About this Journal Submit a Manuscript Table of Contents
ISRN Hematology
Volume 2013 (2013), Article ID 815325, 25 pages
http://dx.doi.org/10.1155/2013/815325
Review Article

Waldenström Macroglobulinemia: Clinical and Immunological Aspects, Natural History, Cell of Origin, and Emerging Mouse Models

Department of Pathology, University of Iowa Carver College of Medicine, 1030 ML, Iowa City, IA 52242, USA

Received 2 July 2013; Accepted 26 July 2013

Academic Editors: A. Bosly, Z. Duan, W. Fiedler, Y. K. Lee, and B. Wachowicz

Copyright © 2013 Siegfried Janz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Campo, S. H. Swerdlow, N. L. Harris, S. Pileri, H. Stein, and E. S. Jaffe, “The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications,” Blood, vol. 117, no. 19, pp. 5019–5032, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. E. D. Remstein, C. A. Hanson, R. A. Kyle, J. M. Hodnefield, and P. J. Kurtin, “Despite apparent morphologic and immunophenotypic heterogeneity, Waldenstrom's macroglobulinemia is consistently composed of cells along a morphologic continuum of small lymphocytes, plasmacytoid lymphocytes, and plasma cells,” Seminars in Oncology, vol. 30, no. 2, pp. 182–186, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Lin, S. Hao, B. C. Handy, C. E. Bueso-Ramos, and L. J. Medeiros, “Lymphoid neoplasms associated with IgM paraprotein: a study of 382 patients,” American Journal of Clinical Pathology, vol. 123, no. 2, pp. 200–205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. S. S. Sahota, R. Garand, R. Mahroof et al., “V(H) gene analysis of IgM-secreting myeloma indicates an origin from a memory cell undergoing isotype switch events,” Blood, vol. 94, no. 3, pp. 1070–1076, 1999. View at Scopus
  5. A. Fadil and D. E. Taylor, “The lung and Waldenstrom's macroglobulinemia,” Southern Medical Journal, vol. 91, no. 7, pp. 681–685, 1998. View at Scopus
  6. J. A. Rosenthal, W. J. Curran, and S. J. Schuster Jr., “Waldenstrom's macroglobulinemia resulting from localized gastric lymphoplasmacytoid lymphoma,” American Journal of Hematology, vol. 58, no. 3, pp. 244–245, 1998.
  7. R. R. Doshi, R. Z. Silkiss, and R. K. Imes, “Orbital involvement in Bing-Neel syndrome,” Journal of Neuro-Ophthalmology, vol. 31, no. 1, pp. 94–95, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Fintelmann, R. Forghani, P. Schaefer, E. Hochberg, and F. Hochberg, “Bing-Neel Syndrome revisited,” Clinical Lymphoma and Myeloma, vol. 9, no. 1, pp. 104–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. J. Stone, “Waldenström's macroglobulinemia: hyperviscosity syndrome and cryoglobulinemia,” Clinical Lymphoma and Myeloma, vol. 9, no. 1, pp. 97–99, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. H. C. Kwaan and A. Bongu, “The hyperviscosity syndromes,” Seminars in Thrombosis and Hemostasis, vol. 25, no. 2, pp. 199–208, 1999. View at Scopus
  11. M. A. Gertz, “Waldenström Macroglobulinemia: 2012 update on diagnosis, risk stratification, and management,” American Journal of Hematology, vol. 87, no. 5, pp. 504–510, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. B. J. Camp and C. M. Magro, “Cutaneous macroglobulinosis: a case series,” Journal of Cutaneous Pathology, vol. 39, no. 10, pp. 962–970, 2012. View at Publisher · View at Google Scholar
  13. K. E. Spicknall, L. E. Dubas, and D. F. Mutasim, “Cutaneous macroglobulinosis with monotypic plasma cells: a specific manifestation of Waldenstrom macroglobulinemia,” Journal of Cutaneous Pathology, vol. 40, no. 5, pp. 440–444, 2013. View at Publisher · View at Google Scholar
  14. G. A. M. Veltman, S. Van Veen, J. C. Kluin-Nelemans, J. A. Bruijn, and L. A. Van Es, “Renal disease in Waldenstrom's macroglobulinaemia,” Nephrology Dialysis Transplantation, vol. 12, no. 6, pp. 1256–1259, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Gnemmi, X. Leleu, F. Provot, F. Moulonguet, and D. Buob, “Cast nephropathy and light-chain deposition disease in Waldenstrom macroglobulinemia,” American Journal of Kidney Diseases, vol. 60, no. 3, pp. 487–491, 2012. View at Publisher · View at Google Scholar
  16. M. A. Gertz, G. Merlini, and S. P. Treon, “Amyloidosis and Waldenström's macroglobulinemia,” Hematology, pp. 257–282, 2004. View at Scopus
  17. J. Gardyn, A. Schwartz, R. Gal, U. Lewinski, D. Kristt, and A. M. Cohen, “Waldenstrom's macroglobulinemia associated with AA amyloidosis,” International Journal of Hematology, vol. 74, no. 1, pp. 76–78, 2001. View at Publisher · View at Google Scholar
  18. W. Pruzanski and K. H. Shumak, “Biologic activity of cold-reacting autoantibodies (Second of two parts),” New England Journal of Medicine, vol. 297, no. 11, pp. 583–589, 1977. View at Scopus
  19. W. Pruzanski and K. H. Shumak, “Biologic activity of cold-reacting autoantibodies (First of two parts),” New England Journal of Medicine, vol. 297, no. 10, pp. 538–542, 1977. View at Scopus
  20. A. Simon, B. Asli, M. Braun-Falco, et al., “Schnitzler's syndrome: diagnosis, treatment, and follow-up,” Allergy, vol. 68, no. 5, pp. 562–568, 2013.
  21. A. H. Ropper and K. C. Gorson, “Neuropathies associated with paraproteinemia,” New England Journal of Medicine, vol. 338, no. 22, pp. 1601–1607, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. J. C. Brouet, J. P. Clauvel, and F. Danon, “Biologic and clinical significance of cryoglobulins. A report of 86 cases,” American Journal of Medicine, vol. 57, no. 5, pp. 775–788, 1974. View at Scopus
  23. E. M. Ocio, J. M. Hernández, G. Mateo et al., “Immunophenotypic and cytogenetic comparison of Waldenström's macroglobulinemia with splenic marginal zone lymphoma,” Clinical Lymphoma, vol. 5, no. 4, pp. 241–245, 2005. View at Scopus
  24. M. Mateo, M. Mollejo, R. Villuendas et al., “7q31-32 allelic loss is a frequent finding in splenic marginal zone lymphoma,” American Journal of Pathology, vol. 154, no. 5, pp. 1583–1589, 1999. View at Scopus
  25. J. I. Chacón, M. Mollejo, E. Muñoz et al., “Splenic marginal zone lymphoma: clinical characteristics and prognostic factors in a series of 60 patients,” Blood, vol. 100, no. 5, pp. 1648–1654, 2002. View at Scopus
  26. C. Thieblemont, V. Nasser, P. Felman et al., “Small lymphocytic lymphoma, marginal zone B-cell lymphoma, and mantle cell lymphoma exhibit distinct gene-expression profiles allowing molecular diagnosis,” Blood, vol. 103, no. 7, pp. 2727–2737, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. H. C. Kluin-Nelemans, E. Hoster, O. Hermine, et al., “Treatment of older patients with mantle-cell lymphoma,” The New England Journal of Medicine, vol. 367, pp. 520–531, 2012. View at Publisher · View at Google Scholar
  28. J. Vaandrager, E. Schuuring, E. Zwikstra et al., “Direct visualization of dispersed 11q13 chromosomal translocations in mantle cell lymphoma by multicolor DNA fiber fluorescence in situ hybridization,” Blood, vol. 88, no. 4, pp. 1177–1182, 1996. View at Scopus
  29. J. Li, F. Gaillard, A. Moreau et al., “Detection of translocation t(11;14)(q13;q32) in mantle cell lymphoma by fluorescence in situ hybridization,” American Journal of Pathology, vol. 154, no. 5, pp. 1449–1452, 1999. View at Scopus
  30. O. Annibali, M. T. Petrucci, P. Del Bianco et al., “IgM multiple myeloma: report of four cases and review of the literature,” Leukemia and Lymphoma, vol. 47, no. 8, pp. 1565–1569, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. D. E. Reece, D. H. Vesole, S. Shrestha et al., “Outcome of patients with IgD and IgM multiple myeloma undergoing autologous hematopoietic stem cell transplantation: a retrospective cibmtr study,” Clinical Lymphoma, Myeloma and Leukemia, vol. 10, no. 6, pp. 458–463, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. R. G. Owen, A. G. Bynoe, A. Varghese, R. M. de Tute, and A. C. Rawstron, “Heterogeneity of histological transformation events in Waldenström's macroglobulinemia (WM) and related disorders,” Clinical Lymphoma, Myeloma & Leukemia, vol. 11, no. 1, pp. 176–179, 2011. View at Scopus
  33. M. Björkholm, E. Johansson, D. Papamichael et al., “Patterns of clinical presentation, treatment, and outcome in patients with Waldenstrom's macroglobulinemia: a two-institution study,” Seminars in Oncology, vol. 30, no. 2, pp. 226–230, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Y. Kristinsson, M. Björkholm, T. M.-L. Andersson et al., “Patterns of survival and causes of death following a diagnosis of monoclonal gammopathy of undetermined significance: a population-based study,” Haematologica, vol. 94, no. 12, pp. 1714–1720, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Y. Kristinsson, S. Eloranta, P. W. Dickman, et al., “Patterns of survival in lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia: a population-based study of 1, 555 patients diagnosed in Sweden from 1980 to 2005,” American Journal of Hematology, vol. 88, no. 1, pp. 60–65, 2013. View at Publisher · View at Google Scholar
  36. M. V. Dhodapkar, A. Hoering, M. A. Gertz et al., “Long-term survival in Waldenstrom macroglobulinemia: 10-year follow-up of Southwest Oncology Group directed intergroup trial S9003,” Blood, vol. 113, no. 4, pp. 793–796, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Facon, M. Brouillard, A. Duhamel et al., “Prognostic factors in Waldenstrom's macroglobulinemia: a report of 167 cases,” Journal of Clinical Oncology, vol. 11, no. 8, pp. 1553–1558, 1993. View at Scopus
  38. P. Morel, M. Monconduit, D. Jacomy et al., “Prognostic factors in Waldenstrom macroglobulinemia: a report on 232 patients with the description of a new scoring system and its validation on 253 other patients,” Blood, vol. 96, no. 3, pp. 852–858, 2000. View at Scopus
  39. G. Merlini, L. Baldini, C. Broglia et al., “Prognostic factors in symptomatic Waldenstrom's macroglobulinemia,” Seminars in Oncology, vol. 30, no. 2, pp. 211–215, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Garcia-Sanz, S. Montoto, A. Torrequebrada, et al., “Waldenstrom macroglobulinaemia: presenting features and outcome in a series with 217 cases,” British Journal of Haematology, vol. 115, no. 3, pp. 575–582, 2001. View at Publisher · View at Google Scholar
  41. P. Morel, A. Duhamel, P. Gobbi et al., “International prognostic scoring system for Waldenström macroglobulinemia,” Blood, vol. 113, no. 18, pp. 4163–4170, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. R. M. de Tute, A. C. Rawstron, and R. G. Owen, “Immunoglobulin M concentration in Waldenstrom macroglobulinemia: correlation with bone marrow B cells and plasma cells,” Clinical Lymphoma Myeloma and Leukemia, vol. 13, no. 2, pp. 211–213, 2013. View at Publisher · View at Google Scholar
  43. E. Kastritis, K. Zervas, P. Repoussis et al., “Prognostication in young and old patients with Waldenström's macroglobulinemia: importance of the international prognostic scoring system and of serum lactate dehydrogenase,” Clinical Lymphoma and Myeloma, vol. 9, no. 1, pp. 50–52, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Kastritis, M. Kyrtsonis, E. Hadjiharissi et al., “Validation of the International Prognostic Scoring System (IPSS) for Waldenstrom's Macroglobulinemia (WM) and the importance of serum lactate dehydrogenase (LDH),” Leukemia Research, vol. 34, no. 10, pp. 1340–1343, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. X. Leleu, W. Xie, M. Bagshaw et al., “The role of serum immunoglobulin free light chain in response and progression in Waldenstrom macroglobulinemia,” Clinical Cancer Research, vol. 17, no. 9, pp. 3013–3018, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. I. M. Ghobrial, R. Fonseca, M. A. Gertz et al., “Prognostic model for disease-specific and overall mortality in newly diagnosed symptomatic patients with Waldenstrom macroglobulinaemia,” British Journal of Haematology, vol. 133, no. 2, pp. 158–164, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Treon, C. Patterson, E. Kimby, and M. Stone, “Advances in the biology and treatment of Waldenström's macroglobulinemia: a report from the 5th international workshop on Waldenström's macroglobulinemia, Stockholm, Sweden,” Clinical Lymphoma and Myeloma, vol. 9, no. 1, pp. 10–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. I. M. Ghobrial, “Are you sure this is Waldenstrom macroglobulinemia?” American Society of Hematology Education Program, vol. 2012, pp. 586–594, 2012.
  49. R. G. Owen, R. A. Kyle, M. J. Stone, et al., “Response assessment in Waldenstrom macroglobulinaemia: update from the VIth International Workshop,” British Journal of Haematology, vol. 160, no. 2, pp. 171–176, 2013. View at Publisher · View at Google Scholar
  50. M. Gertz, “Waldenstrom macroglobulinemia: my way,” Leukemia & Lymphoma, vol. 54, no. 3, pp. 464–471, 2013. View at Publisher · View at Google Scholar
  51. M. A. Gertz, C. B. Reeder, R. A. Kyle, and S. M. Ansell, “Stem cell transplant for Waldenström macroglobulinemia: an underutilized technique,” Bone Marrow Transplantation, vol. 47, no. 9, pp. 1147–1153, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. L. Souchet-Compain, S. Nguyen, S. Choquet, and V. Leblond, “Primary therapy of Waldenstrom macroglobulinemia with nucleoside analogue-based therapy,” Clinical Lymphoma Myeloma and Leukemia, vol. 13, no. 2, pp. 227–230, 2013.
  53. I. M. Ghobrial, “Choice of therapy for patients with Waldenstrom macroglobulinemia,” Journal of Clinical Oncology, vol. 31, no. 3, pp. 291–293, 2013. View at Publisher · View at Google Scholar
  54. M. A. Dimopoulos, C. Zervas, A. Zomas et al., “Extended rituximab therapy for previously untreated patients with Waldenström's macroglubulinemia,” Clinical Lymphoma, vol. 3, no. 3, pp. 163–166, 2002. View at Scopus
  55. M. A. Gertz, M. Rue, E. Blood, L. S. Kaminer, D. H. Vesole, and P. R. Greipp, “Multicenter phase 2 trial of rituximab for Waldenström macroglobulinemia (WM): an Eastern Cooperative Oncology Group Study (E3A98),” Leukemia and Lymphoma, vol. 45, no. 10, pp. 2047–2055, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. S. P. Treon, C. Emmanouilides, E. Kimby et al., “Extended rituximab therapy in Waldenström's macroglobulinemia,” Annals of Oncology, vol. 16, no. 1, pp. 132–138, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. S. P. Treon, J. D. Soumerai, Z. R. Hunter et al., “Long-term follow-up of symptomatic patients with lymphoplasmacytic lymphoma/Waldenström macroglobulinemia treated with the anti-CD52 monoclonal antibody alemtuzumab,” Blood, vol. 118, no. 2, pp. 276–281, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. S. P. Treon, J. D. Soumerai, A. R. Branagan et al., “Thalidomide and rituximab in Waldenstrom macroglobulinemia,” Blood, vol. 112, no. 12, pp. 4452–4457, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. S. P. Treon, J. D. Soumerai, A. R. Branagan et al., “Lenalidomide and rituximab in Waldenstrom's macroglobulinemia,” Clinical Cancer Research, vol. 15, no. 1, pp. 355–360, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. I. M. Ghobrial, M. Gertz, B. LaPlant et al., “Phase II trial of the oral mammalian target of rapamycin inhibitor everolimus in relapsed or refractory waldenström macroglobulinemia,” Journal of Clinical Oncology, vol. 28, no. 8, pp. 1408–1414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. I. M. Ghobrial, A. Roccaro, F. Hong et al., “Clinical and translational studies of a phase II trial of the novel oral Akt inhibitor perifosine in relapsed or relapsed/refractory Waldenström's macroglobulinemia,” Clinical Cancer Research, vol. 16, no. 3, pp. 1033–1041, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. R. Garca-Sanz and E. M. Ocio, “Novel treatment regimens for Waldenstrms macroglobulinemia,” Expert Review of Hematology, vol. 3, no. 3, pp. 339–350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. S. P. Treon, C. Hanzis, C. Tripsas et al., “Bendamustine therapy in patients with relapsed or refractory Waldenström's macroglobulinemia,” Clinical Lymphoma, Myeloma and Leukemia, vol. 11, no. 1, pp. 133–135, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Hensel, J. Brust, C. Plöger, et al., “Excellent long-term survival of 170 patients with Waldenstrom's macroglobulinemia treated in private oncology practices and a university hospital,” Annals of Hematology, vol. 91, no. 12, pp. 1923–1928, 2012. View at Publisher · View at Google Scholar
  65. M. J. Stone and S. A. Bogen, “Evidence-based focused review of management of hyperviscosity syndrome,” Blood, vol. 119, no. 10, pp. 2205–2208, 2012. View at Publisher · View at Google Scholar · View at Scopus
  66. M. J. Stone and S. A. Bogen, “Role of plasmapheresis in Waldenstrom's macroglobulinemia,” Clinical Lymphoma Myeloma and Leukemia, vol. 13, no. 2, pp. 238–240, 2013.
  67. S. P. Treon, C. K. Tripsas, B. T. Ciccarelli, et al., “Patients with Waldenstrom macroglobulinemia commonly present with iron deficiency and those with severely depressed transferrin saturation levels show response to parenteral iron administration,” Clinical Lymphoma Myeloma and Leukemia, vol. 13, no. 2, pp. 241–243, 2013.
  68. S. P. Treon, “How I treat Waldenström macroglobulinemia,” Blood, vol. 114, no. 12, pp. 2375–2385, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. A. D'Souza, S. Ansell, C. Reeder, and M. A. Gertz, “Waldenstrom macroglobulinaemia: the key questions,” British Journal of Haematology, 2013.
  70. N. Neparidze and M. V. Dhodapkar, “Waldenstrom's macroglobulinemia: recent advances in biology and therapy,” Clinical Advances in Hematology and Oncology, vol. 7, no. 10, pp. 677–690, 2009. View at Scopus
  71. H. Wang, Y. Chen, F. Li et al., “Temporal and geographic variations of Waldenstrom macroglobulinemia incidence: a large population-based study,” Cancer, vol. 118, no. 15, pp. 3793–3800, 2012. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Sekhar, K. Sanfilippo, Q. Zhang, K. Trinkaus, and R. Vij D, “Waldenstrom macroglobulinemia: a surveillance, epidemiology, and end results database review from 1988 to 2005,” Leukemia & Lymphoma, vol. 53, no. 8, pp. 1625–1626, 2012. View at Publisher · View at Google Scholar
  73. E. E. Manasanch, S. Y. Kristinsson, and O. Landgren, “Etiology of Waldenstrom macroglobulinemia: genetic factors and immune-related conditions,” Clinical Lymphoma Myeloma and Leukemia, vol. 13, no. 2, pp. 194–197, 2013.
  74. R. A. Kyle, T. M. Therneau, S. V. Rajkumar et al., “Long-term follow-up of IgM monoclonal gammopathy of undetermined significance,” Blood, vol. 102, no. 10, pp. 3759–3764, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Y. Kristinsson, M. Bjorkholm, and O. Landgren, “Survival in monoclonal gammopathy of undetermined significance and Waldenstrom macroglobulinemia,” Clinical Lymphoma Myeloma and Leukemia, vol. 13, no. 2, pp. 187–190, 2013.
  76. T. P. Giordano, L. Henderson, O. Landgren et al., “Risk of non-Hodgkin lymphoma and lymphoproliferative precursor diseases in US veterans with hepatitis C virus,” Journal of the American Medical Association, vol. 297, no. 18, pp. 2010–2017, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. J. Koshiol, G. Gridley, E. A. Engels, M. L. McMaster, and O. Landgren, “Chronic immune stimulation and subsequent Waldenström macroglobulinemia,” Archives of Internal Medicine, vol. 168, no. 17, pp. 1903–1909, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Y. Kristinsson, J. Koshiol, M. Björkholm et al., “Immune-related and inflammatory conditions and risk of lymphoplasmacytic lymphoma or Waldenstrom macroglobulinemia,” Journal of the National Cancer Institute, vol. 102, no. 8, pp. 557–567, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. E. K. Lindqvist, L. R. Goldin, O. Landgren et al., “Personal and family history of immune-related conditions increase the risk of plasma cell disorders: a population-based study,” Blood, vol. 118, no. 24, pp. 6284–6291, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. J. M. Fine, P. Lambin, M. Massari, and L. P. Leroux Ph., “Malignant evolution of asymptomatic monoclonal IgM after seven and fifteen years in two siblings of a patient with Waldenstrom's macroglobulinemia,” Acta Medica Scandinavica, vol. 211, no. 3, pp. 237–239, 1982. View at Scopus
  81. M. S. Linet, R. L. Humphrey, E. S. Mehl et al., “A case-control and family study of Waldenstrom's macroglobulinemia,” Leukemia, vol. 7, no. 9, pp. 1363–1369, 1993. View at Scopus
  82. H. M. Ogsmundsdottir, G. M. Johannesson, S. Sveinsdottir, S. Einarsdottir, A. Hegeman, and O. Jensson, “Familial macroglobulinaemia: hyperactive B-cells but normal natural killer function,” Scandinavian Journal of Immunology, vol. 40, no. 2, pp. 195–200, 1994. View at Publisher · View at Google Scholar · View at Scopus
  83. S. P. Treonm, Z. R. Hunter, A. Aggarwal, et al., “Characterization of familial Waldenstrom's macroglobulinemia,” Annals of Oncology, vol. 17, no. 3, pp. 488–494, 2006.
  84. S. Y. Kristinsson, M. Björkholm, L. R. Goldin, M. L. McMaster, I. Turesson, and O. Landgren, “Risk of lymphoproliferative disorders among first-degree relatives of lymphoplasmacytic lymphoma/Waldenström macroglobulinemia patients: a population-based study in Sweden,” Blood, vol. 112, no. 8, pp. 3052–3056, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. L. R. Goldin, R. M. Pfeiffer, G. Gridley et al., “Familial aggregation of Hodgkin lymphoma and related tumors,” Cancer, vol. 100, no. 9, pp. 1902–1908, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. L. R. Goldin, R. M. Pfeiffer, X. Li, and K. Hemminki, “Familial risk of lymphoproliferative tumors in families of patients with chronic lymphocytic leukemia: results from the Swedish Family-Cancer Database,” Blood, vol. 104, no. 6, pp. 1850–1854, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. R. H. Royer, J. Koshiol, T. R. Giambarresi, L. G. Vasquez, R. M. Pfeiffer, and M. L. McMaster, “Differential characteristics of Waldenström macroglobulinemia according to patterns of familial aggregation,” Blood, vol. 115, no. 22, pp. 4464–4471, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. M. L. McMaster, G. Csako, T. R. Giambarresi et al., “Long-term evaluation of three multiple-case Waldenström macroglobulinemia families,” Clinical Cancer Research, vol. 13, no. 17, pp. 5063–5069, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. L. R. Goldin, M. L. McMaster, and N. E. Caporaso, “Precursors to lymphoproliferative malignancies,” Cancer Epidemiology, Biomarkers & Prevention, vol. 22, pp. 533–539, 2013. View at Publisher · View at Google Scholar
  90. N. E. Caporaso, “Why precursors matter,” Cancer Epidemiology, Biomarkers & Prevention, vol. 22, pp. 518–520, 2013. View at Publisher · View at Google Scholar
  91. X. Leleu, X. Jia, J. Runnels et al., “The Akt pathway regulates survival and homing in Waldenstrom macroglobulinemia,” Blood, vol. 110, no. 13, pp. 4417–4426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. X. Leleu, J. Eeckhoute, X. Jia, et al., “Targeting NF-kappaB in Waldenstrom macroglobulinemia,” Blood, vol. 111, no. 10, pp. 5068–5077, 2008.
  93. A. M. Roccaro, X. Leleu, A. Sacco et al., “Dual targeting of the proteasome regulates survival and homing in Waldenström macroglobulinemia,” Blood, vol. 111, no. 9, pp. 4752–4763, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. H. T. Ngo, A. K. Azab, M. Farag et al., “Src tyrosine kinase regulates adhesion and chemotaxis in Waldenstrom macroglobulinemia,” Clinical Cancer Research, vol. 15, no. 19, pp. 6035–6041, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. X. Leleu, Z. R. Hunter, L. Xu et al., “Expression of regulatory genes for lymphoplasmacytic cell differentiation in Waldenstrom Macroglobulinemia,” British Journal of Haematology, vol. 145, no. 1, pp. 59–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. H. T. Ngo, X. Leleu, J. Lee et al., “SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia,” Blood, vol. 112, no. 1, pp. 150–158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. S. Poulain, C. Herbaux, E. Bertrand, et al., “Genomic studies have identified multiple mechanisms of genetic changes in Waldenström macroglobulinemia,” Clinical Lymphoma Myeloma and Leukemia, vol. 13, no. 2, pp. 202–204, 2013.
  98. A. Sacco, Y. Zhang, P. Maiso, et al., “microRNA Aberrations in Waldenstrom macroglobulinemia,” Clinical Lymphoma Myeloma and Leukemia, vol. 13, no. 2, pp. 205–207, 2013.
  99. S. P. Treon, L. Xu, G. Yang, et al., “MYD88 L265P somatic mutation in Waldenstrom's macroglobulinemia,” The New England Journal of Medicine, vol. 367, pp. 826–833, 2012.
  100. A. Agarwal and I. M. Ghobrial, “The bone marrow microenvironment in waldenstrom macroglobulinemia,” Clinical Lymphoma Myeloma and Leukemia, vol. 13, no. 2, pp. 218–221, 2013. View at Publisher · View at Google Scholar
  101. R. Fonseca and S. Hayman, “Waldenström macroglobulinaemia,” British Journal of Haematology, vol. 138, no. 6, pp. 700–720, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. A. W. Ho, E. Hatjiharissi, B. T. Ciccarelli, et al., “CD27-CD70 interactions in the pathogenesis of Waldenstrom macroglobulinemia,” Blood, vol. 112, no. 12, pp. 4683–4689, 2008.
  103. N. C. Gutiérrez, E. M. Ocio, J. de las Rivas et al., “Gene expression profiling of B lymphocytes and plasma cells from Waldenström's macroglobulinemia: comparison with expression patterns of the same cell counterparts from chronic lymphocytic leukemia, multiple myeloma and normal individuals,” Leukemia, vol. 21, no. 3, pp. 541–549, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. L. DuVillard, M. Guiguet, R.-O. Casasnovas et al., “Diagnostic value of serum IL-6 level in monoclonal gammopathies,” British Journal of Haematology, vol. 89, no. 2, pp. 243–249, 1995. View at Scopus
  105. E. C. R. Hatzimichael, L. Christou, M. Bai, G. Kolios, L. Kefala, and K. L. Bourantas, “Serum levels of IL-6 and its soluble receptor (sIL-6R) in Waldenström's macroglobulinemia,” European Journal of Haematology, vol. 66, no. 1, pp. 1–6, 2001. View at Publisher · View at Google Scholar · View at Scopus
  106. S. P. Treon, C. J. Patterson, N. C. Munshi, and K. C. Anderson, “Proceedings of the seventh international workshop on waldenstrom macroglobulinemia,” Clinical Lymphoma Myeloma and Leukemia, vol. 13, no. 2, pp. 181–183, 2013. View at Publisher · View at Google Scholar
  107. S. Y. Kristinsson, J. Koshiol, M. Björkholm et al., “Immune-related and inflammatory conditions and risk of lymphoplasmacytic lymphoma or Waldenstrom macroglobulinemia,” Journal of the National Cancer Institute, vol. 102, no. 8, pp. 557–567, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. L. R. Goldin, M. Björkholm, S. Y. Kristinsson, I. Turesson, and O. Landgren, “Elevated risk of chronic lymphocytic leukemia and other indolent non-Hodgkin's lymphomas among relatives of patients with chronic lymphocytic leukemia,” Haematologica, vol. 94, no. 5, pp. 647–653, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. X. Liang, N. Caporaso, M. L. McMaster et al., “Common genetic variants in candidate genes and risk of familial lymphoid malignancies,” British Journal of Haematology, vol. 146, no. 4, pp. 418–423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. H. M. Ögmundsdóttir, S. Sveinsdóttir, Á. Sigfússon, I. Skaftadóttir, J. G. Jónasson, and B. A. Agnarsson, “Enhanced B cell survival in familial macroglobulinaemia is associated with increased expression of Bcl-2,” Clinical and Experimental Immunology, vol. 117, no. 2, pp. 252–260, 1999. View at Publisher · View at Google Scholar · View at Scopus
  111. W. J. Chng, R. F. Schop, T. Price-Troska et al., “Gene-expression profiling of Waldenström macroglobulinemia reveals a phenotype more similar to chronic lymphocytic leukemia than multiple myeloma,” Blood, vol. 108, no. 8, pp. 2755–2763, 2006. View at Publisher · View at Google Scholar · View at Scopus
  112. E. Paramithiotis and M. D. Cooper, “Memory B lymphocytes migrate to bone marrow in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 1, pp. 208–212, 1997. View at Publisher · View at Google Scholar · View at Scopus
  113. J. L. Preud'homme and M. Seligmann, “Immunoglobulins on the surface of lymphoid cells in Waldenström's macroglobulinemia,” Journal of Clinical Investigation, vol. 51, no. 3, pp. 701–705, 1972. View at Scopus
  114. B. R. Smith, N. J. Robert, and K. A. Ault, “In Waldenstrom's macroglobulinemia the quantity of detectable circulating monoclonal B lymphocytes correlates with clinical course,” Blood, vol. 61, no. 5, pp. 911–914, 1983. View at Scopus
  115. Y. Levy, J.-P. Fermand, S. Navarro et al., “Interleukin 6 dependence of spontaneously in vitro differentiation of B cells from patients with IgM gammapathy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 9, pp. 3309–3313, 1990. View at Publisher · View at Google Scholar · View at Scopus
  116. M. L. McMaster and N. Caporaso, “Waldenström macroglobulinaemia and IgM monoclonal gammopathy of undetermined significance: emerging understanding of a potential precursor condition,” British Journal of Haematology, vol. 139, no. 5, pp. 663–671, 2007. View at Publisher · View at Google Scholar · View at Scopus
  117. H. T. Lynch, P. Watson, S. Tarantolo, et al., “Phenotypic heterogeneity in multiple myeloma families,” Journal of Clinical Oncology, vol. 23, no. 4, pp. 685–693, 2005. View at Publisher · View at Google Scholar
  118. O. Landgren, S. Y. Kristinsson, L. R. Goldin et al., “Risk of plasma cell and lymphoproliferative disorders among 14621 first-degree relatives of 4458 patients with monoclonal gammopathy of undetermined significance in Sweden,” Blood, vol. 114, no. 4, pp. 791–795, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. T. Henry and R. Fonseca, “Genomics and proteomics in multiple myeloma and Waldenström macroglobulinemia,” Current Opinion in Hematology, vol. 14, no. 4, pp. 369–374, 2007. View at Publisher · View at Google Scholar · View at Scopus
  120. E. M. Ocio, R. F. J. Schop, B. Gonzalez et al., “6q deletion in Waldenström macroglobulinemia is associated with features of adverse prognosis,” British Journal of Haematology, vol. 136, no. 1, pp. 80–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  121. E. Braggio, J. J. Keats, X. Leleu et al., “Identification of copy number abnormalities and inactivating mutations in two negative regulators of nuclear factor-κB signaling pathways in Waldenström's macroglobulinemia,” Cancer Research, vol. 69, no. 8, pp. 3579–3588, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. L. Pascal, J. Gay, C. Willekens, et al., “Bortezomib and Waldenstrom's macroglobulinemia,” Expert Opinion on Pharmacotherapy, vol. 10, no. 5, pp. 909–916, 2009. View at Publisher · View at Google Scholar
  123. A. M. Roccaro, A. Sacco, C. Chen et al., “MicroRNA expression in the biology, prognosis, and therapy of Waldenström macroglobulinemia,” Blood, vol. 113, no. 18, pp. 4391–4402, 2009. View at Publisher · View at Google Scholar · View at Scopus
  124. E. Hatjiharissi, H. Ngo, A. A. Leontovich et al., “Proteomic analysis of Waldenstrom macroglobulinemia,” Cancer Research, vol. 67, no. 8, pp. 3777–3784, 2007. View at Publisher · View at Google Scholar · View at Scopus
  125. M. J. Roberts, A. Chadburn, S. Ma, E. Hyjek, and L. C. Peterson, “Nuclear protein dysregulation in lymphoplasmacytic lymphoma/waldenstrom macroglobulinemia,” American Journal of Clinical Pathology, vol. 139, pp. 210–219, 2013. View at Publisher · View at Google Scholar
  126. S. Zibellini, D. Capello, F. Forconi et al., “Stereotyped patterns of B-cell receptor in splenic marginal zone lymphoma,” Haematologica, vol. 95, no. 10, pp. 1792–1796, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. A. Hadzidimitriou, A. Agathangelidis, N. Darzentas et al., “Is there a role for antigen selection in mantle cell lymphoma? Immunogenetic support from a series of 807 cases,” Blood, vol. 118, no. 11, pp. 3088–3095, 2011. View at Publisher · View at Google Scholar · View at Scopus
  128. A. Agathangelidis, N. Darzentas, A. Hadzidimitriou, et al., “Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies,” Blood, vol. 119, no. 19, pp. 4467–4475, 2012. View at Publisher · View at Google Scholar
  129. E. Kostareli, M. Gounari, A. Janus et al., “Antigen receptor stereotypy across B-cell lymphoproliferations: the case of IGHV4-59/IGKV3-20 receptors with rheumatoid factor activity,” Leukemia, vol. 26, no. 5, pp. 1127–1131, 2012. View at Publisher · View at Google Scholar · View at Scopus
  130. S. S. Sahota, F. Forconi, C. H. Ottensmeier et al., “Typical waldenstrom macroglobulinemia is derived from a B-cell arrested after cessation of somatic mutation but prior to isotype switch events,” Blood, vol. 100, no. 4, pp. 1505–1507, 2002. View at Scopus
  131. S. S. Sahota, F. Forconi, C. H. Ottensmeier, and F. K. Stevenson, “Origins of the malignant clone in typical Waldenstrom's macroglobulinemia,” Seminars in Oncology, vol. 30, no. 2, pp. 136–141, 2003. View at Publisher · View at Google Scholar · View at Scopus
  132. J. Kriangkum, B. J. Taylor, S. P. Treon, M. J. Mant, A. R. Belch, and L. M. Pilarski, “Clonotypic IgM V/D/J sequence analysis in Waldenstrom macroglobulinemia suggests an unusual B-cell origin and an expansion of polyclonal B cells in peripheral blood,” Blood, vol. 104, no. 7, pp. 2134–2142, 2004. View at Publisher · View at Google Scholar · View at Scopus
  133. J. Kriangkum, B. J. Taylor, S. P. Treon et al., “Molecular characterization of Waldenstrom's macroglobulinemia reveals frequent occurrence of two B-cell clones having distinct IgH VDJ sequences,” Clinical Cancer Research, vol. 13, no. 7, pp. 2005–2013, 2007. View at Publisher · View at Google Scholar · View at Scopus
  134. J. Kriangkum, B. J. Taylor, E. Strachan et al., “Impaired class switch recombination (CSR) in Waldenström macroglobulinemia (WM) despite apparently normal CSR machinery,” Blood, vol. 107, no. 7, pp. 2920–2927, 2006. View at Publisher · View at Google Scholar · View at Scopus
  135. G. Babbage, M. Townsend, N. Zojer et al., “IgM-expressing Waldenstrom's macroglobulinemia tumor cells reveal a potential for isotype switch events in vivo,” Leukemia, vol. 21, no. 4, pp. 827–830, 2007. View at Publisher · View at Google Scholar · View at Scopus
  136. P. Martin-Jiménez, R. Garcia-Sanz, M. E. Sarasquete, et al., “Functional class switch recombination may occur “in vivo” in Waldenstrom macroglobulinaemia,” British Journal of Haematology, vol. 136, no. 1, pp. 114–116, 2007. View at Publisher · View at Google Scholar
  137. M. Varettoni, S. Zibellini, D. Capello, et al., “Clues to the pathogenesis of Waldenstrom macroglobulinemia and IgM-MGUS provided by the analysis of immunoglobulin heavy chain gene rearrangement and clustering of B-cell receptors,” Leukemia & Lymphoma, 2013.
  138. M. J. Stone, “Pathogenesis and morbidity of autoantibody syndromes in Waldenstrom's macroglobulinemia,” Clinical Lymphoma, Myeloma and Leukemia, vol. 11, no. 1, pp. 157–159, 2011. View at Publisher · View at Google Scholar · View at Scopus
  139. M. J. Stone and J. E. Fedak, “Studies on monoclonal antibodies. II. Immune complex (IgM IgG) cryoglobulinemia: the mechanism of cryoprecipitation,” Journal of Immunology, vol. 113, no. 4, pp. 1377–1385, 1974. View at Scopus
  140. M. J. Stone, Y. G. McElroy, A. Pestronk, J. L. Reynolds, J. T. Newman, and A. W. Tong, “Human monoclonal macroglobulins with antibody activity,” Seminars in Oncology, vol. 30, no. 2, pp. 318–324, 2003.
  141. E. Nobile-Orazio, “Antigenic determinants in IgM paraprotein-related neuropathies,” Clinical Lymphoma and Myeloma, vol. 9, no. 1, pp. 107–109, 2009. View at Publisher · View at Google Scholar · View at Scopus
  142. M. Kohler, H. Daus, and C. Kohler, “Lymphocytic plasmocytoid lymphoma with a three-banded gammopathy: reactivity of one of these paraproteins with cytomegalovirus,” Blut, vol. 54, no. 1, pp. 25–32, 1987. View at Scopus
  143. J. Waldenstroem, S. Winblad, J. Haellen, and S. Liungman, “The occurrence of serological, “Antibody” reagins or similar gamma-globulins in conditions with monoclonal hypergammaglobulinemia, such as myeloma, macroglobulinemia Etc,” Acta medica Scandinavica, vol. 176, pp. 619–631, 1964.
  144. V. Petrušić, I. Živković, M. Stojanović et al., “Antigenic specificity and expression of a natural idiotope on human pentameric and hexameric IgM polymers,” Immunologic Research, vol. 51, no. 1, pp. 97–107, 2011. View at Publisher · View at Google Scholar · View at Scopus
  145. K. Preuss, G. Held, B. Kubuschok et al., “Identification of antigenic targets of paraproteins by expression cloning does not support a causal role of chronic antigenic stimulation in the pathogenesis of multiple myeloma and MGUS,” International Journal of Cancer, vol. 121, no. 2, pp. 459–461, 2007. View at Publisher · View at Google Scholar · View at Scopus
  146. S. Grass, K. Preuss, S. Thome et al., “Paraproteins of familial MGUS/multiple myeloma target family-typical antigens: hyperphosphorylation of autoantigens is a consistent finding in familial and sporadic MGUS/MM,” Blood, vol. 118, no. 3, pp. 635–637, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. S. Grass, K. Preuss, M. Ahlgrimm et al., “Association of a dominantly inherited hyperphosphorylated paraprotein target with sporadic and familial multiple myeloma and monoclonal gammopathy of undetermined significance: a case-control study,” The Lancet Oncology, vol. 10, no. 10, pp. 950–956, 2009. View at Publisher · View at Google Scholar · View at Scopus
  148. S. R. Sompuram, G. Bastas, K. Vani, and S. A. Bogen, “Accurate identification of paraprotein antigen targets by epitope reconstruction,” Blood, vol. 111, no. 1, pp. 302–308, 2008. View at Publisher · View at Google Scholar · View at Scopus
  149. M. Hecker, P. Lorenz, F. Steinbeck et al., “Computational analysis of high-density peptide microarray data with application from systemic sclerosis to multiple sclerosis,” Autoimmunity Reviews, vol. 11, no. 3, pp. 180–190, 2012. View at Publisher · View at Google Scholar · View at Scopus
  150. C.-A. Reynaud, M. Descatoire, I. Dogan, F. Huetz, S. Weller, and J.-C. Weill, “IgM memory B cells: a mouse/human paradox,” Cellular and Molecular Life Sciences, vol. 69, no. 10, pp. 1625–1634, 2012.
  151. K. L. Good-Jacobson and D. M. Tarlinton, “Multiple routes to B-cell memory,” International Immunology, vol. 24, no. 7, pp. 403–408, 2012. View at Publisher · View at Google Scholar
  152. U. Klein, K. Rajewsky, and R. Küppers, “Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells,” Journal of Experimental Medicine, vol. 188, no. 9, pp. 1679–1689, 1998. View at Publisher · View at Google Scholar · View at Scopus
  153. S. G. Tangye, Y. Liu, G. Aversa, J. H. Phillips, and J. E. De Vries, “Identification of functional human splenic memory B cells by expression of CD148 and CD27,” Journal of Experimental Medicine, vol. 188, no. 9, pp. 1691–1703, 1998. View at Publisher · View at Google Scholar · View at Scopus
  154. M. A. Berkowska, G. J. A. Driessen, V. Bikos et al., “Human memory B cells originate from three distinct germinal center-dependent and -independent maturation pathways,” Blood, vol. 118, no. 8, pp. 2150–2158, 2011. View at Publisher · View at Google Scholar · View at Scopus
  155. J. Kriangkum, B. J. Taylor, T. Reiman, A. R. Belch, and L. M. Pilarski, “Origins of Waldenström's macroglobulinemia: does it arise from an unusual B-cell precursor?” Clinical Lymphoma, vol. 5, no. 4, pp. 217–219, 2005. View at Scopus
  156. S. Crotty, P. Felgner, H. Davies, J. Glidewell, L. Villarreal, and R. Ahmed, “Cutting edge: long-term B cell memory in humans after Smallpox vaccination,” Journal of Immunology, vol. 171, no. 10, pp. 4969–4973, 2003. View at Scopus
  157. M. Mamani-Matsuda, A. Cosma, S. Weller et al., “The human spleen is a major reservoir for long-lived vaccinia virus-specific memory B cells,” Blood, vol. 111, no. 9, pp. 4653–4659, 2008. View at Publisher · View at Google Scholar · View at Scopus
  158. I. J. Amanna, N. E. Carlson, and M. K. Slifka, “Duration of humoral immunity to common viral and vaccine antigens,” New England Journal of Medicine, vol. 357, no. 19, pp. 1903–1915, 2007. View at Publisher · View at Google Scholar · View at Scopus
  159. D. Zotos and D. M. Tarlinton, “Determining germinal centre B cell fate,” Trends in Immunology, vol. 33, no. 6, pp. 281–288, 2012. View at Publisher · View at Google Scholar
  160. V. Peperzak, I. B. Vikstrom, and D. M. Tarlinton, “Through a glass less darkly: apoptosis and the germinal center response to antigen,” Immunological Reviews, vol. 247, no. 1, pp. 93–106, 2012. View at Publisher · View at Google Scholar · View at Scopus
  161. U. Klein, R. Küppers, and K. Rajewsky, “Evidence for a large compartment of IgM-expressing memory B cells in humans,” Blood, vol. 89, no. 4, pp. 1288–1298, 1997. View at Scopus
  162. H. White and D. Gray, “Analysis of immunoglobulin (Ig) isotype diversity and IgM/D memory in the response to phenyl-oxazolone,” Journal of Experimental Medicine, vol. 191, no. 12, pp. 2209–2219, 2000. View at Publisher · View at Google Scholar · View at Scopus
  163. I. Dogan, B. Bertocci, V. Vilmont et al., “Multiple layers of B cell memory with different effector functions,” Nature Immunology, vol. 10, no. 12, pp. 1292–1299, 2009. View at Publisher · View at Google Scholar · View at Scopus
  164. K. A. Pape, J. J. Taylor, R. W. Maul, P. J. Gearhart, and M. K. Jenkins, “Different B cell populations mediate early and late memory during an endogenous immune response,” Science, vol. 331, no. 6021, pp. 1203–1207, 2011. View at Publisher · View at Google Scholar · View at Scopus
  165. M. C. van Zelm, T. Szczepański, M. Van Der Burg, and J. J. M. Van Dongen, “Replication history of B lymphocytes reveals homeostatic proliferation and extensive antigen-induced B cell expansion,” Journal of Experimental Medicine, vol. 204, no. 3, pp. 645–655, 2007. View at Publisher · View at Google Scholar · View at Scopus
  166. S. Weller, M. C. Braun, B. K. Tan et al., “Human blood IgM “memory” B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire,” Blood, vol. 104, no. 12, pp. 3647–3654, 2004. View at Publisher · View at Google Scholar · View at Scopus
  167. C. Wei, J. Anolik, A. Cappione et al., “A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus,” Journal of Immunology, vol. 178, no. 10, pp. 6624–6633, 2007. View at Scopus
  168. Y. Miura, R. Shimazu, K. Miyake et al., “RP105 is associated with MD-1 and transmits an activation signal in human B cells,” Blood, vol. 92, no. 8, pp. 2815–2822, 1998. View at Scopus
  169. P. Schneider, F. Mackay, V. Steiner et al., “BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth,” Journal of Experimental Medicine, vol. 189, no. 11, pp. 1747–1756, 1999. View at Publisher · View at Google Scholar · View at Scopus
  170. H. Shu, W. Hu, and H. Johnson, “TALL-1 is a novel member of the TNF family that is down-regulated by mitogens,” Journal of Leukocyte Biology, vol. 65, no. 5, pp. 680–683, 1999. View at Scopus
  171. J. Moreaux, E. Legouffe, E. Jourdan et al., “BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone,” Blood, vol. 103, no. 8, pp. 3148–3157, 2004. View at Publisher · View at Google Scholar · View at Scopus
  172. Y. Wu, D. Kipling, H. S. Leong, V. Martin, A. A. Ademokun, and D. K. Dunn-Walters, “High-throughput immunoglobulin repertoire analysis distinguishes between human IgM memory and switched memory B-cell populations,” Blood, vol. 116, no. 7, pp. 1070–1078, 2010. View at Publisher · View at Google Scholar · View at Scopus
  173. S. Weller, A. Faili, C. Garcia et al., “CD40-CD40L independent Ig gene hypermutation suggests a second B cell diversification pathway in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 3, pp. 1166–1170, 2001. View at Publisher · View at Google Scholar · View at Scopus
  174. C. S. Ma, S. Pittaluga, D. T. Avery et al., “Selective generation of functional somatically mutated IgM+CD27+, but not Ig isotype-switched, memory B cells in X-linked lymphoproliferative disease,” Journal of Clinical Investigation, vol. 116, no. 2, pp. 322–333, 2006. View at Publisher · View at Google Scholar · View at Scopus
  175. K. Warnatz, L. Bossaller, U. Salzer et al., “Human ICOS deficiency abrogates the germinal center reaction and provides a monogenic model for common variable immunodeficiency,” Blood, vol. 107, no. 8, pp. 3045–3052, 2006. View at Publisher · View at Google Scholar · View at Scopus
  176. S. Weller, M. Bonnet, H. Delagreverie, et al., “IgM+IgD+CD27+ B cells are markedly reduced in IRAK-4-, MyD88-, and TIRAP- but not UNC-93B-deficient patients,” Blood, vol. 120, no. 25, pp. 4992–5001, 2012. View at Publisher · View at Google Scholar
  177. S. Lin, Y. Lo, and H. Wu, “Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling,” Nature, vol. 465, no. 7300, pp. 885–890, 2010. View at Publisher · View at Google Scholar · View at Scopus
  178. T. Kawagoe, S. Sato, K. Matsushita et al., “Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2,” Nature Immunology, vol. 9, no. 6, pp. 684–691, 2008. View at Publisher · View at Google Scholar · View at Scopus
  179. C. Keim, D. Kazadi, G. Rothschild, and U. Basu, “Regulation of AID, the B-cell genome mutator,” Genes & Development, vol. 27, pp. 1–17, 2013. View at Publisher · View at Google Scholar
  180. S. Weller, M. Mamani-Matsuda, C. Picard et al., “Somatic diversification in the absence of antigen-driven responses is the hallmark of the IgM+IgD+CD27+ B cell repertoire in infants,” Journal of Experimental Medicine, vol. 205, no. 6, pp. 1331–1342, 2008. View at Publisher · View at Google Scholar · View at Scopus
  181. F. A. Scheeren, M. Nagasawa, K. Weijer et al., “T cell-independent development and induction of somatic hypermutation in human IgM+IgD+CD27+ B cells,” Journal of Experimental Medicine, vol. 205, no. 9, pp. 2033–2042, 2008. View at Publisher · View at Google Scholar · View at Scopus
  182. A. Tierens, J. Delabie, L. Michiels, P. Vandenberghe, and C. De Wolf-Peeters, “Marginal-zone B cells in the human lymph node and spleen show somatic hypermutations and display clonal expansion,” Blood, vol. 93, no. 1, pp. 226–234, 1999. View at Scopus
  183. I. Puga, M. Cols, C. M. Barra, et al., “B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen,” Nature Immunology, vol. 13, no. 2, pp. 170–180, 2012.
  184. F. Capolunghi, S. Cascioli, E. Giorda et al., “CpG drives human transitional B cells to terminal differentiation and production of natural antibodies,” Journal of Immunology, vol. 180, no. 2, pp. 800–808, 2008. View at Scopus
  185. A. Aranburu, S. Ceccarelli, E. Giorda, R. Lasorella, G. Ballatore, and R. Carsetti, “TLR ligation triggers somatic hypermutation in transitional B cells inducing the generation of IgM memory B cells,” Journal of Immunology, vol. 185, no. 12, pp. 7293–7301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  186. R. Ettinger, G. P. Sims, R. Robbins et al., “IL-21 and BAFF/BLyS synergize in stimulating plasma cell differentiation from a unique population of human splenic memory B cells,” Journal of Immunology, vol. 178, no. 5, pp. 2872–2882, 2007. View at Scopus
  187. J. L. Karnell and R. Ettinger, “The interplay of IL-21 and BAFF in the formation and maintenance of human B cell memory,” Frontiers in Immunology, vol. 3, no. 2, 2012. View at Publisher · View at Google Scholar
  188. D. O. Griffin, N. E. Holodick, and T. L. Rothstein, “Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+CD27+CD43+CD70,” Journal of Experimental Medicine, vol. 208, no. 1, pp. 67–80, 2011. View at Publisher · View at Google Scholar · View at Scopus
  189. D. O. Griffin and T. L. Rothstein, “Human b1 cell frequency: isolation and analysis of human b1 cells,” Frontiers in Immunology, vol. 3, no. 122, 2012. View at Publisher · View at Google Scholar
  190. X. Zhong, W. Gao, N. Degauque, et al., “Reciprocal generation of Th1/Th17 and T(reg) cells by B1 and B2 B cells,” European Journal of Immunology, vol. 37, no. 9, pp. 2400–2404, 2007. View at Publisher · View at Google Scholar
  191. A. B. Kantor, C. E. Merrill, L. A. Herzenberg, and J. L. Hillson, “An Unbiased Analysis of VH-D-JH Sequences from B-1a, B-1b, and Conventional B Cells,” Journal of Immunology, vol. 158, no. 3, pp. 1175–1186, 1997. View at Scopus
  192. N. Baumgarth, “The double life of a B-1 cell: self-reactivity selects for protective effector functions,” Nature Reviews Immunology, vol. 11, no. 1, pp. 34–46, 2011. View at Publisher · View at Google Scholar · View at Scopus
  193. M. Descatoire, J. Weill, C. Reynaud, and S. Weller, “A human equivalent of mouse B-1 cells?” Journal of Experimental Medicine, vol. 208, no. 13, pp. 2563–2564, 2011. View at Publisher · View at Google Scholar · View at Scopus
  194. P. Martin, G. Christina, C. Teodosio, J. J. M. van Dongen, A. Orfao, and M. C. van Zelm, “The nature of circulating CD27+CD43+ B cells,” Journal of Experimental Medicine, vol. 208, no. 13, pp. 2565–2566, 2011. View at Publisher · View at Google Scholar · View at Scopus
  195. S. G. Tangye and K. L. Good, “Human IgM+CD27+ B cells: memory B cells or “memory” B cells?” Journal of Immunology, vol. 179, no. 1, pp. 13–19, 2007. View at Scopus
  196. M. Seifert and R. Küppers, “Molecular footprints of a germinal center derivation of human IgM +(IgD+)CD27 + B cells and the dynamics of memory B cell generation,” Journal of Experimental Medicine, vol. 206, no. 12, pp. 2659–2669, 2009. View at Publisher · View at Google Scholar · View at Scopus
  197. J. Weill, S. Weller, and C. Reynaud, “Human marginal zone B cells,” Annual Review of Immunology, vol. 27, pp. 267–285, 2009. View at Publisher · View at Google Scholar · View at Scopus
  198. M. Rakhmanov, B. Keller, S. Gutenberger et al., “Circulating CD21low B cells in common variable immunodeficiency resemble tissue homing, innate-like B cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 32, pp. 13451–13456, 2009. View at Publisher · View at Google Scholar · View at Scopus
  199. K. Warnatz, A. Denz, R. Dräger et al., “Severe deficiency of switched memory B cells (CD27+IgM-IgD-) in subgroups of patients with common variable immunodeficiency: a new approach to classify a heterogeneous disease,” Blood, vol. 99, no. 5, pp. 1544–1551, 2002. View at Publisher · View at Google Scholar · View at Scopus
  200. N. Gachard, M. Parrens, I. Soubeyran, et al., “IGHV gene features and MYD88 L265P mutation separate the three marginal zone lymphoma entities and Waldenstrom macroglobulinemia/lymphoplasmacytic lymphomas,” Leukemia, vol. 27, pp. 183–189, 2013. View at Publisher · View at Google Scholar
  201. S. Poulain, C. Roumier, A. Decambron, et al., “MYD88 L265P mutation in Waldenstrom's macroglogulinemia,” Blood, 2013.
  202. M. Varettoni, L. Arcaini, S. Zibellini, et al., “Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenstrom's macroglobulinemia and related lymphoid neoplasms,” Blood, vol. 121, no. 13, pp. 2522–2528, 2013. View at Publisher · View at Google Scholar
  203. L. Xu, Z. R. Hunter, G. Yang, et al., “MYD88 L265P in Waldenstrom macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction,” Blood, vol. 121, no. 11, pp. 2051–2058, 2013. View at Publisher · View at Google Scholar
  204. M. Loiarro, G. Gallo, N. Fantò et al., “Identification of critical residues of the MyD88 death domain involved in the recruitment of downstream kinases,” Journal of Biological Chemistry, vol. 284, no. 41, pp. 28093–28103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  205. L. Wang, M. S. Lawrence, Y. Wan, et al., “SF3B1 and other novel cancer genes in chronic lymphocytic leukemia,” The New England Journal of Medicine, vol. 365, pp. 2497–2506, 2011. View at Publisher · View at Google Scholar
  206. V. N. Ngo, R. M. Young, R. Schmitz et al., “Oncogenically active MYD88 mutations in human lymphoma,” Nature, vol. 470, no. 7332, pp. 115–121, 2011. View at Publisher · View at Google Scholar · View at Scopus
  207. L. Pasqualucci, V. Trifonov, G. Fabbri et al., “Analysis of the coding genome of diffuse large B-cell lymphoma,” Nature Genetics, vol. 43, no. 9, pp. 830–837, 2011. View at Publisher · View at Google Scholar · View at Scopus
  208. X. S. Puente, M. Pinyol, V. Quesada, et al., “Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia,” Nature, vol. 475, pp. 101–105, 2011. View at Publisher · View at Google Scholar
  209. M. Montesinos-Rongen, E. Godlewska, A. Brunn, O. D. Wiestler, R. Siebert, and M. Deckert, “Activating L265P mutations of the MYD88 gene are common in primary central nervous system lymphoma,” Acta Neuropathologica, vol. 122, no. 6, pp. 791–792, 2011. View at Publisher · View at Google Scholar · View at Scopus
  210. P. Tassone, P. Neri, J. L. Kutok et al., “A SCID-hu in vivo model of human Waldenström macroglobulinemia,” Blood, vol. 106, no. 4, pp. 1341–1345, 2005. View at Publisher · View at Google Scholar · View at Scopus
  211. A. S. Tsingotjidou, C. E. Emmanouilides, E. Siotou, et al., “Establishment of an animal model for Waldenstrom's macroglobulinemia,” Experimental Hematology, vol. 37, no. 4, pp. 469–476, 2009. View at Publisher · View at Google Scholar
  212. A. Al-Katib, R. Mohammad, M. Hamdan, A. N. Mohamed, M. Dan, and M. R. Smith, “Propagation of Waldenstrom's macroglobulinemia cells in vitro and in severe combined immune deficient mice: utility as a preclinical drug screening model,” Blood, vol. 81, no. 11, pp. 3034–3042, 1993. View at Scopus
  213. A. M. Al-Katib, E. Mensah-Osman, A. Aboukameel, and R. Mohammad, “The Wayne State University Waldenstrom's Macroglobulinemia preclinical model for Waldenstrom's macroglobulinemia,” Seminars in Oncology, vol. 30, no. 2, pp. 313–317, 2003. View at Publisher · View at Google Scholar · View at Scopus
  214. E. J. Mensah-Osman, A. M. Al-Katib, and R. M. Mohammad, “Preclinical Evaluation of 2-[4-(7-Chloro-2-quinoxalinyloxy)phenoxy]-propionic Acid as a Modulator of Etoposide in Human Waldenstrom's Macroglobulinemia Xenograft Model,” Clinical Cancer Research, vol. 9, no. 15, pp. 5794–5797, 2003. View at Scopus
  215. D. Ditzel Santos, A. W. Ho, O. Tournilhac et al., “Establishment of BCWM.1 cell line for Waldenström's macroglobulinemia with productive in vivo engraftment in SCID-hu mice,” Experimental Hematology, vol. 35, no. 9, pp. 1366–1375, 2007. View at Publisher · View at Google Scholar · View at Scopus
  216. P. L. Bergsagel and W. M. Kuehl, “WSU-WM and BCWM.1 should not be assumed to represent Waldenström macroglobulinemia cell lines,” Blood, vol. 112, no. 3, p. 917, 2008. View at Publisher · View at Google Scholar · View at Scopus
  217. L. S. Hodge, A. J. Novak, D. M. Grote et al., “Establishment and characterization of a novel Waldenström macroglobulinemia cell line, MWCL-1,” Blood, vol. 117, no. 19, pp. e190–e197, 2011. View at Publisher · View at Google Scholar · View at Scopus
  218. K. S. Chitta, A. Paulus, S. Ailawadhi, et al., “Development and characterization of a novel human Waldenstrom macroglobulinemia cell line: RPCI-WM1, Roswell Park Cancer Institute-Waldenstrom Macroglobulinemia 1,” Leukemia & Lymphoma, vol. 54, no. 2, pp. 387–396, 2013. View at Publisher · View at Google Scholar
  219. M. Potter, “Neoplastic development in plasma cells,” Immunological Reviews, vol. 194, pp. 177–195, 2003. View at Publisher · View at Google Scholar · View at Scopus
  220. M. Potter, J. G. Pumphrey, and D. W. Bailey, “Genetics of susceptibility to plasmacytoma induction. I. BALB/cAnN (C), C57BL/6N (B6), C57BL/Ka (BK), (C x B6)F1, (C x BK)F1, and C x B recombinant inbred strains,” Journal of the National Cancer Institute, vol. 54, no. 6, pp. 1413–1417, 1975. View at Scopus
  221. S.-L. Zhang, W. DuBois, E. S. Ramsay et al., “Efficiency alleles of the Pctr1 modifier locus for plasmacytoma susceptibility,” Molecular and Cellular Biology, vol. 21, no. 1, pp. 310–318, 2001. View at Publisher · View at Google Scholar · View at Scopus
  222. V. Bliskovsky, E. S. Ramsay, J. Scott et al., “Frap, FKBP12 rapamycin-associated protein, is a candidate gene for the plasmacytoma resistance locus Pctr2 and can act as a tumor suppressor gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 25, pp. 14982–14987, 2003. View at Publisher · View at Google Scholar · View at Scopus
  223. K. Zhang, D. Kagan, W. DuBois et al., “Mndal, a new interferon-inducible family member, is highly polymorphic, suppresses cell growth, and may modify plasmacytoma susceptibility,” Blood, vol. 114, no. 14, pp. 2952–2960, 2009. View at Publisher · View at Google Scholar · View at Scopus
  224. D. S. Hong, L. S. Angelo, and R. Kurzrock, “Interleukin-6 and its receptor in cancer: implications for translational therapeutics,” Cancer, vol. 110, no. 9, pp. 1911–1928, 2007. View at Publisher · View at Google Scholar · View at Scopus
  225. R. Kurzrock, J. Redman, F. Cabanillas, D. Jones, J. Rothberg, and M. Talpaz, “Serum interleukin 6 levels are elevated in lymphoma patients and correlate with survival in advanced Hodgkin's disease and with B symptoms,” Cancer Research, vol. 53, no. 9, pp. 2118–2122, 1993. View at Scopus
  226. L. T. Lam, G. Wright, R. E. Davis et al., “Cooperative signaling through the signal transducer and activator of transcription 3 and nuclear factor-kκB pathways in subtypes of diffuse large B-cell lymphoma,” Blood, vol. 111, no. 7, pp. 3701–3713, 2008. View at Publisher · View at Google Scholar · View at Scopus
  227. N. Nishimoto, Y. Kanakura, K. Aozasa et al., “Humanized anti-interleukin-6 receptor antibody treatment of multicentric Castleman disease,” Blood, vol. 106, no. 8, pp. 2627–2632, 2005. View at Publisher · View at Google Scholar · View at Scopus
  228. B. Klein, K. Tarte, M. Jourdan, et al., “Survival and proliferation factors of normal and malignant plasma cells,” International Journal of Hematology, vol. 78, no. 2, pp. 106–113, 2003. View at Publisher · View at Google Scholar
  229. M. Potter and C. L. Robertson, “Development of plasma-cell neoplasms in BALB/c mice after,” Journal of the National Cancer Institute, vol. 25, pp. 847–861, 1960. View at Scopus
  230. E. Shacter, G. K. Arzadon, and J. Williams, “Elevation of interleukin-6 in response to a chronic inflammatory stimulus in mice:inhibition by indomethacin,” Blood, vol. 80, no. 1, pp. 194–202, 1992. View at Scopus
  231. A. Vink, P. Coulie, G. Warnier et al., “Mouse plasmacytoma growth in vivo: enhancement by interleukin 6 (IL-6) and inhibition by antibodies directed against IL-6 or its receptor,” Journal of Experimental Medicine, vol. 172, no. 3, pp. 997–1000, 1990. View at Publisher · View at Google Scholar · View at Scopus
  232. G. Lattanzio, C. Libert, M. Aquilina et al., “Defective development of pristane-oil-induced plasmacytomas in interleukin-6-deficient BALB/c mice,” American Journal of Pathology, vol. 151, no. 3, pp. 689–696, 1997. View at Scopus
  233. D. M. Hilbert, M. Kopf, B. A. Mock, G. Köhler, and S. Rudikoff, “Interleukin 6 is essential for in vivo development of B lineage neoplasms,” Journal of Experimental Medicine, vol. 182, no. 1, pp. 243–248, 1995. View at Publisher · View at Google Scholar · View at Scopus
  234. A. L. Kovalchuk, J. S. Kim, S. S. Park, et al., “IL-6 transgenic mouse model for extraosseous plasmacytoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 3, pp. 1509–1514, 2002. View at Publisher · View at Google Scholar
  235. A. M. Ranger, B. A. Malynn, and S. J. Korsmeyer, “Mouse models of cell death,” Nature Genetics, vol. 28, no. 2, pp. 113–118, 2001. View at Publisher · View at Google Scholar · View at Scopus
  236. R. P. Bissonnette, F. Echeverri, A. Mahboubi, and D. R. Green, “Apoptotic cell death induced by c-myc is inhibited by bcl-2,” Nature, vol. 359, no. 6395, pp. 552–554, 1992. View at Publisher · View at Google Scholar · View at Scopus
  237. G. I. Evan, A. H. Wyllie, C. S. Gilbert et al., “Induction of apoptosis in fibroblasts by c-myc protein,” Cell, vol. 69, no. 1, pp. 119–128, 1992. View at Publisher · View at Google Scholar · View at Scopus
  238. D. L. Vaux, S. Cory, and J. M. Adams, “Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells,” Nature, vol. 335, no. 6189, pp. 440–442, 1988. View at Scopus
  239. A. Strasser, A. W. Harris, M. L. Bath, and S. Cory, “Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2,” Nature, vol. 348, no. 6299, pp. 331–333, 1990. View at Publisher · View at Google Scholar · View at Scopus
  240. C. M. Eischen, D. Woo, M. F. Roussel, and J. L. Cleveland, “Apoptosis triggered by Myc-induced suppression of Bcl-XL or Bcl-2 is bypassed during lymphomagenesis,” Molecular and Cellular Biology, vol. 21, no. 15, pp. 5063–5070, 2001. View at Publisher · View at Google Scholar · View at Scopus
  241. T. J. McDonnell, N. Deane, F. M. Platt et al., “bcl-2-Immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation,” Cell, vol. 57, no. 1, pp. 79–88, 1989. View at Scopus
  242. A. Strasser, A. W. Harris, D. L. Vaux et al., “Abnormalities of the immune system induced by dysregulated bcl-2 expression in transgenic mice,” Current Topics in Microbiology and Immunology, vol. 166, pp. 175–181, 1990. View at Scopus
  243. T. J. McDonnell and S. J. Korsmeyer, “Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic in mice transgenic for the t(14; 18),” Nature, vol. 349, no. 6306, pp. 254–257, 1991. View at Publisher · View at Google Scholar · View at Scopus
  244. A. Strasser, A. W. Harris, and S. Cory, “Eμ-bcl-2 transgene facilitates spontaneous transformation of early pre-B and immunoglobulin-secreting cells but not T cells,” Oncogene, vol. 8, no. 1, pp. 1–9, 1993. View at Scopus
  245. C. Brunner, D. Marinkovic, J. Klein, T. Samardzic, L. Nitschke, and T. Wirth, “B cell-specific transgenic expression of Bcl2 rescues early B lymphopoiesis but not B cell responses in BOB.1/OBF.1-deficient mice,” Journal of Experimental Medicine, vol. 197, no. 9, pp. 1205–1211, 2003. View at Publisher · View at Google Scholar · View at Scopus
  246. J. J. Kenny, L. J. Rezanka, A. Lustig et al., “Autoreactive B cells escape clonal deletion by expressing multiple antigen receptors,” Journal of Immunology, vol. 164, no. 8, pp. 4111–4119, 2000. View at Scopus
  247. D. Corcos, A. Grandien, A. Vazquez, O. Dunda, P. Lorès, and D. Bucchini, “Expression of a V region-less B cell receptor confers a tolerance-like phenotype on transgenic B cells,” Journal of Immunology, vol. 166, no. 5, pp. 3083–3089, 2001. View at Scopus
  248. N. R. Ruetsch, G. C. Bosma, and M. J. Bosma, “Unexpected rearrangement and expression of the immunoglobulin λ1 locus in scid mice,” Journal of Experimental Medicine, vol. 191, no. 11, pp. 1933–1943, 2000. View at Publisher · View at Google Scholar · View at Scopus
  249. M. Muramatsu, K. Kinoshita, S. Fagarasan, S. Yamada, Y. Shinkai, and T. Honjo, “Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme,” Cell, vol. 102, no. 5, pp. 553–563, 2000. View at Scopus
  250. P. Revy, T. Muto, Y. Levy et al., “Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2),” Cell, vol. 102, no. 5, pp. 565–575, 2000. View at Scopus
  251. J. Di Noia and M. S. Neuberger, “Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase,” Nature, vol. 419, no. 6902, pp. 43–48, 2002. View at Publisher · View at Google Scholar · View at Scopus
  252. A. R. Ramiro, M. Jankovic, T. Eisenreich et al., “AID is required for c-myc/IgH chromosome translocations in vivo,” Cell, vol. 118, no. 4, pp. 431–438, 2004. View at Publisher · View at Google Scholar · View at Scopus
  253. A. L. Kovalchuk, W. DuBois, E. Mushinski et al., “AID-deficient Bcl-xL transgenic mice develop delayed atypical plasma cell tumors with unusual Ig/Myc chromosomal rearrangements,” Journal of Experimental Medicine, vol. 204, no. 12, pp. 2989–3001, 2007. View at Publisher · View at Google Scholar · View at Scopus
  254. M. Takizawa, H. T. Á, Z. Li et al., “AID expression levels determine the extent of cMyc oncogenic translocations and the incidence of B cell tumor development,” Journal of Experimental Medicine, vol. 205, no. 9, pp. 1949–1957, 2008. View at Publisher · View at Google Scholar · View at Scopus
  255. W. F. Davidson, T. Giese, and T. N. Fredrickson, “Spontaneous development of plasmacytoid tumors in mice with defective fas-fas ligand interactions,” Journal of Experimental Medicine, vol. 187, no. 11, pp. 1825–1838, 1998. View at Publisher · View at Google Scholar · View at Scopus
  256. J. Q. Zhang, C. Okumura, T. McCarty et al., “Evidence for selective transformation of autoreactive immature plasma cells in mice deficient in Fasl,” Journal of Experimental Medicine, vol. 200, no. 11, pp. 1467–1478, 2004. View at Publisher · View at Google Scholar · View at Scopus
  257. J. W. Hartley, S. K. Chattopadhyay, M. R. Lander et al., “Accelerated appearance of multiple B cell lymphoma types in NFS/N mice congenic for ecotropic murine leukemia viruses,” Laboratory Investigation, vol. 80, no. 2, pp. 159–169, 2000. View at Scopus
  258. C. Qi, D. Shin, Z. Li et al., “Anaplastic plasmacytomas: relationships to normal memory B cells and plasma cell neoplasms of immunodeficient and autoimmune mice,” Journal of Pathology, vol. 221, no. 1, pp. 106–116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  259. M. Gostissa, J. M. Bianco, M. D. Bianco, et al., “Conditional inactivation of p53 in mature B cells promotes generation of nongerminal center-derived B-cell lymphomas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 8, pp. 2934–2939, 2013. View at Publisher · View at Google Scholar
  260. K. M. Nickerson, S. R. Christensen, J. Shupe et al., “TLR9 regulates TLR7- And MyD88-dependent autoantibody production and disease in a murine model of lupus,” Journal of Immunology, vol. 184, no. 4, pp. 1840–1848, 2010. View at Publisher · View at Google Scholar · View at Scopus
  261. L. L. Teichmann, D. Schenten, R. Medzhitov, M. Kashgarian, and M. J. Shlomchik, “Signals via the adaptor MyD88 in B cells and DCs make distinct and synergistic contributions to immune activation and tissue damage in lupus,” Immunity, vol. 38, no. 3, pp. 528–540, 2013. View at Publisher · View at Google Scholar
  262. S. Silva, A. L. Kovalchuk, J. S. Kim, G. Klein, and S. Janz, “BCL2 Accelerates Inflammation-induced BALB/c Plasmacytomas and Promotes Novel Tumors with Coexisting T(12;15) and T(6;15) Translocations,” Cancer Research, vol. 63, no. 24, pp. 8656–8663, 2003. View at Scopus