About this Journal Submit a Manuscript Table of Contents
ISRN Artificial Intelligence
Volume 2013 (2013), Article ID 795752, 13 pages
http://dx.doi.org/10.1155/2013/795752
Research Article

Multiobjective Stochastic Programming for Mixed Integer Vendor Selection Problem Using Artificial Bee Colony Algorithm

1Department of Industrial Management, Management and Accounting, Shahid Beheshti University, Tehran, Iran
2Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran

Received 21 September 2013; Accepted 13 October 2013

Academic Editors: R.-C. Hwang, P. Kokol, and Q. K. Pan

Copyright © 2013 Mostafa Ekhtiari and Shahab Poursafary. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. W. Dickson, “An analysis of vendor selection systems and decisions,” Journal of Purchasing, vol. 2, no. 1, pp. 5–17, 1966.
  2. C. A. Weber and J. R. Current, “A multiobjective approach to vendor selection,” European Journal of Operational Research, vol. 68, no. 2, pp. 173–184, 1993. View at Scopus
  3. S. Yahya and B. Kingsman, “Vendor rating for an entrepreneur development programme: a case study using the analytic hierarchy process method,” Journal of the Operational Research Society, vol. 50, no. 9, pp. 916–930, 1999. View at Scopus
  4. S. W. Lam and L. C. Tang, “Multiobjective vendor allocation in multiechelon inventory systems: a spreadsheet model,” Journal of the Operational Research Society, vol. 57, no. 5, pp. 561–578, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. Y.-T. Lin, C.-L. Lin, H.-C. Yu, and G.-H. Tzeng, “A novel hybrid MCDM approach for outsourcing vendor selection: a case study for a semiconductor company in Taiwan,” Expert Systems with Applications, vol. 37, no. 7, pp. 4796–4804, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. C.-H. Hsu, F.-K. Wang, and G.-H. Tzeng, “The best vendor selection for conducting the recycled material based on a hybrid MCDM model combining DANP with VIKOR,” Resources, Conservation and Recycling, vol. 66, pp. 95–111, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Zanjirani Farahani and M. Fadaei, “A MCDM-based model for vendor selection: a case study in the particleboard industry,” Journal of Forestry Research, vol. 23, no. 4, pp. 685–690, 2012.
  8. W. Li, X. Zhang, and Y. Chen, “Information integration approach to vendor selection group decision making under multiple criteria,” in Advances in Neural Networks—ISNN 2009, vol. 5551 of Lecture Notes in Computer Science, pp. 1138–1143, 2009.
  9. H. Zhang, X. Li, and W. Liu, “An AHP/DEA methodology for 3PL vendor selection in 4PL,” in Computer Supported Cooperative Work in Design II, vol. 3865 of Lecture Notes in Computer Science, pp. 646–655, 2006.
  10. N. Arunkumar, L. Karunamoorthy, S. Anand, and T. Ramesh Babu, “Linear approach for solving a piecewise linear vendor selection problem of quantity discounts using lexicographic method,” International Journal of Advanced Manufacturing Technology, vol. 28, no. 11-12, pp. 1254–1260, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. S. C. H. Leung, Y. Wu, and K. K. Lai, “A stochastic programming approach for multi-site aggregate production planning,” Journal of the Operational Research Society, vol. 57, no. 2, pp. 123–132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Talluri, R. Narasimhan, and A. Nair, “Vendor performance with supply risk: a chance-constrained DEA approach,” International Journal of Production Economics, vol. 100, no. 2, pp. 212–222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Xu and C. Ding, “A class of chance constrained multiobjective linear programming with birandom coefficients and its application to vendors selection,” International Journal of Production Economics, vol. 131, no. 2, pp. 709–720, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Zhimin, J. Zhihong, and Z. Baogang, “A multi-objective mixed-integer stochastic programming model for the vendor selection problem under multi-product purchases,” International Journal of Information and Management Sciences, vol. 18, no. 3, pp. 241–252, 2007. View at Scopus
  15. R. G. Kasilingam and C. P. Lee, “Selection of vendors—a mixed-integer programming approach,” Computers and Industrial Engineering, vol. 31, no. 1-2, pp. 347–350, 1996. View at Scopus
  16. A. Alonso-Ayuso, L. F. Escudero, A. Garín, M. T. Ortuño, and G. Pérez, “An approach for strategic supply chain planning under uncertainty based on stochastic 0-1 programming,” Journal of Global Optimization, vol. 26, no. 1, pp. 97–124, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Zang, Y. Liu, and Z. Li, “Optimizing supplier selection with disruptions by chance-constrained programming,” in Advances in Swarm Intelligence, vol. 7332 of Lecture Notes in Computer Science, pp. 108–116, 2012.
  18. B. B. Keskin, H. Ster, and S. Etinkaya, “Integration of strategic and tactical decisions for vendor selection under capacity constraints,” Computers and Operations Research, vol. 37, no. 12, pp. 2182–2191, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. He, S. S. Chaudhry, Z. Lei, and W. Baohua, “Stochastic vendor selection problem: chance-constrained model and genetic algorithms,” Annals of Operations Research, vol. 168, no. 1, pp. 169–179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. A. A. Taleizadeh, S. T. A. Niaki, and F. Barzinpour, “Multiple-buyer multiple-vendor multi-product multi-constraint supply chain problem with stochastic demand and variable lead-time: a harmony search algorithm,” Applied Mathematics and Computation, vol. 217, no. 22, pp. 9234–9253, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Huang, C. Gao, and L. Chen, “Partner selection in a virtual enterprise under uncertain information about candidates,” Expert Systems with Applications, vol. 38, no. 9, pp. 11305–11310, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. R. J. Kuo, S. Y. Hong, and Y. C. Huang, “Integration of particle swarm optimization-based fuzzy neural network and artificial neural network for supplier selection,” Applied Mathematical Modelling, vol. 34, no. 12, pp. 3976–3990, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Karaboga, “An idea based on honey bee swarm for numerical optimization,” Tech. Rep. TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
  24. M. Ekhtiari and K. Ghoseiri, “Multi-objective stochastic programming to solve manpower allocation problem,” International Journal of Advanced Manufacturing Technology, vol. 65, no. 1, pp. 183–196, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms, Springer, Berlin, Germany, 2008.
  26. D. Karaboga and B. Akay, “A comparative study of Artificial Bee Colony algorithm,” Applied Mathematics and Computation, vol. 214, no. 1, pp. 108–132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948, Perth WA, Australia, December 1995. View at Scopus
  28. C.-J. Liao, E. Tjandradjaja, and T.-P. Chung, “An approach using particle swarm optimization and bottleneck heuristic to solve hybrid flow shop scheduling problem,” Applied Soft Computing Journal, vol. 12, no. 6, pp. 1755–1764, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Clerc, Particle Swarm Optimization, ISTE, London, UK, 2006.
  30. A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligent, John Wiley & Sons, 2005.
  31. E. Atashpaz-Gargari and C. Lucas, “Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '07), pp. 4661–4667, Singapore, September 2007. View at Publisher · View at Google Scholar · View at Scopus