About this Journal Submit a Manuscript Table of Contents
ISRN Physical Chemistry
Volume 2013 (2013), Article ID 753139, 16 pages
http://dx.doi.org/10.1155/2013/753139
Research Article

Stability Analysis and Frontier Orbital Study of Different Glycol and Water Complex

Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India

Received 20 October 2012; Accepted 7 November 2012

Academic Editors: J. G. Han, T. Kar, and A. M. Koster

Copyright © 2013 Snehanshu Pal and T. K. Kundu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. S. Banerjee, N. Aher, R. Patil, and J. Khandare, “Poly (ethylene glycol)-prodrugconjugates: concept, design, and applications,” Journal of Drug Delivery, vol. 2012, Article ID 103973, 17 pages, 2012.
  2. W. S. Halliday, D. K. Clapper, M. R. Smalling, and R. G. Bland, “Blends of Glycol derivatives as gas hydrate inhibitors in water base drilling, drill-in, and completion fluids,” US Patent US006165945A, 2000.
  3. G. Jiang, T. Liu, F. Ning et al., “Polyethylene glycol drilling fluid for drilling in marine gas hydrates-bearing sediments: an experimental study,” Energies, vol. 4, no. 1, pp. 140–150, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. K. J. Liu and J. L. Parsons, “Solvent effects on the preferred conformation of poly(ethylene glycols),” Macromolecules, vol. 2, no. 5, pp. 529–533, 1969. View at Scopus
  5. S. Lüsse and K. Arnold, “The interaction of poly(ethylene glycol) with water studied by 1H and 2H NMR relaxation time measurements,” Macromolecules, vol. 29, no. 12, pp. 4251–4257, 1996. View at Scopus
  6. M. W. A. Skoda, R. M. J. Jacobs, J. Willis, and F. Schreiber, “Hydration of oligo(ethylene glycol) self-assembled monolayers studied using polarization modulation infrared spectroscopy,” Langmuir, vol. 23, no. 3, pp. 970–974, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Buckley and P. A. Giguere, “Infrared studies on rotational isomerism. I. ethylene glycol,” Canadian Journal of Chemistry, vol. 45, 1967.
  8. E. L. Hommel, J. K. Merle, G. Ma, C. M. Hadad, and H. C. Allen, “Spectroscopic and computational studies of aqueous ethylene glycol solution surfaces,” Journal of Physical Chemistry B, vol. 109, no. 2, pp. 811–818, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. JianBin, Z. PengYan, M. Kai, H. Fang, C. GuaHua, and W. XiongHui, “Hydrogen bonding interactions between ethylene glycol and water: density, excess molar volume, and Spectral Study,” Science in China B, vol. 51, no. 5, pp. 420–426, 2008.
  10. C. Murli, N. Lu, Z. Dong, and Y. Song, “Hydrogen bonds and conformations in ethylene glycol under pressure,” The Journal of Physical Chemistry B, vol. 116, no. 41, Article ID 306220, pp. 12574–12580, 2012.
  11. I. Bakó, T. Grósz, G. Pálinkás, and M. C. Bellissent-Funel, “Ethylene glycol dimers in the liquid phase: a study by x-ray and neutron diffraction,” Journal of Chemical Physics, vol. 118, no. 7, pp. 3215–3221, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. Murcko and R. A. DiPaola, “Ab initio molecular orbital conformational analysis of prototypical organic systems. 1. Ethylene glycol and 1,2-dimethoxyethane,” Journal of the American Chemical Society, vol. 114, no. 25, pp. 10010–10018, 1992. View at Scopus
  13. C. J. Cramer and D. G. Truhlar, “Quantum chemical conformational analysis of 1,2-Ethanediol: correlation and solvation effects on the tendency to form internal hydrogen bonds in the gas phase and in aqueous solution,” Journal of the American Chemical Society, vol. 116, no. 9, pp. 3892–3900, 1994. View at Scopus
  14. G. R. Desiraju, “A bond by any other name,” Angewandte Chemie, vol. 50, no. 1, pp. 52–59, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. S. J. Graowski, Hydrogen Bonding—NewInsights, Springer, Amsterdam, The Netherlands, 2006.
  16. A. Chaudhari and S. L. Lee, “A computational study of microsolvation effect on ethylene glycol by density functional method,” Journal of Chemical Physics, vol. 120, no. 16, pp. 7464–7469, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. Q. Xu, J. Mi, and C. Zhong, “Structure of poly(ethylene glycol)—water mixture studied by polymer reference interaction site model theory,” Journal of Chemical Physics, vol. 133, no. 17, Article ID 174104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. R. M. Kumar, P. Baskar, K. Balamurugan, S. Das, and V. Subramanian, “On the perturbation of the H-bonding interaction in ethylene glycol clusters upon hydration,” Journal of Physical Chemistry A, vol. 116, pp. 4239–4247, 2012.
  19. S. Pal and T. K. Kundu, “Theoretical study of hydrogen bond formation in trimethylene glycol-water complex,” ISRN Physical Chemistry, vol. 2012, Article ID 570394, pp. 1–12, 2012. View at Publisher · View at Google Scholar
  20. A. Mandal, M. Prakash, R. M. Kumar, R. Parthasarathi, and V. Subramanian, “Ab Initio and DFT studies on methanol-water clusters,” Journal of Physical Chemistry A, vol. 114, no. 6, pp. 2250–2258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. O. V. Shishkin, I. S. Konovalova, L. Gorb, and J. Leszczynski, “Novel type of mixed O-HN/O-Hπ hydrogen bonds: monohydrate of pyridine,” Structural Chemistry, vol. 20, no. 1, pp. 37–41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. P. K. Sahu and S. L. Lee, “Hydrogen-bond interaction in 1:1 complexes of tetrahydrofuran with water, hydrogen fluoride, and ammonia: a theoretical study,” Journal of Chemical Physics, vol. 123, no. 4, Article ID 044308, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. P. K. Sahu, A. Chaudhari, and S. L. Lee, “Theoretical investigation for the hydrogen bond interaction in THF—water complex,” Chemical Physics Letters, vol. 386, no. 4–6, pp. 351–355, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. X. M. Zhou, Z. Y. Zhou, H. Fu, Y. Shi, and H. Zhang, “Density functional complete study of hydrogen bonding between the dichlorine monoxide and the hydroxyl radical (Cl2O·HO),” Journal of Molecular Structure, vol. 714, no. 1, pp. 7–12, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Peeters, “Hydrogen bonds in small water clusters: a theoretical point of view,” Journal of Molecular Liquids, vol. 67, pp. 49–61, 1995. View at Scopus
  26. S. J. Grabowski, “What is the covalency of hydrogen bonding?” Chemical Reviews, vol. 111, no. 4, pp. 2597–2625, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. C. C. J. Roothaan, “New developments in molecular orbital theory,” Reviews of Modern Physics, vol. 23, no. 2, pp. 69–89, 1951. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Head-Gordon, J. A. Pople, and M. J. Frisch, “MP2 energy evaluation by direct methods,” Chemical Physics Letters, vol. 153, no. 6, pp. 503–506, 1988. View at Scopus
  29. P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Physical Review, vol. 136, no. 3, pp. B864–B871, 1964. View at Publisher · View at Google Scholar · View at Scopus
  30. W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Physical Review, vol. 140, no. 4, pp. A1133–A1138, 1965. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Grimme, “Accurate description of van der Waals complexes by density functional theory including empirical corrections,” Journal of Computational Chemistry, vol. 25, no. 12, pp. 1463–1473, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior,” Physical Review A, vol. 38, no. 6, pp. 3098–3100, 1988. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Physical Review B, vol. 37, no. 2, pp. 785–789, 1988. View at Publisher · View at Google Scholar · View at Scopus
  34. J. D. Chai and M. Head-Gordon, “Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections,” Physical Chemistry Chemical Physics, vol. 10, no. 44, pp. 6615–6620, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Zhao and D. G. Truhlar, “The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals,” Theoretical Chemistry Accounts, vol. 120, no. 1–3, pp. 215–241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. P. C. Hariharan and J. A. Pople, “The influence of polarization functions on molecular orbital hydrogenation energies,” Theoretica Chimica Acta, vol. 28, no. 3, pp. 213–222, 1973. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Chandrasekhar, J. G. Andrade, and P. Von Ragué Schleyer, “Efficient and accurate calculation of anion proton affinities,” Journal of the American Chemical Society, vol. 103, no. 18, pp. 5609–5612, 1981. View at Scopus
  38. M. S. Gordon and J. H. Jensen, “Understanding the hydrogen bond using quantum chemistry,” Accounts of Chemical Research, vol. 29, no. 11, pp. 536–543, 1996. View at Scopus
  39. S. F. Boys, “Calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors,” Molecular Physics, vol. 19, no. 4, 1970.
  40. C. H. S. Wong, F. M. Siu, N. L. Ma, and C. W. Tsang, “A theoretical study of potassium cation-glycine (K+-Gly) interactions,” Journal of Molecular Structure, vol. 588, pp. 9–16, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. D. W. Boo, “Ab initio calculations of protonated ethylenediamine-(water)3 complex: roles of intramolecular hydrogen bonding and hydrogen bond cooperativity,” Bulletin of the Korean Chemical Society, vol. 22, no. 7, pp. 693–698, 2001. View at Scopus
  42. S. S. Xantheas, “Ab initio studies of cyclic water clusters (H2O)n, n=16. II. Analysis of many-body interactions,” The Journal of Chemical Physics, vol. 100, no. 10, pp. 7523–7534, 1994. View at Scopus
  43. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian, Wallingford CT, Gaussian 09, Revision B. 01.
  44. A. E. Lutskii and N. I. Gorokhova, “Intramolecular hydrogen bonds and molecular dipole moments,” Theoretical and Experimental Chemistry, vol. 4, no. 6, pp. 532–534, 1968. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Hobza and R. Zahradník, “Intermolecular interactions between medium-sized systems. Nonempirical and empirical calculations of interaction energies: successes and failures,” Chemical Reviews, vol. 88, no. 6, pp. 871–897, 1988. View at Scopus
  46. K. E. Riley, M. Pitončák, P. Jurecčka, and P. Hobza, “Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories,” Chemical Reviews, vol. 110, no. 9, pp. 5023–5063, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, New York, NY, USA, 1997.
  48. H. Umeyama and K. Morokuma, “Origin of alkyl substituent effect in the proton affinity of amines, alcohols, and ethers,” Journal of the American Chemical Society, vol. 98, no. 15, pp. 4400–4404, 1976. View at Scopus
  49. H. Umeyama and K. Morokuma, “The origin of hydrogen bonding. An energy decomposition study,” Journal of the American Chemical Society, vol. 99, no. 5, pp. 1316–1332, 1977. View at Scopus
  50. A. van der Vaart and K. M. Merz Jr., “Charge transfer in small hydrogen bonded clusters,” Journal of Chemical Physics, vol. 116, no. 17, pp. 7380–7388, 2002. View at Publisher · View at Google Scholar · View at Scopus