, vol. 21, no. 3, pp. 452–459, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. G. Girardeau, K. Benchenane, S. I. Wiener, G. Buzsáki, and M. B. Zugaro, “Selective suppression of hippocampal ripples impairs spatial memory,” Nature Neuroscience, vol. 12, no. 10, pp. 1222–1223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. O. Eschenko, W. Ramadan, M. Mölle, J. Born, and S. J. Sara, “Sustained increase in hippocampal sharp-wave ripple activity during slow-wave sleep after learning,” Learning and Memory, vol. 15, no. 4, pp. 222–228, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. W. Ramadan, O. Eschenko, and S. J. Sara, “Hippocampal sharp wave/ripples during sleep for consolidation of associative memory,” PLoS One, vol. 4, no. 8, Article ID e6697, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. J. L. McClelland, B. L. McNaughton, and R. C. O'Reilly, “Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory,” Psychological Review, vol. 102, no. 3, pp. 419–457, 1995. View at Scopus
  77. R. E. Clark, N. J. Broadbent, S. M. Zola, and L. R. Squire, “Anterograde amnesia and temporally graded retrograde amnesia for a nonspatial memory task after lesions of hippocampus and subiculum,” Journal of Neuroscience, vol. 22, no. 11, pp. 4663–4669, 2002. View at Scopus
  78. P. W. Frankland and B. Bontempi, “The organization of recent and remote memories,” Nature Reviews Neuroscience, vol. 6, no. 2, pp. 119–130, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. A. G. Siapas and M. A. Wilson, “Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep,” Neuron, vol. 21, no. 5, pp. 1123–1128, 1998. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Rosanova and D. Ulrich, “Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train,” Journal of Neuroscience, vol. 25, no. 41, pp. 9398–9405, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Steriade, “Coherent oscillations and short-term plasticity in corticothalamic networks,” Trends in Neurosciences, vol. 22, no. 8, pp. 337–345, 1999. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Schmidt, P. Peigneux, V. Muto et al., “Encoding difficulty promotes postlearning changes in sleep spindle activity during napping,” Journal of Neuroscience, vol. 26, no. 35, pp. 8976–8982, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Mölle, L. Marshall, S. Gais, and J. Born, “Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep,” Journal of Neuroscience, vol. 22, no. 24, pp. 10941–10947, 2002. View at Scopus
  84. G. Buzsáki and A. Draguhn, “Neuronal olscillations in cortical networks,” Science, vol. 304, no. 5679, pp. 1926–1929, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Steriade, D. A. McCormick, and T. J. Sejnowski, “Thalamocortical oscillations in the sleeping and aroused brain,” Science, vol. 262, no. 5134, pp. 679–685, 1993. View at Scopus
  86. C. M. Wierzynski, E. V. Lubenov, M. Gu, and A. G. Siapas, “State-dependent spike timing relationships between hippocampal and prefrontal circuits during sleep,” Neuron, vol. 61, no. 4, pp. 587–596, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. L. Marshall, H. Helgadóttir, M. Mölle, and J. Born, “Boosting slow oscillations during sleep potentiates memory,” Nature, vol. 444, no. 7119, pp. 610–613, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. R. P. Vertes, “Memory consolidation in sleep: dream or reality,” Neuron, vol. 44, no. 1, pp. 135–148, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. R. P. Vertes and J. M. Siegel, “Time for the sleep community to take a critical look at the purported role of sleep in memory processing,” Sleep, vol. 28, no. 10, pp. 1228–1229, 2005. View at Scopus
  90. A. Bechara, A. R. Damasio, H. Damasio, and S. W. Anderson, “Insensitivity to future consequences following damage to human prefrontal cortex,” Cognition, vol. 50, no. 1–3, pp. 7–15, 1994. View at Scopus
  91. A. Bechara, H. Damasio, D. Tranel, and A. R. Damasio, “Deciding advantageously before knowing the advantageous strategy,” Science, vol. 275, no. 5304, pp. 1293–1295, 1997. View at Publisher · View at Google Scholar · View at Scopus
  92. H. L. Roediger and K. B. McDermott, “Creating false memories: remembering words not presented in lists,” Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 21, no. 4, pp. 803–814, 1995. View at Scopus
  93. S. Diekelmann, J. Born, and U. Wagner, “Sleep enhances false memories depending on general memory performance,” Behavioural Brain Research, vol. 208, no. 2, pp. 425–429, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. S. McKeon, E. F. Pace-Schott, and R. M. Spencer, “Interaction of sleep and emotional content on the production of false memories,” PLoS One, vol. 7, no. 11, Article ID e49353, 2012.
  95. J. D. Payne, D. L. Schacter, R. E. Propper et al., “The role of sleep in false memory formation,” Neurobiology of Learning and Memory, vol. 92, no. 3, pp. 327–334, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. H. Lau, S. E. Alger, and W. Fishbein, “Relational memory: a daytime nap facilitates the abstraction of general concepts,” PLoS One, vol. 6, no. 11, Article ID e27139, 2011.
  97. J. M. Ellenbogen, P. T. Hu, J. D. Payne, D. Titone, and M. P. Walker, “Human relational memory requires time and sleep,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 18, pp. 7723–7728, 2007.
  98. S. J. Durrant, C. Taylor, S. Cairney, and P. A. Lewis, “Sleep-dependent consolidation of statistical learning,” Neuropsychologia, vol. 49, no. 5, pp. 1322–1331, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. D. M. Werchan and R. L. Gómez, “An interaction between reinforcement learning and sleep to facilitate transitive inference,” Neurobiology of Learning and Memory, vol. 100, pp. 70–76, 2013. View at Publisher · View at Google Scholar
  100. R. L. Gómez, R. R. Bootzin, and L. Nadel, “Naps promote abstraction in language-learning infants,” Psychological Science, vol. 17, no. 8, pp. 670–674, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. A. Hupbach, R. L. Gomez, R. R. Bootzin, and L. Nadel, “Nap-dependent learning in infants,” Developmental Science, vol. 12, no. 6, pp. 1007–1012, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. E. F. Pace-Schott, P. W. Verga, T. S. Bennett, and R. M. Spencer, “Sleep promotes consolidation and generalization of extinction learning in simulated exposure therapy for spider fear,” Journal of Psychiatric Research, vol. 46, no. 8, pp. 1036–1044, 2012. View at Publisher · View at Google Scholar
  103. D. J. Foster and M. A. Wilson, “Reverse replay of behavioural sequences in hippocampal place cells during the awake state,” Nature, vol. 440, no. 7084, pp. 680–683, 2006. View at Publisher · View at Google Scholar · View at Scopus
  104. K. Diba and G. Buzsáki, “Forward and reverse hippocampal place-cell sequences during ripples,” Nature Neuroscience, vol. 10, no. 10, pp. 1241–1242, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. A. S. Gupta, M. A. A. van der Meer, D. S. Touretzky, and A. D. Redish, “Hippocampal replay is not a simple function of experience,” Neuron, vol. 65, no. 5, pp. 695–705, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. Y. L. Qin, B. L. McNaughton, W. E. Skaggs, and C. A. Barnes, “Memory reprocessing in corticocortical and hippocampocortical neuronal ensembles,” Philosophical Transactions of the Royal Society B, vol. 352, no. 1360, pp. 1525–1533, 1997. View at Publisher · View at Google Scholar · View at Scopus
  107. D. Ji and M. A. Wilson, “Coordinated memory replay in the visual cortex and hippocampus during sleep,” Nature Neuroscience, vol. 10, no. 1, pp. 100–107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. P. A. Lewis and S. J. Durrant, “Overlapping memory replay during sleep builds cognitive schemata,” Trends in Cognitive Sciences, vol. 15, no. 8, pp. 343–351, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. D. Kumaran and J. L. McClelland, “Generalization through the recurrent interaction of episodic memories: a model of the hippocampal system,” Psychological Review, vol. 119, no. 3, pp. 573–616, 2012. View at Publisher · View at Google Scholar
  110. C. Smith and D. Smith, “Ingestion of ethanol just prior to sleep onset impairs memory for procedural but not declarative tasks,” Sleep, vol. 26, no. 2, pp. 185–191, 2003. View at Scopus
  111. G. Tononi and C. Cirelli, “A possible role for sleep in synaptic homeostasis,” in The Physiologic Nature of Sleep, P. L. Parmeggiani and R. A. Velluti, Eds., Imperial College Press, London, UK, 2005.
  112. G. Tononi and C. Cirelli, “Sleep function and synaptic homeostasis,” Sleep Medicine Reviews, vol. 10, no. 1, pp. 49–62, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. V. V. Vyazovskiy, C. Cirelli, M. Pfister-Genskow, U. Faraguna, and G. Tononi, “Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep,” Nature Neuroscience, vol. 11, no. 2, pp. 200–208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. T. V. P. Bliss and A. R. Gardner Medwin, “Long lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path,” Journal of Physiology, vol. 232, no. 2, pp. 357–374, 1973. View at Scopus
  115. T. V. P. Bliss and T. Lomo, “Long lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path,” Journal of Physiology, vol. 232, no. 2, pp. 331–356, 1973. View at Scopus
  116. D. Bushey, G. Tononi, and C. Cirelli, “Sleep and synaptic homeostasis: structural evidence in Drosophila,” Science, vol. 332, no. 6037, pp. 1576–1581, 2011. View at Publisher · View at Google Scholar · View at Scopus
  117. S. Chauvette, J. Seigneur, and I. Timofeev, “Sleep oscillations in the thalamocortical system induce long-term al plasticity,” Neuron, vol. 75, no. 6, pp. 1105–1113, 2012. View at Publisher · View at Google Scholar
  118. A. D. Grosmark, K. Mizuseki, E. Pastalkova, K. Diba, and G. Buzsáki, “REM sleep reorganizes hippocampal excitability,” Neuron, vol. 75, no. 6, pp. 1001–1007, 2012. View at Publisher · View at Google Scholar
  119. J. Born and G. B. Feld, “Sleep to upscale, sleep to downscale: balancing homeostasis and plasticity,” Neuron, vol. 75, no. 6, pp. 933–935, 2012. View at Publisher · View at Google Scholar
  120. F. Crick and G. Mitchison, “The function of dream sleep,” Nature, vol. 304, no. 5922, pp. 111–114, 1983. View at Scopus
  121. M. C. Anderson, R. A. Bjork, and E. L. Bjork, “Remembering can cause forgetting: retrieval dynamics in long-term memory,” Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 20, no. 5, pp. 1063–1087, 1994. View at Scopus
  122. A. E. Woodward and R. A. Bjork, “Forgetting and remembering in free recall: intentional and unintentional,” Journal of Experimental Psychology, vol. 89, no. 1, pp. 109–116, 1971. View at Publisher · View at Google Scholar · View at Scopus
  123. B. A. Kuhl, N. M. Dudukovic, I. Kahn, and A. D. Wagner, “Decreased demands on cognitive control reveal the neural processing benefits of forgetting,” Nature Neuroscience, vol. 10, no. 7, pp. 908–914, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. B. Baran, J. Wilson, and R. M. C. Spencer, “REM-dependent repair of competitive memory suppression,” Experimental Brain Research, vol. 203, no. 2, pp. 471–477, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. E. L. Bjork, R. A. Bjork, and M. C. Anderson, “Varieties of goal-directed forgetting,” in Intentional Forgetting: Interdisciplinary Approaches, J. M. Golding and C. MacLeod, Eds., pp. 103–137, Erlbaum, Hillsdale, NJ, USA, 1998.
  126. J. M. Saletin, A. N. Goldstein, and M. P. Walker, “The role of sleep in directed forgetting and remembering of human memories,” Cerebral Cortex, vol. 21, no. 11, pp. 2534–2541, 2011. View at Publisher · View at Google Scholar
  127. I. Wilhelm, S. Diekelmann, I. Molzow, A. Ayoub, M. Mölle, and J. Born, “Sleep selectively enhances memory expected to be of future relevance,” Journal of Neuroscience, vol. 31, no. 5, pp. 1563–1569, 2011. View at Publisher · View at Google Scholar · View at Scopus
  128. K. S. LaBar and R. Cabeza, “Cognitive neuroscience of emotional memory,” Nature Reviews Neuroscience, vol. 7, no. 1, pp. 54–64, 2006. View at Publisher · View at Google Scholar · View at Scopus
  129. C. Hu, D. Ye, Y. Li et al., “Evaluation of a kindergarten-based nutrition education intervention for pre-school children in China,” Public Health Nutrition, vol. 13, no. 2, pp. 253–260, 2010. View at Publisher · View at Google Scholar · View at Scopus
  130. M. Nishida, J. Pearsall, R. L. Buckner, and M. P. Walker, “REM sleep, prefrontal theta, and the consolidation of human emotional memory,” Cerebral Cortex, vol. 19, no. 5, pp. 1158–1166, 2009. View at Publisher · View at Google Scholar · View at Scopus
  131. J. D. Payne, R. Stickgold, K. Swanberg, and E. A. Kensinger, “Sleep preferentially enhances memory for emotional components of scenes,” Psychological Science, vol. 19, no. 8, pp. 781–788, 2008. View at Publisher · View at Google Scholar · View at Scopus
  132. U. Wagner, S. Gais, and J. Born, “Emotional memory formation is enhanced across sleep intervals with high amounts of rapid eye movement sleep,” Learning and Memory, vol. 8, no. 2, pp. 112–119, 2001. View at Publisher · View at Google Scholar · View at Scopus
  133. B. Baran, E. F. Pace-Schott, C. Ericson, and R. M. Spencer, “Processing of emotional reactivity and emotional memory over sleep,” Journal of Neuroscience, vol. 32, no. 3, pp. 1035–1042, 2012. View at Publisher · View at Google Scholar
  134. G. Richter-Levin and I. Akirav, “Emotional tagging of memory formation—in the search for neural mechanisms,” Brain Research Reviews, vol. 43, no. 3, pp. 247–256, 2003. View at Publisher · View at Google Scholar · View at Scopus
  135. G. R. Poe, D. A. Nitz, B. L. McNaughton, and C. A. Barnes, “Experience-dependent phase-reversal of hippocampal neuron firing during REM sleep,” Brain Research, vol. 855, no. 1, pp. 176–180, 2000. View at Publisher · View at Google Scholar · View at Scopus
  136. S. Corkin, “What's new with the amnesic patient H.M.?” Nature Reviews Neuroscience, vol. 3, no. 2, pp. 153–160, 2002. View at Publisher · View at Google Scholar · View at Scopus
  137. B. Milner, “Memory disturbance after bilateral hippocampal lesions,” in Cognitive Processes and the Brain, P. M. Milner and S. Glickman, Eds., pp. 97–111, Van Nostrand, Princeton, NJ, USA, 1965.
  138. L. R. Squire, B. Knowlton, and G. Musen, “The structure and organization of memory,” Annual Review of Psychology, vol. 44, no. 1, pp. 453–495, 1993. View at Scopus
  139. M. P. Walker, T. Brakefield, A. Morgan, J. A. Hobson, and R. Stickgold, “Practice with sleep makes perfect: sleep-dependent motor skill learning,” Neuron, vol. 35, no. 1, pp. 205–211, 2002. View at Publisher · View at Google Scholar · View at Scopus
  140. T. P. Brawn, K. M. Fenn, H. C. Nusbaum, and D. Margoliash, “Consolidating the effects of waking and sleep on motor-sequence learning,” Journal of Neuroscience, vol. 30, no. 42, pp. 13977–13982, 2010. View at Publisher · View at Google Scholar · View at Scopus
  141. T. C. Rickard, D. J. Cai, C. A. Rieth, J. Jones, and M. C. Ard, “Sleep does not enhance motor sequence learning,” Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 34, no. 4, pp. 834–842, 2008. View at Publisher · View at Google Scholar
  142. K. Kuriyama, R. Stickgold, and M. P. Walker, “Sleep-dependent learning and motor-skill complexity,” Learning and Memory, vol. 11, no. 6, pp. 705–713, 2004. View at Publisher · View at Google Scholar · View at Scopus
  143. M. P. Walker, T. Brakefield, J. Seidman, A. Morgan, J. A. Hobson, and R. Stickgold, “Sleep and the time course of motor skill learning,” Learning and Memory, vol. 10, no. 4, pp. 275–284, 2003. View at Publisher · View at Google Scholar · View at Scopus
  144. K. Debas, J. Carrier, P. Orban et al., “Brain plasticity related to the consolidation of motor sequence learning and motor adaptation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 41, pp. 17839–17844, 2010. View at Publisher · View at Google Scholar · View at Scopus
  145. A. Morin, J. Doyon, V. Dostie et al., “Motor sequence learning increases sleep spindles and fast frequencies in post-training sleep,” Sleep, vol. 31, no. 8, pp. 1149–1156, 2008. View at Scopus
  146. A. H. Javadi, V. Walsh, and P. A. Lewis, “Offline consolidation of procedural skill learning is enhanced by negative emotional content,” Experimental Brain Research, vol. 208, no. 4, pp. 507–517, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. M. Tamaki, T. Matsuoka, H. Nittono, and T. Hori, “Fast sleep spindle (13–15 Hz) activity correlates with sleep-dependent improvement in visuomotor performance,” Sleep, vol. 31, no. 2, pp. 204–211, 2008. View at Scopus
  148. S. M. Fogel, C. T. Smith, and K. A. Cote, “Dissociable learning-dependent changes in REM and non-REM sleep in declarative and procedural memory systems,” Behavioural Brain Research, vol. 180, no. 1, pp. 48–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  149. C. Nissen, C. Kloepfer, B. Feige et al., “Sleep-related memory consolidation in primary insomnia,” Journal of Sleep Research, vol. 20, no. 1, pp. 129–136, 2011. View at Publisher · View at Google Scholar · View at Scopus
  150. C. S. Lansink, P. M. Goltstein, J. V. Lankelma, R. N. J. M. A. Joosten, B. L. McNaughton, and C. M. A. Pennartz, “Preferential reactivation of motivationally relevant information in the ventral striatum,” Journal of Neuroscience, vol. 28, no. 25, pp. 6372–6382, 2008. View at Publisher · View at Google Scholar · View at Scopus
  151. C. S. Lansink, P. M. Goltstein, J. V. Lankelma, B. L. McNaughton, and C. M. A. Pennartz, “Hippocampus leads ventral striatum in replay of place-reward information,” PLoS Biology, vol. 7, no. 8, Article ID e1000173, 2009. View at Publisher · View at Google Scholar · View at Scopus
  152. H. E. Schendan, M. M. Searl, R. J. Melrose, and C. E. Stern, “An fMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning,” Neuron, vol. 37, no. 6, pp. 1013–1025, 2003. View at Publisher · View at Google Scholar · View at Scopus
  153. J. Doyon, P. Bellec, R. Amsel et al., “Contributions of the basal ganglia and functionally related brain structures to motor learning,” Behavioural Brain Research, vol. 199, no. 1, pp. 61–75, 2009. View at Publisher · View at Google Scholar · View at Scopus
  154. L. R. Squire, “Memory and brain systems: 1969–2009,” Journal of Neuroscience, vol. 29, no. 41, pp. 12711–12716, 2009. View at Publisher · View at Google Scholar · View at Scopus
  155. N. J. Cohen, J. Ryan, C. Hunt, L. Romine, T. Wszalek, and C. Nash, “Hippocampal system and declarative (relational) memory: summarizing the data from functional neuroimaging studies,” Hippocampus, vol. 9, no. 1, pp. 83–98, 1999.
  156. R. A. Sperling, J. F. Bates, A. J. Cocchiarella, D. L. Schacter, B. R. Rosen, and M. S. Albert, “Encoding novel face-name associations: a functional MRI study,” Human Brain Mapping, vol. 14, no. 3, pp. 129–139, 2001. View at Publisher · View at Google Scholar · View at Scopus
  157. J. D. Ryan and N. J. Cohen, “Processing and short-term retention of relational information in amnesia,” Neuropsychologia, vol. 42, no. 4, pp. 497–511, 2004. View at Publisher · View at Google Scholar · View at Scopus
  158. E. A. Maguire, R. S. J. Frackowiak, and C. D. Frith, “Recalling routes around London: activation of the right hippocampus in taxi drivers,” Journal of Neuroscience, vol. 17, no. 18, pp. 7103–7110, 1997. View at Scopus
  159. M. Abe, H. Schambra, E. M. Wassermann, D. Luckenbaugh, N. Schweighofer, and L. G. Cohen, “Reward improves long-term retention of a motor memory through induction of offline memory gains,” Current Biology, vol. 21, no. 7, pp. 557–562, 2011. View at Publisher · View at Google Scholar · View at Scopus
  160. R. M. C. Spencer, M. Sunm, and R. B. Ivry, “Sleep-dependent consolidation of contextual learning,” Current Biology, vol. 16, no. 10, pp. 1001–1005, 2006. View at Publisher · View at Google Scholar · View at Scopus
  161. S. W. Keele, U. Mayr, R. Ivry, E. Hazeltine, and H. Heuer, “The cognitive and neural architecture of sequence representation,” Psychological Review, vol. 110, no. 2, pp. 316–339, 2003. View at Publisher · View at Google Scholar · View at Scopus
  162. D. Nemeth, K. Janacsek, Z. Londe, M. T. Ullman, D. V. Howard, and J. H. Howard, “Sleep has no critical role in implicit motor sequence learning in young and old adults,” Experimental Brain Research, vol. 201, no. 2, pp. 351–358, 2010. View at Publisher · View at Google Scholar · View at Scopus
  163. J. Doyon, M. Korman, A. Morin et al., “Contribution of night and day sleep vs. simple passage of time to the consolidation of motor sequence and visuomotor adaptation learning,” Experimental Brain Research, vol. 195, no. 1, pp. 15–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  164. R. Stickgold, “The role of REM sleep in memory, consolidation, enhancement, and integration,” in REM Sleep: Regulation and Function, B. N. Mallick, S. R. Pandi-Perumal, R. W. McCarley, and A. R. Morrison, Eds., pp. 328–338, Cambridge University Press, Cambridge, UK, 2011.
  165. R. Stickgold, “The role of REM sleep in consolidation, enhancement and generalization,” in Rapid Eye Movement Sleep: Regulation and Function, pp. 328–338, Cambridge University Press, Cambridge, UK, 2011.
  166. A. Giuditta, M. V. Ambrosini, P. Montagnese et al., “The sequential hypothesis of the function of sleep,” Behavioural Brain Research, vol. 69, no. 1-2, pp. 157–166, 1995. View at Publisher · View at Google Scholar · View at Scopus
  167. J. Backhaus, K. Junghanns, J. Born, K. Hohaus, F. Faasch, and F. Hohagen, “Impaired declarative memory consolidation during sleep in patients with primary insomnia: influence of sleep architecture and nocturnal cortisol release,” Biological Psychiatry, vol. 60, no. 12, pp. 1324–1330, 2006. View at Publisher · View at Google Scholar · View at Scopus
  168. J. Backhaus, J. Born, R. Hoeckesfeld, S. Fokuhl, F. Hohagen, and K. Junghanns, “Midlife decline in declarative memory consolidation is correlated with a decline in slow wave sleep,” Learning and Memory, vol. 14, no. 5, pp. 336–341, 2007. View at Publisher · View at Google Scholar · View at Scopus
  169. A. Takashima, K. M. Petersson, F. Rutters et al., “Declarative memory consolidation in humans: a prospective functional magnetic resonance imaging study,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 3, pp. 756–761, 2006. View at Publisher · View at Google Scholar
  170. S. A. Cairney, S. J. Durrant, R. J. Power, and P. A. Lewis, “The contribution of slow-wave sleep to the reorganisation of emotional memory: an fMRI study,” in Proceedings of the Cognitive Neuroscience Society Annual Meeting, Chicago, Ill, USA, 2012.
  171. R. Stickgold, D. Whidbee, B. Schirmer, V. Patel, and J. A. Hobson, “Visual discrimination task improvement: a multi-step process occurring during sleep,” Journal of Cognitive Neuroscience, vol. 12, no. 2, pp. 246–254, 2000. View at Scopus
  172. W. D. S. Killgore, “Effects of sleep deprivation and morningness-eveningness traits on risk-taking,” Psychological Reports, vol. 100, no. 2, pp. 613–626, 2007. View at Publisher · View at Google Scholar · View at Scopus
  173. A. R. Wolfson and M. A. Carskadon, “Sleep schedules and daytime functioning in adolescents,” Child Development, vol. 69, no. 4, pp. 875–887, 1998. View at Scopus
  174. D. Barrett, The Committee of Sleep: How Artists, Scientists, and Athletes Use Dreams for Creative Problem-Solving and How You Can Too, Crown, New York, NY, USA, 2001.