About this Journal Submit a Manuscript Table of Contents
ISRN Dermatology
Volume 2013 (2013), Article ID 739054, 6 pages
http://dx.doi.org/10.1155/2013/739054
Research Article

A Study on Evaluation of Apoptosis and Expression of Bcl-2-Related Marker in Wound Healing of Streptozotocin-Induced Diabetic Rats

1Department of Biochemistry, School of Life Sciences, NEHU, Shillong 793022, India
2Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
3Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
4Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India

Received 17 July 2013; Accepted 28 August 2013

Academic Editors: Y. Tuzun and W. Vanscheidt

Copyright © 2013 Surya Bhan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. G. Greenhalgh, “The role of apoptosis in wound healing,” International Journal of Biochemistry and Cell Biology, vol. 30, no. 9, pp. 1019–1030, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. A. J. Singer and R. A. F. Clark, “Cutaneous wound healing,” The New England Journal of Medicine, vol. 341, no. 10, pp. 738–746, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Gillitzer and M. Goebeler, “Chemokines in cutaneous wound healing,” Journal of Leukocyte Biology, vol. 69, no. 4, pp. 513–521, 2001. View at Scopus
  4. A. Desmoulière, C. Badid, M.-L. Bochaton-Piallat, and G. Gabbiani, “Apoptosis during wound healing, fibrocontractive diseases and vascular wall injury,” International Journal of Biochemistry and Cell Biology, vol. 29, no. 1, pp. 19–30, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Desmouliere, M. Redard, I. Darby, and G. Gabbiani, “Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar,” American Journal of Pathology, vol. 146, no. 1, pp. 56–66, 1995. View at Scopus
  6. D. V. Messadi, A. Le, S. Berg et al., “Expression of apoptosis-associated genes by human dermal scar fibroblasts,” Wound Repair and Regeneration, vol. 7, no. 6, pp. 511–517, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. N. A. Thornberry and Y. Lazebnik, “Caspases: enemies within,” Science, vol. 281, no. 5381, pp. 1312–1316, 1998. View at Scopus
  8. D. Hockenbery, G. Nunez, C. Milliman, R. D. Schreiber, and S. J. Korsmeyer, “Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death,” Nature, vol. 348, no. 6299, pp. 334–336, 1990. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Tsujimoto, L. R. Finger, J. Yunis, P. C. Nowell, and C. M. Croce, “Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation,” Science, vol. 226, no. 4678, pp. 1097–1099, 1984. View at Scopus
  10. M. Adachi, A. Tefferi, P. R. Greipp, T. J. Kipps, and Y. Tsujimoto, “Preferential linkage of bcl-2 to immunoglobulin light chain gene in chronic lymphocytic leukemia,” Journal of Experimental Medicine, vol. 171, no. 2, pp. 559–564, 1990. View at Scopus
  11. J. C. Reed, “Dysregulation of apoptosis in cancer,” Journal of Clinical Oncology, vol. 17, no. 9, pp. 2941–2953, 1999. View at Scopus
  12. C. M. van Golen, V. P. Castle, and E. L. Feldman, “IGF-I receptor activation and BCL-2 overexpression prevent early apoptotic events in human neuroblastoma,” Cell Death and Differentiation, vol. 7, no. 7, pp. 654–665, 2000. View at Scopus
  13. O. Monni, H. Joensuu, K. Franssila, J. Klefstrom, K. Alitalo, and S. Knuutila, “BCL2 overexpression associated with chromosomal amplification in diffuse large B-cell lymphoma,” Blood, vol. 90, no. 3, pp. 1168–1174, 1997. View at Scopus
  14. S. Munakata, T. Enomoto, M. Tsujimoto et al., “Expressions of Fas ligand and other apoptosis-related genes and their prognostic significance in epithelial ovarian neoplasms,” British Journal of Cancer, vol. 82, no. 8, pp. 1446–1452, 2000. View at Scopus
  15. I. Appleton, N. J. Brown, and D. A. Willoughby, “Apoptosis, necrosis, and proliferation: possible implications in the etiology of keloids,” American Journal of Pathology, vol. 149, no. 5, pp. 1441–1447, 1996. View at Scopus
  16. K. S. Sellins and J. J. Cohen, “Gene induction by γ-irradiation leads to DNA fragmentation in lymphocytes,” Journal of Immunology, vol. 139, no. 10, pp. 3199–3206, 1987. View at Scopus
  17. D. L. Brown, W. W.-Y. Kao, and D. G. Greenhalgh, “Apoptosis down-regulates inflammation under the advancing epithelial wound edge: delayed patterns in diabetes and improvement with topical growth factors,” Surgery, vol. 121, no. 4, pp. 372–380, 1997. View at Scopus
  18. A. Desmouliere, M. Redard, I. Darby, and G. Gabbiani, “Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar,” American Journal of Pathology, vol. 146, no. 1, pp. 56–66, 1995. View at Scopus
  19. P. Rossio-Pasquier, D. Casanova, A. Jomard, and M. Démarchez, “Wound healing of human skin transplanted onto the nude mouse after a superficial excisional injury: human dermal reconstruction is achieved in several steps by two different fibroblast subpopulations,” Archives of Dermatological Research, vol. 291, no. 11, pp. 591–599, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. C. D. Kane and D. G. Greenhalgh, “Expression and localization of p53 and bcl-2 in healing wounds in diabetic and nondiabetic mice,” Wound Repair and Regeneration, vol. 8, no. 1, pp. 45–58, 2000. View at Publisher · View at Google Scholar · View at Scopus