About this Journal Submit a Manuscript Table of Contents
ISRN Mathematical Physics
Volume 2013 (2013), Article ID 789070, 15 pages
http://dx.doi.org/10.1155/2013/789070
Research Article

Double-Diffusive Magnetoconvection of a Dusty Micropolar Fluid Saturating a Porous Medium

1Energy Research Centre, Panjab University, Chandigarh 160014, India
2Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India

Received 29 April 2013; Accepted 14 July 2013

Academic Editors: A. Aghamohammadi, A. Sanyal, and F. Sugino

Copyright © 2013 Parul Aggarwal and Urvashi Gupta. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The paper deals with the theoretical investigation of the effect of dust/suspended particles on a layer of electrically conducting micropolar fluid heated and dissolved from below in the presence of a uniform vertical magnetic field in a porous medium. The presence of coupling between thermosolutal and micropolar effects and magnetic field brings oscillatory motions in the system. A dispersion relation governing the effects of solute gradient, magnetic field, and suspended particles is obtained for a fluid layer contained between two free boundaries using linear stability theory and normal mode technique. Graphs have been plotted by giving numerical values to various parameters involved to depict the stability characteristics for both cases of stationary convection and overstability. It has been found that, for permissible values of various parameters under consideration, the effect of magnetic field and solute gradient is stabilizing and that of medium permeability, suspended particles, and micropolar coefficient is destabilizing. Further it is found that the Rayleigh number for overstability is always less than that for stationary convection except for high values of suspended particle factor.