About this Journal Submit a Manuscript Table of Contents
ISRN Mathematical Physics
Volume 2013 (2013), Article ID 748613, 24 pages
http://dx.doi.org/10.1155/2013/748613
Research Article

Air-Aided Shear on a Thin Film Subjected to a Transverse Magnetic Field of Constant Strength: Stability and Dynamics

Department of Mathematics and Statistics, University of Constance, 78457 Constance, Germany

Received 28 June 2013; Accepted 22 August 2013

Academic Editors: L. E. Oxman and W.-H. Steeb

Copyright © 2013 Mohammed Rizwan Sadiq Iqbal. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Benney, “Long waves on liquid films,” Journal of Mathematical Physics, vol. 45, pp. 150–155, 1966. View at Zentralblatt MATH · View at MathSciNet
  2. B. Gjevik, “Occurrence of finite-amplitude surface waves on falling liquid films,” Physics of Fluids, vol. 13, no. 8, pp. 1918–1925, 1970. View at Scopus
  3. R. W. Atherton and G. M. Homsy, “On the derivation of evolution equations for interfacial waves,” Chemical Engineering Communications, vol. 2, no. 2, pp. 57–77, 1976. View at Scopus
  4. S. P. Lin and M. V. G. Krishna, “Stability of a liquid film with respect to initially finite three-dimensional disturbances,” Physics of Fluids, vol. 20, no. 12, pp. 2005–2011, 1977. View at Scopus
  5. A. Pumir, P. Manneville, and T. Pomeau, “On solitary waves running down an inclined plane,” Journal of Fluid Mechanics, vol. 135, pp. 27–50, 1983. View at Scopus
  6. J. P. Burelbach, S. G. Bankoff, and S. H. Davis, “Nonlinear stability of evaporating/condensing liquid films,” Journal of Fluid Mechanics, vol. 195, pp. 463–494, 1988.
  7. S. W. Joo, S. H. Davis, and S. G. Bankoff, “Long-wave instabilities of heated falling films. Two-dimensional theory of uniform layers,” Journal of Fluid Mechanics, vol. 230, pp. 117–146, 1991. View at Scopus
  8. S. W. Joo and S. H. Davis, “Instabilities of three-dimensional viscous falling films,” Journal of Fluid Mechanics, vol. 242, pp. 529–547, 1992. View at Scopus
  9. S. Miladinova, S. Slavtchev, G. Lebon, and J.-C. Legros, “Long-wave instabilities of non-uniformly heated falling films,” Journal of Fluid Mechanics, vol. 453, pp. 153–175, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  10. S. Miladinova, D. Staykova, G. Lebon, and B. Scheid, “Effect of nonuniform wall heating on the three-dimensional secondary instability of falling films,” Acta Mechanica, vol. 156, no. 1-2, pp. 79–91, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Scheid, A. Oron, P. Colinet, U. Thiele, and J. C. Legros, “Nonlinear evolution of nonuniformly heated falling liquid films,” Physics of Fluids, vol. 15, no. 2, p. 583, 2003, Erratum in: Physics of Fluids, vol. 14, pp. 4130, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. B. S. Dandapat and A. Samanta, “Bifurcation analysis of first and second order Benney equations for viscoelastic fluid flowing down a vertical plane,” Journal of Physics D, vol. 41, no. 9, Article ID 095501, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Usha and I. M. R. Sadiq, “Weakly nonlinear stability analysis of a non-uniformly heated non-Newtonian falling film,” in Proceedings of the 5th Joint ASME/JSME Fluids Engineering Summer Conference (FEDSM '07), pp. 1661–1670, August 2007. View at Scopus
  14. I. M. R. Sadiq and R. Usha, “Thin Newtonian film flow down a porous inclined plane: stability analysis,” Physics of Fluids, vol. 20, no. 2, Article ID 022105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. I. M. R. Sadiq and R. Usha, “Effect of permeability on the instability of a non-Newtonian film down a porous inclined plane,” Journal of Non-Newtonian Fluid Mechanics, vol. 165, no. 19-20, pp. 1171–1188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. U. Thiele, B. Goyeau, and M. G. Velarde, “Stability analysis of thin film flow along a heated porous wall,” Physics of Fluids, vol. 21, no. 1, Article ID 014103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. I. M. R. Sadiq, R. Usha, and S. W. Joo, “Instabilities in a liquid film flow over an inclined heated porous substrate,” Chemical Engineering Science, vol. 65, no. 15, pp. 4443–4459, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Uma, “Effect of wind stress on the dynamics and stability of non-isothermal power-law film down an inclined plane,” ISRN Mathematical Physics, vol. 2012, Article ID 732675, 31 pages, 2012. View at Publisher · View at Google Scholar
  19. B. Scheid, C. Ruyer-Quil, U. Thiele, O. A. Kabov, J. C. Legros, and P. Colinet, “Validity domain of the Benney equation including the Marangoni effect for closed and open flows,” Journal of Fluid Mechanics, vol. 527, pp. 303–335, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  20. S. Chandrasekhar, “The stability of viscous flow between rotating cylinders in the presence of a magnetic field,” Proceedings of the Royal Society of London A, vol. 216, pp. 293–309, 1953. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. J. T. Stuart, “On the stability of viscous flow between parallel planes in the presence of a co-planar magnetic field,” Proceedings of the Royal Society of London A, vol. 221, pp. 189–206, 1954. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. R. C. Lock, “The stability of the flow of an electrically conducting fluid between parallel planes under a transverse magnetic field,” Proceedings of the Royal Society of London A, vol. 233, pp. 105–125, 1955. View at Publisher · View at Google Scholar · View at MathSciNet
  23. D.-Y. Hsieh, “Stability of a conducting fluid flowing down an inclined plane in a magnetic field,” Physics of Fluids, vol. 8, no. 10, pp. 1785–1791, 1965. View at Scopus
  24. Y. P. Ladikov, “Flow stability of a conducting liquid flowing down an inclined plane in the presence of a magnetic field,” Fluid Dynamics, vol. 1, no. 1, pp. 1–4, 1966. View at Publisher · View at Google Scholar · View at Scopus
  25. P. C. Lu and G. S. R. Sarma, “Magnetohydrodynamic gravity—capillary waves in a liquid film,” Physics of Fluids, vol. 10, no. 11, p. 2339, 1967.
  26. Yu. N. Gordeev and V. V. Murzenko, “Wave film flows of a conducting viscous fluid film in the tangential magnetic field,” Applied Mathematics and Theoretical Physics, vol. 3, p. 96, 1990.
  27. D. Gao and N. B. Morley, “Numerical investigation of surface disturbance on liquid metal falling film flows in a magnetic field gradient,” Magnitnaya Gidrodinamika, vol. 40, no. 1, pp. 99–113, 2004. View at Scopus
  28. J.-S. Tsai, C.-I. Hung, and C.-K. Chen, “Nonlinear hydromagnetic stability analysis of condensation film flow down a vertical plate,” Acta Mechanica, vol. 118, pp. 197–212, 1996. View at Scopus
  29. Y. Renardy and S. M. Sun, “Stability of a layer of viscous magnetic fluid flow down an inclined plane,” Physics of Fluids, vol. 6, no. 10, pp. 3235–3248, 1994. View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  30. H. H. Bau, J. Z. Zhu, S. Qian, and Y. Xiang, “A magneto-hydrodynamically controlled fluidic network,” Sensors and Actuators B, vol. 88, no. 2, pp. 205–216, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Kabbani, M. Marc, S. W. Joo, and S. Qian, “Analytical prediction of flow field in magnetohydrodynamic-based microfluidic devices,” Journal of Fluids Engineering, vol. 130, no. 9, Article ID 091204, 6 pages, 2008.
  32. A. E. Radwan, “Hydromagnetic stability of a gas-liquid interface of coaxial cylinders,” Astrophysics and Space Science, vol. 161, no. 2, pp. 279–293, 1989. View at Publisher · View at Google Scholar · View at Scopus
  33. M. C. Shen, S. M. Sun, and R. E. Meyer, “Surface waves on viscous magnetic fluid flow down an inclined plane,” Physics of Fluids A, vol. 3, no. 3, pp. 439–445, 1991. View at Scopus
  34. M. H. Chang and C.-K. Chen, “Hydromagnetic stability of current-induced flow in a small gap between concentric rotating cylinders,” Proceedings of the Royal Society A, vol. 454, no. 1975, pp. 1857–1873, 1998. View at Scopus
  35. S. Korsunsky, “Long waves on a thin layer of conducting fluid flowing down an inclined plane in an electromagnetic field,” European Journal of Mechanics B, vol. 18, no. 2, pp. 295–313, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  36. A. J. Chamkha, “On two-dimensional laminar hydromagnetic fluid-particle flow over a surface in the presence of a gravity field,” Journal of Fluids Engineering, Transactions of the ASME, vol. 123, no. 1, pp. 43–49, 2001. View at Scopus
  37. P.-J. Cheng and D. T. W. Lin, “Surface waves on viscoelastic magnetic fluid film flow down a vertical column,” International Journal of Engineering Science, vol. 45, no. 11, pp. 905–922, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  38. P.-J. Cheng, “Hydromagnetic stability of a thin electrically conducting fluid film flowing down the outside surface of a long vertically aligned column,” Proceedings of the Institution of Mechanical Engineers C, vol. 223, no. 2, pp. 415–426, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. P.-J. Cheng and K.-C. Liu, “Hydromagnetic instability of a power-law liquid film flowing down a vertical cylinder using numerical approximation approach techniques,” Applied Mathematical Modelling, vol. 33, no. 4, pp. 1904–1914, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  40. C.-K. Chen and D.-Y. Lai, “Weakly nonlinear stability analysis of a thin magnetic fluid during spin coating,” Mathematical Problems in Engineering, vol. 2010, Article ID 987891, 17 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. S. K. Ghosh, O. A. Bég, and J. Zueco, “Hydromagnetic free convection flow with induced magnetic field effects,” Meccanica, vol. 45, no. 2, pp. 175–185, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  42. O. A. Bég, J. Zueco, and T. B. Chang, “Numerical analysis of hydromagnetic gravity-driven thin film micropolar flow along an inclined plane,” Chemical Engineering Communications, vol. 198, no. 3, pp. 312–331, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. P.-J. Cheng, K.-C. Liu, and D. T. W. Lin, “Hydromagnetic stability analysis of a film coating flow down a rotating vertical cylinder,” Journal of Mechanics, vol. 27, no. 1, pp. 27–36, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. A. D. D. Craik, “Wind-generated waves in thin liquid films,” Journal of Fluid Mechanics, vol. 26, no. 2, pp. 369–392, 1966.
  45. E. O. Tuck and J.-M. Vanden-Broeck, “Influence of surface tension on jet-stripped continuous coating of sheet materials,” AIChE Journal, vol. 30, pp. 808–811, 1984.
  46. M. Sheintuch and A. E. Dukler, “Phase plane and bifurcation analysis of thin wavy films under shear,” AIChE Journal, vol. 35, no. 2, pp. 177–186, 1989. View at Scopus
  47. G. J. Zabaras Jr, Studies of vertical cocurrent and countercurrent annular gas-liquid flows [Ph.D. thesis], University of Houston, 1985.
  48. A. C. King and E. O. Tuck, “Thin liquid layers supported by steady air-flow surface traction,” Journal of Fluid Mechanics, vol. 251, pp. 709–718, 1993. View at Scopus
  49. J. P. Pascal, “A two-layer model for a non-Newtonian gravity current subjected to wind shear,” Acta Mechanica, vol. 162, no. 1–4, pp. 83–98, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. S. K. Wilson and B. R. Duffy, “Unidirectional flow of a thin rivulet on a vertical substrate subject to a prescribed uniform shear stress at its free surface,” Physics of Fluids, vol. 17, no. 10, Article ID 108105, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. J. P. Pascal and S. J. D. D'Alessio, “Instability of power-law fluid flows down an incline subjected to wind stress,” Applied Mathematical Modelling, vol. 31, no. 7, pp. 1229–1248, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. S. K. Kalpathy, L. F. Francis, and S. Kumar, “Shear-induced suppression of rupture in two-layer thin liquid films,” Journal of Colloid and Interface Science, vol. 348, no. 1, pp. 271–279, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. M. J. Davis, M. B. Gratton, and S. H. Davis, “Suppressing van der Waals driven rupture through shear,” Journal of Fluid Mechanics, vol. 661, pp. 522–529, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  54. G. W. Sutton and A. Sherman, Engineering Magnetohydrodynamics, McGraw-Hill, New York, NY, USA, 1965.
  55. S. Kakac, R. K. Shah, and W. Aung, Handbook of Single-Phase Heat Transfer, John Wiley & Sons, New York, NY, USA, 1987.
  56. S. P. Lin, “Finite amplitude side-band stability of a viscous film,” Journal of Fluid Mechanics, vol. 63, no. 3, pp. 417–429, 1974. View at Scopus
  57. M. V. G. Krishna and S. P. Lin, “Nonlinear stability of a viscous film with respect to three-dimensional side-band disturbances,” Physics of Fluids, vol. 20, no. 7, pp. 1039–1044, 1977. View at Scopus
  58. B. Gjevik, “Occurrence of finite-amplitude surface waves on falling liquid films,” Physics of Fluids, vol. 13, no. 8, pp. 1918–1925, 1970. View at Scopus
  59. H.-C. Chang, “Onset of nonlinear waves on falling films,” Physics of Fluids A, vol. 1, no. 8, pp. 1314–1327, 1989. View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  60. J. T. Stuart and R. C. DiPrima, “The Eckhaus and Benjamin-Feir resonance mechanisms,” Proceedings of the Royal Society of London A, vol. 362, no. 1708, pp. 27–41, 1978. View at Scopus
  61. C. Godrèche and P. Manneville, Hydrodynamics and Nonlinear Instabilities, Cambridge University Press, New York, NY, USA, 1998. View at Publisher · View at Google Scholar · View at MathSciNet
  62. O. Gottlieb and A. Oron, “Stability and bifurcations of parametrically excited thin liquid films,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 14, no. 12, pp. 4117–4141, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. D. Armbruster, J. Guckenheimer, and P. Holmes, “Heteroclinic cycles and modulated travelling waves in systems with O(2) symmetry,” Physica D, vol. 29, no. 3, pp. 257–282, 1988. View at Scopus
  64. J. Mizushima and K. Fujimura, “Higher harmonic resonance of two-dimensional disturbances in Rayleigh-Bénard convection,” Journal of Fluid Mechanics, vol. 234, pp. 651–667, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  65. A. Samanta, “Stability of liquid film falling down a vertical non-uniformly heated wall,” Physica D, vol. 237, no. 20, pp. 2587–2598, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  66. M. K. Smith, “The mechanism for the long-wave instability in thin liquid films,” Journal of Fluid Mechanics, vol. 217, pp. 469–485, 1990. View at Scopus