About this Journal Submit a Manuscript Table of Contents
ISRN Allergy
Volume 2013 (2013), Article ID 735031, 18 pages
http://dx.doi.org/10.1155/2013/735031
Review Article

Innate Immune Responses in House Dust Mite Allergy

Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Oor-Por-Ror Building, 10th Floor, Room No. 1010/5, 1873 Rama IV Road, Pathumwan, Bangkok 10330, Thailand

Received 4 November 2012; Accepted 22 November 2012

Academic Editors: Y. Gon, Y. L. Ye, and Z. Zhu

Copyright © 2013 Alain Jacquet. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. P. Zock, J. Heinrich, D. Jarvis et al., “Distribution and determinants of house dust mite allergens in Europe: the European Community Respiratory Health Survey II,” Journal of Allergy and Clinical Immunology, vol. 118, no. 3, pp. 682–690, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. S. H. Arshad, “Does exposure to indoor allergens contribute to the development of asthma and allergy?” Current Allergy and Asthma Reports, vol. 10, no. 1, pp. 49–55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. S. J. Galli, M. Tsai, and A. M. Piliponsky, “The development of allergic inflammation,” Nature, vol. 454, no. 7203, pp. 445–454, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. A. M. Willart and B. N. Lambrecht, “The danger within: endogenous danger signals, atopy and asthma,” Clinical and Experimental Allergy, vol. 39, no. 1, pp. 12–19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. R. M. Steinman, “Decisions about dendritic cells: past, present, and future,” Annual Review of Immunology, vol. 30, pp. 1–22, 2012. View at Publisher · View at Google Scholar
  6. B. N. Lambrecht and H. Hammad, “The role of dendritic and epithelial cells as master regulators of allergic airway inflammation,” The Lancet, vol. 376, no. 9743, pp. 835–843, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. A. van Beek, E. F. Knol, P. de Vos, M. J. Smelt, H. F. Savelkoul, and R. J. van Neerven, “Recent developments in basophil research: do basophils initiate and perpetuate type 2 T-helper cell responses?” International Archives of Allergy and Immunology, vol. 160, pp. 7–17, 2012.
  8. C. L. Sokol, N. Q. Chu, S. Yu, S. A. Nish, T. M. Laufer, and R. Medzhitov, “Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response,” Nature Immunology, vol. 10, no. 7, pp. 713–720, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Hammad, M. Plantinga, K. Deswarte et al., “Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen,” Journal of Experimental Medicine, vol. 207, no. 10, pp. 2097–2111, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Proud and R. Leigh, “Epithelial cells and airway diseases,” Immunological Reviews, vol. 242, no. 1, pp. 186–204, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. B. N. Lambrecht and H. Hammad, “The airway epithelium in asthma,” Nature Medicine, vol. 18, pp. 684–692, 2012. View at Publisher · View at Google Scholar
  12. C. M. Williams, S. Rahman, C. Hubeau, and H. L. Ma, “Cytokine pathways in allergic disease,” Toxicologic Pathology, vol. 40, no. 2, pp. 205–215, 2012. View at Publisher · View at Google Scholar
  13. K. R. Bartemes and H. Kita, “Dynamic role of epithelium-derived cytokines in asthma,” Clinical Immunology, vol. 143, no. 3, pp. 222–235, 2012. View at Publisher · View at Google Scholar
  14. H. Spits and T. Cupedo, “Innate lymphoid cells: emerging insights in development, lineage relationships, and function,” Annual Review of Immunology, vol. 30, pp. 647–675, 2012. View at Publisher · View at Google Scholar
  15. O. Takeuchi and S. Akira, “Pattern recognition receptors and inflammation,” Cell, vol. 140, no. 6, pp. 805–820, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Y. Chen and G. Nuñez, “Sterile inflammation: sensing and reacting to damage,” Nature Reviews Immunology, vol. 10, no. 12, pp. 826–837, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Parker and A. Prince, “Innate immunity in the respiratory epithelium,” American Journal of Respiratory Cell and Molecular Biology, vol. 45, no. 2, pp. 189–201, 2011. View at Publisher · View at Google Scholar
  18. W. R. Thomas, “Geography of house dust mite allergens,” Asian Pacific Journal of Allergy and Immunology, vol. 28, no. 4, pp. 211–224, 2010. View at Scopus
  19. J. C. Bessot and G. Pauli, “Mite allergens: an overview,” European Annals of Allergy and Clinical Immunology, vol. 43, pp. 141–156, 2011.
  20. M. D. Chapman, A. Pomés, H. Breiteneder, and F. Ferreira, “Nomenclature and structural biology of allergens,” The Journal of Allergy and Clinical Immunology, vol. 119, no. 2, pp. 414–420, 2007. View at Publisher · View at Google Scholar
  21. W. R. Thomas, W. A. Smith, B. J. Hales, K. L. Mills, and R. M. O'Brien, “Characterization and immunobiology of house dust mite allergens,” International Archives of Allergy and Immunology, vol. 129, no. 1, pp. 1–18, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Thomas, P. Heap, and F. Carswell, “Ultrastructural localization of the allergen Der p I in the gut of the house dust mite dermatophagoides pteronyssinus,” International Archives of Allergy and Applied Immunology, vol. 94, no. 1–4, pp. 365–367, 1991. View at Scopus
  23. W. R. Thomas, B. J. Hales, and W. A. Smith, “House dust mite allergens in asthma and allergy,” Trends in Molecular Medicine, vol. 16, no. 7, pp. 321–328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. F. R. Lake, L. D. Ward, R. J. Simpson, P. J. Thompson, and G. A. Stewart, “House dust mite-derived amylase: alergenicity and physicochemical characterization,” Journal of Allergy and Clinical Immunology, vol. 87, no. 6, pp. 1035–1042, 1991. View at Scopus
  25. C. H. Huang, L. M. Liew, K. W. Mah, I. C. Kuo, B. W. Lee, and K. Y. Chua, “Characterization of glutathione S-transferase from dust mite, Der p 8 and its immunoglobulin E cross-reactivity with cockroach glutathione S-transferase,” Clinical and Experimental Allergy, vol. 36, no. 3, pp. 369–376, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. B. J. Hales, I. A. Laing, L. J. Pearce et al., “Distinctive immunoglobulin E anti-house dust allergen-binding specificities in a tropical australian aboriginal community,” Clinical and Experimental Allergy, vol. 37, no. 9, pp. 1357–1363, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. S. E. O'Neil, T. K. Heinrich, B. J. Hales et al., “The chitinase allergens Der p 15 and Der p 18 from Dermatophagoides pteronyssinus,” Clinical and Experimental Allergy, vol. 36, no. 6, pp. 831–839, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. J. Kyoung, C. S. Hong, and T. S. Yong, “Allergenic tropomyosins and their cross-reactivities,” Protein and Peptide Letters, vol. 13, no. 8, pp. 835–845, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. L. C. Tsai, H. J. Peng, C. S. Lee et al., “Molecular cloning and characterization of full-length cDNAs encoding a novel high-molecular-weight Dermatophagoides pteronyssinus mite allergen, Der p 11,” Allergy, vol. 60, no. 7, pp. 927–937, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Kawamoto, T. Suzuki, T. Aki et al., “Der f 16: A novel gelsolin-related molecule identified as an allergen from the house dust mite, Dermatophagoides farinae,” FEBS Letters, vol. 516, no. 1–3, pp. 234–238, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Kawamoto, T. Aki, M. Yamashita et al., “Toward elucidating the full spectrum of mite allergens—state of the art,” Journal of Bioscience and Bioengineering, vol. 94, no. 4, pp. 285–298, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. E. R. Tovey, M. D. Chapman, and T. A. E. Platts-Mills, “Mite faeces are a major source of house dust allergens,” Nature, vol. 289, no. 5798, pp. 592–593, 1981. View at Scopus
  33. T. A. E. Platts-Mills, P. W. Heymann, J. L. Longbottom, and S. R. Wilkins, “Airborne allergens associated with asthma: particle sizes carrying dust mite and rat allergens measured with a cascade impactor,” Journal of Allergy and Clinical Immunology, vol. 77, no. 6, pp. 850–857, 1986. View at Scopus
  34. J. Douwes, A. Zuidhof, G. Doekes et al., “(1→3)-β-D-glucan and endotoxin in house dust and peak flow variability in children,” American Journal of Respiratory and Critical Care Medicine, vol. 162, no. 4, pp. 1348–1354, 2000. View at Scopus
  35. C. R. Valerio, P. Murray, L. G. Arlian, and J. E. Slater, “Bacterial 16S ribosomal DNA in house dust mite cultures,” Journal of Allergy and Clinical Immunology, vol. 116, no. 6, pp. 1296–1300, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Andersen, “Nutritional value of yeast for Dermatophagoides pteronyssinus (Acari: Epidermoptidae) and the antigenic and allergenic composition of extracts during extended culturing,” Journal of Medical Entomology, vol. 28, no. 4, pp. 487–491, 1991. View at Scopus
  37. S. Post, M. C. Nawijn, T. L. Hackett et al., “The composition of house dust mite is critical for mucosal barrier dysfunction and allergic sensitisation,” Thorax, vol. 67, no. 6, pp. 488–495, 2012. View at Publisher · View at Google Scholar
  38. W. R. Thomas, “The advent of recombinant allergens and allergen cloning,” Journal of Allergy and Clinical Immunology, vol. 127, no. 4, pp. 855–859, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Braun-Fahrländer, J. Riedler, U. Herz et al., “Environmental exposure to endotoxin and its relation to asthma in school-age children,” The New England Journal of Medicine, vol. 347, no. 12, pp. 869–877, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. J. E. Gereda, D. Y. M. Leung, A. Thatayatikom et al., “Relation between house-dust endotoxin exposure, type 1 T-cell development, and allergen sensitisation in infants at high risk of asthma,” The Lancet, vol. 355, no. 9216, pp. 1680–1683, 2000. View at Scopus
  41. M. Werner, R. Topp, K. Wimmer et al., “TLR4 gene variants modify endotoxin effects on asthma,” Journal of Allergy and Clinical Immunology, vol. 112, no. 2, pp. 323–330, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. I. A. Yang, S. J. Barton, S. Rorke et al., “Toll-like receptor 4 polymorphism and severity of atopy in asthmatics,” Genes and Immunity, vol. 5, no. 1, pp. 41–45, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. I. A. Yang, S. T. Holgate, and J. W. Holloway, “Toll-like receptor polymorphisms and allergic disease: Interpreting the evidence from genetic studies,” Clinical and Experimental Allergy, vol. 34, no. 2, pp. 163–166, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. S. C. Eisenbarth, D. A. Piggott, J. W. Huleatt, I. Visintin, C. A. Herrick, and K. Bottomly, “Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen,” Journal of Experimental Medicine, vol. 196, no. 12, pp. 1645–1651, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. S. K. Lundy, A. A. Berlin, and N. W. Lukacs, “Interleukin-12-independent down-modulation of cockroach antigen-induced asthma in mice by intranasal exposure to bacterial lipopolysaccharid,” American Journal of Pathology, vol. 163, no. 5, pp. 1961–1968, 2003. View at Scopus
  46. S. Phipps, C. E. Lam, G. E. Kaiko et al., “Toll/IL-1 signaling is critical for house dust mite-specific Th1 and Th2 responses,” American Journal of Respiratory and Critical Care Medicine, vol. 179, no. 10, pp. 883–893, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Hammad, M. Chieppa, F. Perros, M. A. Willart, R. N. Germain, and B. N. Lambrecht, “House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells,” Nature Medicine, vol. 15, no. 4, pp. 410–416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. M. A. Willart, K. Deswarte, P. Pouliot et al., “Interleukin-1α controls allergic sensitization to inhaled house dust mite via the epithelial release of GM-CSF and IL-33,” The Journal of Experimental Medicine, vol. 209, no. 8, pp. 1505–1517, 2012. View at Publisher · View at Google Scholar
  49. T. Marichal, D. Bedoret, C. Mesnil et al., “Interferon response factor 3 is essential for house dust mite-induced airway allergy,” Journal of Allergy and Clinical Immunology, vol. 126, no. 4, pp. 836–844.e13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Guillott, S. Medjane, K. Le-Barillec et al., “Response of human pulmonary epithelial cells to lipopolysaccharide involves toll-like receptor 4 (TLR4)-dependent signaling pathways: evidence for an intracellular compartmentalization of TLR4,” Journal of Biological Chemistry, vol. 279, no. 4, pp. 2712–2718, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. H. P. Jia, J. N. Kline, A. Penisten et al., “Endotoxin responsiveness of human airway epithelia is limited by low expression of MD-2,” American Journal of Physiology, vol. 287, no. 2, pp. L428–L437, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Trompette, S. Divanovic, A. Visintin et al., “Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein,” Nature, vol. 457, no. 7229, pp. 585–588, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Ichikawa, T. Takai, T. Yashiki et al., “Lipopolysaccharide binding of the mite allergen Der f 2,” Genes to Cells, vol. 14, no. 9, pp. 1055–1065, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. L. Chiou and C. Y. Lin, “Der p2 activates airway smooth muscle cells in a TLR2/ MyD88-dependent manner to induce an inflammatory response,” Journal of Cellular Physiology, vol. 220, no. 2, pp. 311–318, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. J. J. Tsai, S. H. Liu, S. C. Yin et al., “Mite allergen Der-p2 triggers human B lymphocyte activation and Toll-like receptor-4 induction,” PLoS ONE, vol. 6, Article ID e23249, 2011.
  56. G. A. Mueller, R. A. Gosavi, J. M. Krahn et al., “Der p 5 crystal structure provides insight into the group 5 dust mite allergens,” Journal of Biological Chemistry, vol. 285, no. 33, pp. 25394–25401, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. H. F. Kauffman, M. Tamm, J. A. B. Timmerman, and P. Borger, “House dust mite major allergens Der p 1 and Der p 5 activate human airway-derived epithelial cells by protease-dependent and protease-independent mechanisms,” Clinical and Molecular Allergy, vol. 4, article 5, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. G. A. Mueller, L. L. Edwards, J. J. Aloor et al., “The structure of the dust mite allergen Der p 7 reveals similarities to innate immune proteins,” Journal of Allergy and Clinical Immunology, vol. 125, no. 4, pp. 909–917.e4, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. K. W. Tan, C. Jobichen, T. C. Ong et al., “Crystal structure of Der f 7, a dust mite allergen from Dermatophagoides farinae,” PLoS ONE, vol. 7, Article ID e44850, 2012.
  60. R. H. Wilson, S. Maruoka, G. S. Whitehead et al., “The Toll-like receptor 5 ligand flagellin promotes asthma by priming allergic responses to indoor allergens,” Nature Medicine, vol. 18, no. 11, pp. 1705–1710, 2012. View at Publisher · View at Google Scholar
  61. S. Bhowmick, D. Chatterjee, and K. Chaudhuri, “Human epithelial cells stimulated with Vibrio cholerae produce thymic stromal lymphopoietin and promote dendritic cell-mediated inflammatory Th2 response,” The International Journal of Biochemistry & Cell Biology, vol. 44, no. 11, pp. 1779–1790, 2012. View at Publisher · View at Google Scholar
  62. T. A. Le, T. Takai, A. T. Vu et al., “Flagellin induces the expression of thymic stromal lymphopoietin in human keratinocytes via toll-like receptor 5,” International Archives of Allergy and Immunology, vol. 155, no. 1, pp. 31–37, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. J. H. Ryu, J. Y. Yoo, M. J. Kim et al., “Distinct TLR-mediated pathways regulate house dust mite-induced allergic disease in the upper and lower airways,” Journal of Allergy and Clinical Immunology, vol. 6749, no. 12, pp. 1301–1302, 2012. View at Publisher · View at Google Scholar
  64. A. T. Nathan, E. A. Peterson, J. Chakir, and M. Wills-Karp, “Innate immune responses of airway epithelium to house dust mite are mediated through β-glucan-dependent pathways,” Journal of Allergy and Clinical Immunology, vol. 123, no. 3, pp. 612–618, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. W. K. Sun, X. Lu, X. Li et al., “Dectin-1 is inducible and plays a crucial role in Aspergillus-induced innate immune responses in human bronchial epithelial cells,” European Journal of Clinical Microbiology & Infectious Diseases, vol. 31, no. 10, pp. 2755–2764, 2012. View at Publisher · View at Google Scholar
  66. N. A. Barrett, A. Maekawa, O. M. Rahman, K. F. Austen, and Y. Kanaoka, “Dectin-2 recognition of house dust mite triggers cysteinyl leukotriene generation by dendritic cells,” Journal of Immunology, vol. 182, no. 2, pp. 1119–1128, 2009. View at Scopus
  67. N. A. Barrett, O. M. Rahman, J. M. Fernandez et al., “Dectin-2 mediates Th2 immunity through the generation of cysteinyl leukotrienes,” Journal of Experimental Medicine, vol. 208, no. 3, pp. 593–604, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. P. J. Royer, M. Emara, C. Yang et al., “The mannose receptor mediates the uptake of diverse native allergens by dendritic cells and determines allergen-induced T cell polarization through modulation of IDO activity,” Journal of Immunology, vol. 185, no. 3, pp. 1522–1531, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Emara, P. J. Royer, J. Mahdavi, F. Shakib, and A. M. Ghaemmaghami, “Retagging identifies dendritic cell-specific intercellular adhesion molecule-3 (ICAM3)-grabbing non-integrin (DC-SIGN) protein as a novel receptor for a major allergen from house dust mite,” The Journal of Biological Chemistry, vol. 287, pp. 5756–5763, 2012. View at Publisher · View at Google Scholar
  70. S. C. Hsu, C. H. Chen, S. H. Tsai et al., “Functional interaction of common allergens and a C-type lectin receptor, dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN), on human dendritic cells,” Journal of Biological Chemistry, vol. 285, no. 11, pp. 7903–7910, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Al-Ghouleh, R. Johal, I. K. Sharquie et al., “The glycosylation pattern of common allergens: the recognition and uptake of Der p 1 by epithelial and dendritic cells is carbohydrate dependent,” PLoS ONE, vol. 7, Article ID e33929, 2012.
  72. H. J. Huang, Y. L. Lin, C. F. Liu, H. F. Kao, and J. Y. Wang, “Mite allergen decreases DC-SIGN expression and modulates human dendritic cell differentiation and function in allergic asthma,” Mucosal Immunology, vol. 4, pp. 519–527, 2011. View at Publisher · View at Google Scholar
  73. C. G. Lee, C. A. Da Silva, C. S. Dela Cruz et al., “Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury,” Annual Review of Physiology, vol. 73, pp. 479–501, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. T. A. Reese, H. E. Liang, A. M. Tager et al., “Chitin induces accumulation in tissue of innate immune cells associated with allergy,” Nature, vol. 447, no. 7140, pp. 92–96, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. R. M. Roy, M. Wüthrich, and B. S. Klein, “Chitin elicits CCL2 from airway epithelial cells and induces CCR2-dependent innate allergic inflammation in the lung,” The Journal of Immunology, vol. 189, no. 5, pp. 2545–2552, 2012. View at Publisher · View at Google Scholar
  76. Z. Zhu, T. Zheng, R. J. Homer et al., “Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation,” Science, vol. 304, no. 5677, pp. 1678–1682, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. L. J. Fitz, C. DeClercq, J. Brooks et al., “Acidic mammalian chitinase is not a critical target for allergic airway disease,” American Journal of Respiratory Cell and Molecular Biology, vol. 46, pp. 71–79, 2012. View at Publisher · View at Google Scholar
  78. L. Franchi, R. Muñoz-Planillo, and G. Núñez, “Sensing and reacting to microbes through the inflammasomes,” Nature Immunology, vol. 13, pp. 325–332, 2012. View at Publisher · View at Google Scholar
  79. M. Kool, M. Willart, M. van Nimwegen et al., “An unexpected role for uric acid as an inducer of T helper 2 cell immunity to Inhaled antigens and inflammatory mediator of allergic asthma,” Immunity, vol. 34, no. 4, pp. 527–540, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. I. C. Allen, C. M. Jania, J. E. Wilson et al., “Analysis of NLRP3 in the development of allergic airway disease in mice,” The Journal of Immunology, vol. 188, no. 6, pp. 2884–2893, 2012. View at Publisher · View at Google Scholar
  81. X. Dai, K. Sayama, M. Tohyama et al., “Mite allergen is a danger signal for the skin via activation of inflammasome in keratinocytes,” Journal of Allergy and Clinical Immunology, vol. 127, no. 3, pp. 806–814, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. F. Martinon, V. Pétrilli, A. Mayor, A. Tardivel, and J. Tschopp, “Gout-associated uric acid crystals activate the NALP3 inflammasome,” Nature, vol. 440, no. 7081, pp. 237–241, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. C. J. Chen, Y. Shi, A. Hearn et al., “MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals,” Journal of Clinical Investigation, vol. 116, no. 8, pp. 2262–2271, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Idzko, H. Hammad, M. Van Nimwegen et al., “Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells,” Nature Medicine, vol. 13, no. 8, pp. 913–919, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. T. Müller, R. P. Vieira, M. Grimm et al., “A potential role for P2X7R in allergic airway inflammation in mice and humans,” American Journal of Respiratory Cell and Molecular Biology, vol. 44, pp. 456–464, 2011. View at Publisher · View at Google Scholar
  86. N. A. Kalsheker, S. Deam, L. Chambers, S. Sreedharan, K. Brocklehurst, and D. A. Lomas, “The house dust mite allergen Der p1 catalytically inactivates α1-antitrypsin by specific reactive centre loop cleavage: a mechanism that promotes airway inflammation and asthma,” Biochemical and Biophysical Research Communications, vol. 221, no. 1, pp. 59–61, 1996. View at Publisher · View at Google Scholar · View at Scopus
  87. A. Brown, K. Farmer, L. MacDonald et al., “House dust mite Der P 1 downregulates defenses of the lung by inactivating elastase inhibitors,” American Journal of Respiratory Cell and Molecular Biology, vol. 29, no. 3 I, pp. 381–389, 2003. View at Publisher · View at Google Scholar · View at Scopus
  88. R. Deb, F. Shakib, K. Reid, and H. Clark, “Major house dust mite allergens Dermatophagoides pteronyssinus 1 and Dermatophagoides farinae 1 degrade and inactivate lung surfactant proteins A and D,” The Journal of Biological Chemistry, vol. 282, no. 51, pp. 36808–36819, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. J. Y. Wang and K. B. M. Reid, “The immunoregulatory roles of lung surfactant collectins SP-A, and SP-D, in allergen-induced airway inflammation,” Immunobiology, vol. 212, no. 4-5, pp. 417–425, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. C. Förster, “Tight junctions and the modulation of barrier function in disease,” Histochemistry and Cell Biology, vol. 130, no. 1, pp. 55–70, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. S. T. Holgate, “Epithelium dysfunction in asthma,” Journal of Allergy and Clinical Immunology, vol. 120, no. 6, pp. 1233–1244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. C. A. Herbert, C. M. King, P. C. Ring et al., “Augmentation of permeability in the bronchial epithelium by the house dust mite allergen Der p1,” American Journal of Respiratory Cell and Molecular Biology, vol. 12, no. 4, pp. 369–378, 1995. View at Scopus
  93. N. Roche, T. C. Chinet, N. E. Belouchi, C. Julie, and G. J. Huchon, “Dermatophagoides pteronyssinus and bioelectric properties of airway epithelium: role of cysteine proteases,” European Respiratory Journal, vol. 16, no. 2, pp. 309–315, 2000. View at Publisher · View at Google Scholar · View at Scopus
  94. S. S. J. Sung, S. M. Fu, C. E. Rose Jr., F. Gaskin, S. T. Ju, and S. R. Beaty, “A major lung CD103 (αE)-β7 integrin–positive epithelial dendritic cell population expressing langerin and tight junction proteins,” Journal of Immunology, vol. 176, no. 4, pp. 2161–2172, 2006. View at Scopus
  95. H. Wan, H. L. Winton, C. Soeller et al., “Quantitative structural and biochemical analyses of tight junction dynamics following exposure of epithelial cells to house dust mite allergen Der p 1,” Clinical and Experimental Allergy, vol. 30, no. 5, pp. 685–698, 2000. View at Publisher · View at Google Scholar · View at Scopus
  96. H. Wan, H. L. Winton, C. Soeller et al., “The transmembrane protein occludin of epithelial tight junctions is a functional target for serine peptidases from faecal pellets of Dermatophagoides pteronyssinus,” Clinical and Experimental Allergy, vol. 31, no. 2, pp. 279–294, 2001. View at Publisher · View at Google Scholar · View at Scopus
  97. C. Dale and N. Vergnolle, “Protease signaling to G protein-coupled receptors: implications for inflammation and pain,” Journal of Receptors and Signal Transduction, vol. 28, no. 1-2, pp. 29–37, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. P. Rallabhandi, Q. M. Nhu, V. Y. Toshchakov et al., “Analysis of proteinase-activated receptor 2 and TLR4 signal transduction: a novel paradigm for receptor cooperativity,” The Journal of Biological Chemistry, vol. 283, no. 36, pp. 24314–24325, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. M. C. Winter, S. S. Shasby, D. R. Ries, and D. M. Shasby, “PAR2 activation interrupts E-cadherin adhesion and compromises the airway epithelial barrier: protective effect of β-agonists,” The American Journal of Physiology, vol. 291, no. 4, pp. L628–L635, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. K. Kunzelmann, J. Sun, D. Markovich et al., “Control of ion transport in mammalian airways by protease activated receptors type 2 (PAR-2),” The FASEB Journal, vol. 19, no. 8, pp. 969–970, 2005. View at Publisher · View at Google Scholar · View at Scopus
  101. H. J. Cho, H. J. Lee, S. C. Kim et al., “Protease-activated receptor 2-dependent fluid secretion from airway submucosal glands by house dust mite extract,” Journal of Allergy and Clinical Immunology, vol. 129, no. 2, pp. 529–535, 2012. View at Publisher · View at Google Scholar
  102. H. J. Cho, J. Y. Choi, Y. M. Yang et al., “House dust mite extract activates apical Cl- channels through protease-activated receptor 2 in human airway epithelia,” Journal of Cellular Biochemistry, vol. 109, no. 6, pp. 1254–1263, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Pichavant, A. S. Charbonnier, S. Taront et al., “Asthmatic bronchial epithelium activated by the proteolytic allergen Der p 1 increases selective dendritic cell recruitment,” Journal of Allergy and Clinical Immunology, vol. 115, no. 4, pp. 771–778, 2005. View at Publisher · View at Google Scholar · View at Scopus
  104. C. King, S. Brennan, P. J. Thompson, and G. A. Stewart, “Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium,” Journal of Immunology, vol. 161, no. 7, pp. 3645–3651, 1998. View at Scopus
  105. N. Asokananthan, P. T. Graham, D. J. Stewart et al., “House dust mite allergens induce proinflammatory cytokines from respiratory epithelial cells: the cysteine protease allergen, Der p 1, activates protease-activated receptor (PAR)-2 and inactivates PAR-1,” Journal of Immunology, vol. 169, no. 8, pp. 4572–4578, 2002. View at Scopus
  106. E. Adam, K. K. Hansen, O. F. Astudillo et al., “The house dust mite allergen Der p 1, unlike Der p 3, stimulates the expression of interleukin-8 in human airway epithelial cells via a proteinase-activated receptor-2-independent mechanism,” The Journal of Biological Chemistry, vol. 281, no. 11, pp. 6910–6923, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. G. Sun, M. A. Stacey, M. Schmidt, L. Mori, and S. Mattoli, “Interaction of mite allergens Der p3 and Der p9 with protease-activated receptor-2 expressed by lung epithelial cells,” Journal of Immunology, vol. 167, no. 2, pp. 1014–1021, 2001. View at Scopus
  108. T. Kato, T. Takai, T. Fujimura et al., “Mite serine protease activates protease-activated receptor-2 and induces cytokine release in human keratinocytes,” Allergy, vol. 64, no. 9, pp. 1366–1374, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. H. S. Yu, P. Angkasekwinai, S. H. Chang, Y. Chung, and C. Dong, “Protease allergens induce the expression of IL-25 via Erk and p38 MAPK pathway,” Journal of Korean Medical Science, vol. 25, no. 6, pp. 829–834, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. H. Kouzaki, S. M. O'Grady, C. B. Lawrence, and H. Kita, “Proteases induce production of thymic stromal lymphopoietin by airway epithelial cells through protease-activated receptor-2,” Journal of Immunology, vol. 183, no. 2, pp. 1427–1434, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. J. Shi, Q. Luo, F. Chen, D. Chen, G. Xu, and H. Li, “Induction of IL-6 and IL-8 by house dust mite allergen der p1 in cultured human nasal epithelial cells is associated with PAR/PI3K/NFκB signaling,” Journal for Oto-rhino-laryngology and Its Related Specialties, vol. 72, no. 5, pp. 256–265, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. J. Zheng, W. Liu, Y. Fan et al., “Suppression of connexin 26 is related to protease-activated receptor 2-mediated pathway in patients with allergic rhinitis,” American Journal of Rhinology & Allergy, vol. 26, no. 1, pp. e5–e9, 2012. View at Publisher · View at Google Scholar
  113. A. M. Ghaemmaghami, L. Gough, H. F. Sewell, and F. Shakib, “The proteolytic activity of the major dust mite allergen Der p 1 conditions dendritic cells to produce less interleukin-12: allergen-induced Th2 bias determined at the dendritic cell level,” Clinical and Experimental Allergy, vol. 32, no. 10, pp. 1468–1475, 2002. View at Publisher · View at Google Scholar · View at Scopus
  114. A. A. Hasan, A. M. Ghaemmaghami, L. Fairclough, A. Robins, H. F. Sewell, and F. Shakib, “Allergen-driven suppression of thiol production by human dendritic cells and the effect of thiols on T cell function,” Immunobiology, vol. 214, no. 1, pp. 2–16, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. R. Furmonaviciene, A. M. Ghaemmaghami, S. E. Boyd et al., “The protease allergen Der p 1 cleaves cell surface DC-SIGN and DC-SIGNR: experimental analysis of in silico substrate identification and implications in allergic responses,” Clinical and Experimental Allergy, vol. 37, no. 2, pp. 231–242, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. K. Maneechotesuwan, V. Wamanuttajinda, K. Kasetsinsombat et al., “Der p 1 suppresses indoleamine 2, 3-dioxygenase in dendritic cells from house dust mite-sensitive patients with asthma,” Journal of Allergy and Clinical Immunology, vol. 123, no. 1, pp. 239–248, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. A. Jacquet, “The role of the house dust mite-induced innate immunity in development of allergic response,” International Archives of Allergy and Immunology, vol. 155, no. 2, pp. 95–105, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. M. Fukunaga, Y. Gon, S. Nunomura et al., “Protease-mediated house dust mite allergen-induced reactive oxygen species production by neutrophils,” International Archives of Allergy and Immunology, vol. 155, supplement 1, pp. 104–109, 2011. View at Publisher · View at Google Scholar · View at Scopus
  119. T. L. Hackett, “Epithelial-mesenchymal transition in the pathophysiology of airway remodelling in asthma,” Current Opinion in Allergy and Clinical Immunology, vol. 12, no. 1, pp. 53–59, 2012. View at Publisher · View at Google Scholar
  120. R. Halwani, S. Al-Muhsen, H. Al-Jahdali, and Q. Hamid, “Role of transforming growth factor-β in airway remodeling in asthma,” American Journal of Respiratory Cell and Molecular Biology, vol. 44, no. 2, pp. 127–133, 2011. View at Publisher · View at Google Scholar · View at Scopus
  121. S. T. Holgate, G. Roberts, H. S. Arshad, P. H. Howarth, and D. E. Davies, “The role of the airway epithelium and its interaction with environmental factors in asthma pathogenesis,” Proceedings of the American Thoracic Society, vol. 6, no. 8, pp. 655–659, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. I. H. Heijink, D. S. Postma, J. A. Noordhoek, M. Broekema, and A. Kapus, “House dust mite-promoted epithelial-to-mesenchymal transition in human bronchial epithelium,” American Journal of Respiratory Cell and Molecular Biology, vol. 42, no. 1, pp. 69–79, 2010. View at Publisher · View at Google Scholar · View at Scopus
  123. I. H. Heijink, A. Van Oosterhout, and A. Kapus, “Epidermal growth factor receptor signalling contributes to house dust mite-induced epithelial barrier dysfunction,” European Respiratory Journal, vol. 36, no. 5, pp. 1016–1026, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. I. H. Heijink, P. M. Kies, H. F. Kauffman, D. S. Postma, A. J. M. Van Oosterhout, and E. Vellenga, “Down-regulation of E-cadherin in human bronchial epithelial cells leads to epidermal growth factor receptor-dependent Th2 cell-promoting activity,” Journal of Immunology, vol. 178, no. 12, pp. 7678–7685, 2007. View at Scopus
  125. P. D. Frisella, J. Silverberg, R. Joks, and M. Frieri, “Transforming growth factor beta: a role in the upper airway and rhinosinusitis—Dermatophagoides pteronyssinus-induced apoptosis with pulmonary alveolar cells,” American Journal of Rhinology and Allergy, vol. 25, no. 4, pp. 231–235, 2011. View at Publisher · View at Google Scholar · View at Scopus
  126. Y. Nakamura, M. Miyata, N. Shimokawa et al., “House dust mite allergen Der f 1 can induce the activation of latent TGF-β via its protease activity,” FEBS Letters, vol. 583, no. 12, pp. 2088–2092, 2009. View at Publisher · View at Google Scholar · View at Scopus
  127. N. Miglino, M. Roth, M. Tamm, and P. Borger, “House dust mite extract downregulates C/EBPα in asthmatic bronchial smooth muscle cells,” European Respiratory Journal, vol. 38, no. 1, pp. 50–58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  128. C. Österlund, H. Grönlund, N. Polovic, S. Sundström, G. Gafvelin, and A. Bucht, “The non-proteolytic house dust mite allergen der p 2 induce NF-κB and MAPK dependent activation of bronchial epithelial cells,” Clinical and Experimental Allergy, vol. 39, no. 8, pp. 1199–1208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. C. Österlund, H. Grönlund, G. Gafvelin, and A. Bucht, “Non-proteolytic aeroallergens from mites, cat and dog exert adjuvant-like activation of bronchial epithelial cells,” International Archives of Allergy and Immunology, vol. 155, no. 2, pp. 111–118, 2011. View at Publisher · View at Google Scholar · View at Scopus
  130. Y. L. Ye, H. T. Wu, C. F. Lin et al., “Dermatophagoides pteronyssinus 2 regulates nerve growth factor release to induce airway inflammation via a reactive oxygen species-dependent pathway,” American Journal of Physiology, vol. 300, no. 2, pp. L216–L224, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. S. Y. Park, J. H. Cho, D. Y. Oh et al., “House dust mite allergen Der f 2-induced phospholipase D1 activation is critical for the production of interleukin-13 through activating transcription factor-2 activation in human bronchial epithelial cells,” The Journal of Biological Chemistry, vol. 284, no. 30, pp. 20099–20110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  132. N. Krishnamoorthy, T. B. Oriss, M. Paglia et al., “Activation of c-Kit in dendritic cells regulates T helper cell differentiation and allergic asthma,” Nature Medicine, vol. 14, no. 5, pp. 565–573, 2008. View at Publisher · View at Google Scholar · View at Scopus
  133. K. R. Bartemes and H. Kita, “Dynamic role of epithelium-derived cytokines in asthma,” Clinical Immunology, vol. 143, no. 3, pp. 222–235, 2012. View at Publisher · View at Google Scholar
  134. T. Ito, Y. H. Wang, O. Duramad et al., “TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand,” Journal of Experimental Medicine, vol. 202, no. 9, pp. 1213–1223, 2005. View at Publisher · View at Google Scholar · View at Scopus
  135. S. Ying, B. O'Connor, J. Ratoff et al., “Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity,” Journal of Immunology, vol. 174, no. 12, pp. 8183–8190, 2005. View at Scopus
  136. M. Harada, T. Hirota, A. I. Jodo et al., “Thymic stromal lymphopoietin gene promoter polymorphisms are associated with susceptibility to bronchial asthma,” American Journal of Respiratory Cell and Molecular Biology, vol. 44, pp. 787–793, 2011. View at Publisher · View at Google Scholar
  137. M. C. Siracusa, S. A. Saenz, D. A. Hill et al., “TSLP promotes interleukin-3independent basophil haematopoiesis and type 2 inflammation,” Nature, vol. 477, pp. 229–233, 2011. View at Publisher · View at Google Scholar
  138. M. Milovanovic, V. Volarevic, G. Radosavljevic et al., “IL-33/ST2 axis in inflammation and immunopathology,” Immunologic Research, vol. 52, no. 1-2, pp. 89–99, 2012. View at Publisher · View at Google Scholar
  139. D. Préfontaine, J. Nadigel, F. Chouiali et al., “Increased IL-33 expression by epithelial cells in bronchial asthma,” Journal of Allergy and Clinical Immunology, vol. 125, no. 3, pp. 752–754, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. J. Schmitz, A. Owyang, E. Oldham et al., “IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines,” Immunity, vol. 23, no. 5, pp. 479–490, 2005. View at Publisher · View at Google Scholar · View at Scopus
  141. M. A. Rank, T. Kobayashi, H. Kozaki, K. R. Bartemes, D. L. Squillace, and H. Kita, “IL-33-activated dendritic cells induce an atypical TH2-type response,” Journal of Allergy and Clinical Immunology, vol. 123, no. 5, pp. 1047–1054, 2009. View at Publisher · View at Google Scholar · View at Scopus
  142. Y. H. Wang, P. Angkasekwinai, N. Lu et al., “IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells,” Journal of Experimental Medicine, vol. 204, no. 8, pp. 1837–1847, 2007. View at Publisher · View at Google Scholar · View at Scopus
  143. M. M. Fort, J. Cheung, D. Yen et al., “IL-25 Induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo,” Immunity, vol. 15, no. 6, pp. 985–995, 2001. View at Publisher · View at Google Scholar · View at Scopus
  144. P. Angkasekwinai, H. Park, Y. H. Wang et al., “Interleukin 25 promotes the initiation of proallergic type 2 responses,” Journal of Experimental Medicine, vol. 204, no. 7, pp. 1509–1517, 2007. View at Publisher · View at Google Scholar · View at Scopus
  145. Y. Zhao, J. Yang, Y. D. Gao, and W. Guo, “Th17 immunity in patients with allergic asthma,” International Archives of Allergy and Immunology, vol. 151, no. 4, pp. 297–307, 2010. View at Publisher · View at Google Scholar
  146. Y. J. Chang, H. Y. Kim, L. A. Albacker et al., “Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity,” Nature Immunology, vol. 12, no. 7, pp. 631–638, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. J. M. Mjösberg, S. Trifari, N. K. Crellin et al., “Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161,” Nature Immunology, vol. 12, pp. 1055–1062, 2011. View at Publisher · View at Google Scholar
  148. R. G. Wolterink, A. Kleinjan, M. van Nimwegen et al., “Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma,” European Journal of Immunology, vol. 42, pp. 1106–1116, 2012. View at Publisher · View at Google Scholar
  149. D. K. Chu, A. Llop-Guevara, T. D. Walker et al., “IL-33, but not thymic stromal lymphopoietin or IL-25, is central to mite and peanut allergic sensitization,” Journal of Allergy and Clinical Immunology, vol. 6749, no. 12, p. 1283, 2012. View at Publisher · View at Google Scholar
  150. N. Fuiano and C. Incorvaia, “Dissecting the causes of atopic dermatitis in children: less foods, more mites,” Allergology International, vol. 61, pp. 231–243, 2012.
  151. S. J. Brown and W. H. McLean, “One remarkable molecule: filaggrin,” Journal of Investigative Dermatology, vol. 132, pp. 751–762, 2012. View at Publisher · View at Google Scholar
  152. L. Maintz and N. Novak, “Modifications of the innate immune system in atopic dermatitis,” Journal of Innate Immunity, vol. 3, no. 2, pp. 131–141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  153. M. Boguniewicz and D. Y. M. Leung, “Atopic dermatitis. A disease of altered skin barrier and immune dys-regulation,” Immunological Reviews, vol. 242, pp. 233–246, 2011. View at Publisher · View at Google Scholar
  154. J. M. Spergel and A. S. Paller, “Atopic dermatitis and the atopic march,” Journal of Allergy and Clinical Immunology, vol. 112, no. 6, pp. S118–S127, 2003. View at Publisher · View at Google Scholar · View at Scopus
  155. H. Yasueda, A. Saito, K. Nishioka, K. Kutsuwada, and K. Akiyama, “Measurement of Dermatophagoides mite allergens on bedding and human skin surfaces,” Clinical and Experimental Allergy, vol. 33, no. 12, pp. 1654–1658, 2003. View at Publisher · View at Google Scholar · View at Scopus
  156. P. S. Friedmann, “The role of dust mite antigen sensitization and atopic dermatitis,” Clinical and Experimental Allergy, vol. 29, no. 7, pp. 869–872, 1999. View at Publisher · View at Google Scholar · View at Scopus
  157. B. B. Tan, D. Weald, I. Strickland, and P. S. Friedmann, “Double-blind controlled trial of effect of housedust-mite allergen avoidance on atopic dermatitis,” The Lancet, vol. 347, no. 8993, pp. 15–18, 1996. View at Publisher · View at Google Scholar · View at Scopus
  158. T. Nakamura, Y. Hirasawa, T. Takai et al., “Reduction of skin barrier function by proteolytic activity of a recombinant house dust mite major allergen Der f 1,” Journal of Investigative Dermatology, vol. 126, no. 12, pp. 2719–2723, 2006. View at Publisher · View at Google Scholar · View at Scopus
  159. S. K. Jeong, H. J. Kim, J. K. Youm et al., “Mite and cockroach allergens activate protease-activated receptor 2 and delay epidermal permeability barrier recovery,” Journal of Investigative Dermatology, vol. 128, no. 8, pp. 1930–1939, 2008. View at Publisher · View at Google Scholar · View at Scopus
  160. T. Oshio, Y. Sasaki, M. Funakoshi-Tago et al., “Dermatophagoides farinae extract induces severe atopic dermatitis in NC/Nga mice, which is effectively suppressed by the administration of tacrolimus ointment,” International Immunopharmacology, vol. 9, no. 4, pp. 403–411, 2009. View at Publisher · View at Google Scholar · View at Scopus
  161. L. G. Arlian, M. S. Morgan, and K. T. Peterson, “House dust and storage mite extracts influence skin keratinocyte and fibroblast function,” International Archives of Allergy and Immunology, vol. 145, no. 1, pp. 33–42, 2008. View at Publisher · View at Google Scholar · View at Scopus
  162. S. Maeda, S. Maeda, S. Shibata, N. Chimura, and T. Fukata, “House dust mite major allergen Der f 1 enhances proinflammatory cytokine and chemokine gene expression in a cell line of canine epidermal keratinocytes,” Veterinary Immunology and Immunopathology, vol. 131, no. 3-4, pp. 298–302, 2009. View at Publisher · View at Google Scholar · View at Scopus
  163. T. Ogawa, T. Takai, T. Kato et al., “Upregulation of the release of granulocyte-macrophage colony-stimulating factor from keratinocytes stimulated with cysteine protease activity of recombinant major mite allergens, Der f 1 and Der p 1,” International Archives of Allergy and Immunology, vol. 146, no. 1, pp. 27–35, 2008. View at Publisher · View at Google Scholar · View at Scopus
  164. L. G. Arlian and M. S. Morgan, “Immunomodulation of skin cytokine secretion by house dust mite extracts,” International Archives of Allergy and Immunology, vol. 156, no. 2, pp. 171–178, 2011. View at Publisher · View at Google Scholar · View at Scopus
  165. T. Roelandt, C. Heughebaert, and J. P. Hachem, “Proteolytically active allergens cause barrier breakdown,” Journal of Investigative Dermatology, vol. 128, no. 8, pp. 1878–1880, 2008. View at Publisher · View at Google Scholar · View at Scopus
  166. C. S. Lee, E. R. Jang, Y. J. Kim, M. S. Lee, S. J. Seo, and M. W. Lee, “Hirsutenone inhibits lipopolysaccharide-activated NF-κB-induced inflammatory mediator production by suppressing Toll-like receptor 4 and ERK activation,” International Immunopharmacology, vol. 10, no. 4, pp. 520–525, 2010. View at Publisher · View at Google Scholar · View at Scopus
  167. K. Kameda and K. Sato, “Regulation of IL-1α expression in human keratinocytes: transcriptional activation of the IL-1α gene by TNF-α, LPS, and IL-1α,” Lymphokine and Cytokine Research, vol. 13, no. 1, pp. 29–35, 1994. View at Scopus
  168. A. Kock, T. Schwarz, R. Kirnbauer et al., “Human keratinocytes are a source for tumor necrosis factor α: evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light,” Journal of Experimental Medicine, vol. 172, no. 6, pp. 1609–1614, 1990. View at Publisher · View at Google Scholar · View at Scopus
  169. J. A. Chodakewitz, J. Lacy, S. E. Edwards, N. Birchall, and D. L. Coleman, “Macrophage colony-stimulating factor producton by murine and human keratinocytes. Enhancement by bacterial lipopolysaccharide,” Journal of Immunology, vol. 144, no. 6, pp. 2190–2196, 1990. View at Scopus
  170. Y. Xie, T. Takai, X. Chen, K. Okumura, and H. J. Ogawa, “Long TSLP transcript expression and release of TSLP induced by TLR ligands and cytokines in human keratinocytes,” Journal of Dermatological Science, vol. 66, no. 3, pp. 233–237, 2012. View at Publisher · View at Google Scholar
  171. M. Kobayashi, R. Yoshiki, J. Sakabe, K. Kabashima, M. Nakamura, and Y. Tokura, “Expression of toll-like receptor 2, NOD2 and dectin-1 and stimulatory effects of their ligands and histamine in normal human keratinocytes,” British Journal of Dermatology, vol. 160, no. 2, pp. 297–304, 2009. View at Publisher · View at Google Scholar · View at Scopus
  172. B. Koller, A. S. Müller-Wiefel, R. Rupec, H. C. Korting, and T. Ruzicka, “Chitin modulates innate immune responses of keratinocytes,” PLoS ONE, vol. 6, Article ID e16594, 2011.
  173. J. M. Leyva-Castillo, P. Hener, H. Jiang, and M. Li, “TSLP produced by keratinocytes promotes allergen sensitization through skin and thereby triggers Atopic march in mice,” Journal of Investigative Dermatology, vol. 133, no. 1, pp. 154–163, 2013. View at Publisher · View at Google Scholar
  174. T. Savinko, S. Matikainen, U. Saarialho-Kere et al., “IL-33 and ST2 in atopic dermatitis: expression profiles and modulation by triggering factors,” Journal of Investigative Dermatology, vol. 132, pp. 1392–1400, 2012. View at Publisher · View at Google Scholar
  175. S. Mrabet-Dahbi and M. Maurer, “Innate immunity in atopic dermatitis,” Current Problems in Dermatology, vol. 41, pp. 104–111, 2011. View at Publisher · View at Google Scholar · View at Scopus
  176. P. G. Holt and P. D. Sly, “Interaction between adaptive and innate immune pathways in the pathogenesis of atopic asthma: operation of a lung/bone marrow axis,” Chest, vol. 139, no. 5, pp. 1165–1171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  177. C. Xiao, S. M. Puddicombe, S. Field et al., “Defective epithelial barrier function in asthma,” Journal of Allergy and Clinical Immunology, vol. 128, no. 3, pp. 549–556, 2011. View at Publisher · View at Google Scholar
  178. M. Amishima, M. Munakata, Y. Nasuhara et al., “Expression of epidermal growth factor and epidermal growth factor receptor immunoreactivity in the asthmatic human airway,” American Journal of Respiratory and Critical Care Medicine, vol. 157, no. 6, pp. 1907–1912, 1998. View at Scopus
  179. W. I. De Boer, H. S. Sharma, S. M. I. Baelemans, H. C. Hoogsteden, B. N. Lambrecht, and G. J. Braunstahl, “Altered expression of epithelial junctional proteins in atopic asthma: possible role in inflammation,” Canadian Journal of Physiology and Pharmacology, vol. 86, no. 3, pp. 105–112, 2008. View at Publisher · View at Google Scholar · View at Scopus
  180. R. E. Mullings, S. J. Wilson, S. M. Puddicombe et al., “Signal transducer and activator of transcription 6 (STAT-6) expression and function in asthmatic bronchial epithelium,” Journal of Allergy and Clinical Immunology, vol. 108, no. 5, pp. 832–838, 2001. View at Publisher · View at Google Scholar · View at Scopus
  181. G. M. Möller, S. E. Overbeek, C. G. Van Helden-Meeuwsen et al., “Increased numbers of dendritic cells in the bronchial mucosa of atopic asthmatic patients: downregulation by inhaled corticosteroids,” Clinical and Experimental Allergy, vol. 26, no. 5, pp. 517–524, 1996. View at Publisher · View at Google Scholar · View at Scopus
  182. S. T. Yerkovich, M. Roponen, M. E. Smith et al., “Allergen-enhanced thrombomodulin (blood dendritic cell antigen 3, CD141) expression on dendritic cells is associated with a TH2-skewed immune response,” Journal of Allergy and Clinical Immunology, vol. 123, no. 1, pp. 209–216.e4, 2009. View at Publisher · View at Google Scholar · View at Scopus
  183. Y. J. Liu, “Thymic stromal lymphopoietin: master switch for allergic inflammation,” Journal of Experimental Medicine, vol. 203, no. 2, pp. 269–273, 2006. View at Publisher · View at Google Scholar · View at Scopus
  184. D. A. Knight, S. Lim, A. K. Scaffidi et al., “Protease-activated receptors in human airways: up-regulation of PAR-2 in respiratory epithelium from patients with asthma,” The Journal of Allergy and Clinical Immunology, vol. 108, no. 5, pp. 797–803, 2001. View at Publisher · View at Google Scholar
  185. J. G. Wright and J. W. Christman, “The role of nuclear factor Kappa B in the pathogenesis of pulmonary diseases: implications for therapy,” American Journal of Respiratory Medicine, vol. 2, no. 3, pp. 211–219, 2003. View at Scopus
  186. R. Tesse, R. C. Pandey, and M. Kabesch, “Genetic variations in toll-like receptor pathway genes influence asthma and atopy,” Allergy, vol. 66, no. 3, pp. 307–316, 2011. View at Publisher · View at Google Scholar · View at Scopus
  187. D. Stefanowicz, T. L. Hackett, F. S. Garmaroudi et al., “DNA methylation profiles of airway epithelial cells and PBMCs from healthy, atopic and asthmatic children,” PLoS ONE, vol. 7, Article ID e44213, 2012.