About this Journal Submit a Manuscript Table of Contents
ISRN Neurology
Volume 2013 (2013), Article ID 892459, 34 pages
http://dx.doi.org/10.1155/2013/892459
Review Article

The Human Frontal Lobes and Frontal Network Systems: An Evolutionary, Clinical, and Treatment Perspective

1Director Stroke and Cognitive Neurology Programs, James A. Haley Veterans' Hospital, 13000 Bruce B. Down's Boulevard, Tampa, FL 33612, USA
2Cognitive Neurologist and Director SciBrain, Roskamp Neurosciences Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA

Received 30 August 2012; Accepted 19 November 2012

Academic Editors: C.-M. Chen and B. Drukarch

Copyright © 2013 Michael Hoffmann. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Karussis, R. R. Leker, and O. Abramsky, “Cognitive dysfunction following thalamic stroke: a study of 16 cases and review of the literature,” Journal of the Neurological Sciences, vol. 172, no. 1, pp. 25–29, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Kumral, D. Evyapan, and K. Balkir, “Acute caudate vascular lesions,” Stroke, vol. 30, no. 1, pp. 100–108, 1999. View at Scopus
  3. M. Tullberg, E. Fletcher, C. DeCarli et al., “White matter lesions impair frontal lobe function regardless of their location,” Neurology, vol. 63, no. 2, pp. 246–253, 2004. View at Scopus
  4. J. P. Neau, E. A. Anllo, V. Bonnaud, P. Ingrand, and R. Gil, “Neuropsychological disturbances in cerebellar infarcts,” Acta Neurologica Scandinavica, vol. 102, no. 6, pp. 363–370, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Hoffmann and F. Schmitt, “Cognitive impairment in isolated subtentorial stroke,” Acta Neurologica Scandinavica, vol. 109, no. 1, pp. 14–24, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Malm, B. Kristensen, T. Karlsson, B. Carlberg, M. Fagerlund, and T. Olsson, “Cognitive impairment in young adults with infratentorial infarcts,” Neurology, vol. 51, no. 2, pp. 433–440, 1998. View at Scopus
  7. P. Garrard, D. Bradshaw, H. R. Jäger, A. J. Thompson, N. Losseff, and D. Playford, “Cognitive dysfunction after isolated brain stem insult. An underdiagnosed cause of long term morbidity,” Journal of Neurology Neurosurgery and Psychiatry, vol. 73, no. 2, pp. 191–194, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Goldberg, The Executive Brain: Frontal Lobes and the Civilized Mind, Oxford University Press, London, UK, 2001.
  9. T. W. Chow and J. L. Cummings, “Frontal subcortical circuits,” in The Human Frontal Lobes, B. Miller and J. L. Cummings, Eds., The Guilford Press, London, UK, 2nd edition, 2009.
  10. D. G. Lichter and J. L. Cummings, Frontal Subcortical Circuits in Psychiatric and Neurological Disorders, The Guilford Press, New York, NY, USA, 2001.
  11. T. Dobzhansky, “Nothing in biology makes sense except in the light of evolution,” American Biology Teacher, vol. 35, no. 3, pp. 125–129, 1973. View at Publisher · View at Google Scholar
  12. R. Dawkins, The Ancestor’s Tale. A Pilgrimage to the Dawn of Evolution, Houghton Mifflin, New York, NY, USA, 2004.
  13. B. Zalc, D. Goujet, and D. R. Colman, “The origin of the myelination program in vertebrates,” Current Biology, vol. 18, no. 12, pp. R511–R512, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. B. I. Roots, “The evolution of myelin,” Advances in Neural Science, vol. 1, pp. 187–213, 1993.
  15. Y. Coppens, “East side story: the origin of humankind,” Scientific American, vol. 270, no. 5, pp. 88–95, 1994. View at Scopus
  16. C. W. Marean, “When the sea saved humanity,” Scientific American, vol. 303, no. 2, pp. 55–61, 2010. View at Scopus
  17. F. Delange, “The role of iodine in brain development,” Proceedings of the Nutrition Society, vol. 59, no. 1, pp. 75–79, 2000. View at Scopus
  18. P. E. Wainwright, “Dietary essential fatty acids and brain function: a developmental perspective on mechanisms,” Proceedings of the Nutrition Society, vol. 61, no. 1, pp. 61–69, 2002. View at Scopus
  19. B. J. Kelley, B. F. Boeve, and K. A. Josephs, “Young-onset dementia: demographic and etiologic characteristics of 235 patients,” Archives of Neurology, vol. 65, no. 11, pp. 1502–1508, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. W. W. Seeley, V. Menon, A. F. Schatzberg et al., “Dissociable intrinsic connectivity networks for salience processing and executive control,” Journal of Neuroscience, vol. 27, no. 9, pp. 2349–2356, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. J. M. Fuster, “Neuroimaging,” in The Prefrontal Cortex, J. M. Fuster, Ed., pp. 285–332, Elesevier, New York, NY, USA, 4th edition, 2009.
  22. R. A. Prayson and J. R. Goldblum, Neuropathology, Elsevier, Amsterdam, The Netherlands, 2005.
  23. H. Brunnström, L. Gustafson, U. Passant, and E. Englund, “Prevalence of dementia subtypes: a 30-year retrospective survey of neuropathological reports,” Archives of Gerontology and Geriatrics, vol. 49, no. 1, pp. 146–149, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Mercy, J. R. Hodges, K. Dawson, R. A. Barker, and C. Brayne, “Incidence of early-onset dementias in Cambridgeshire, United Kingdom,” Neurology, vol. 71, no. 19, pp. 1496–1499, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. K. A. Josephs, “Frontotemporal dementia and related disorders: deciphering the enigma,” Annals of Neurology, vol. 64, no. 1, pp. 4–14, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Junque, J. Pujol, P. Vendrell et al., “Leuko-araiosis on magnetic resonance imaging and speed of mental processing,” Archives of Neurology, vol. 47, no. 2, pp. 151–156, 1990. View at Scopus
  27. C. C. Giza and D. A. Hovda, “The neurometabolic cascade of concussion,” Journal of Athletic Training, vol. 36, no. 3, pp. 228–235, 2001. View at Scopus
  28. G. Barkhoudarian, D. A. Hovda, and C. C. Giza, “The molecular pathophysiology of concussive brain injury,” Clinics in Sports Medicine, vol. 30, no. 1, pp. 33–48, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Vernino, M. Geschwind, and B. Boeve, “Autoimmune encephalopathies,” Neurologist, vol. 13, no. 3, pp. 140–147, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. A. McKeon, V. A. Lennon, and S. J. Pittock, “Immunotherapyresponsive dementias and encephalopathies,” Continuum Lifelong Learning in Neurology, vol. 16, no. 2, pp. 80–101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Standley, C. Brock, and M. Hoffmann, “Advances in functional neuroimaging in dementia and potential pitfalls,” Neurology International, vol. 4, no. 1, article e7, 2012. View at Publisher · View at Google Scholar
  32. S. A. Small, S. A. Schobel, R. B. Buxton, M. R. Witter, and C. A. Barnes, “A pathophysiological framework of hippocampal dysfunction in ageing and disease,” Nature Reviews Neuroscience, vol. 12, no. 10, pp. 585–601, 2011. View at Publisher · View at Google Scholar
  33. J. R. Petrella, F. C. Sheldon, S. E. Prince, V. D. Calhoun, and P. M. Doraiswamy, “Default mode network connectivity in stable vs progressive mild cognitive impairment,” Neurology, vol. 76, no. 6, pp. 511–517, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Zeng, H. Shen, L. Liu et al., “Identifying major depression using whole brain functional connectivity a multivariate pattern analysis,” Brain, vol. 135, no. 5, pp. 1498–1507, 2012. View at Publisher · View at Google Scholar
  35. W. W. Seeley, V. Menon, A. F. Schatzberg et al., “Dissociable intrinsic connectivity networks for salience processing and executive control,” Journal of Neuroscience, vol. 27, no. 9, pp. 2349–2356, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. S. C. Cramer, “Repairing the human brain after stroke. II. Restorative therapies,” Annals of Neurology, vol. 63, no. 5, pp. 549–560, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. R. G. Klein, The Human Career: Human Biological and Cultural Origins, University of Chicago Press, Chicago, Ill, USA, 3rd edition, 2009.
  38. R. L. Holloway, “Human brain evolution: a search for units, models and synthesis,” Canadian Journal of Anthropology, vol. 3, pp. 215–232, 1983.
  39. K. Semendeferi, H. Damasio, R. Frank, and G. W. van Hoesen, “The evolution of the frontal lobes: a volumetric analysis based on three-dimensional reconstructions of magnetic resonance scans of human and ape brains,” Journal of Human Evolution, vol. 32, no. 4, pp. 375–388, 1997. View at Scopus
  40. K. Semendeferi, A. Lu, N. Schenker, and H. Damasio, “Humans and great apes share a large frontal cortex,” Nature Neuroscience, vol. 5, no. 3, pp. 272–276, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. R. L. Holloway, “The human brain evolving. A personal perspective,” in The Human Brain Evolving, D. Broadfield, M. Yuan, K. Schick, and N. Toth, Eds., Stone Age Publication, Stone Age Institute Press, Gosport, UK, 2010.
  42. K. Semendeferi, E. Armstrong, A. Schleicher, K. Zilles, and G. W. van Hoesen, “Limbic frontal cortex in hominoids: a comparative study of area 13,” American Journal of Physical Anthropology, vol. 106, no. 2, pp. 129–155, 1998. View at Publisher · View at Google Scholar
  43. P. R. Hof, E. J. Mufson, and J. H. Morrison, “Human orbitofrontal cortex: cytoarchitecture and quantitative immunohistochemical parcellation,” Journal of Comparative Neurology, vol. 359, no. 1, pp. 48–68, 1995. View at Publisher · View at Google Scholar · View at Scopus
  44. P. R. Hof and E. van der Gucht, “Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae),” Anatomical Record, vol. 290, no. 1, pp. 1–31, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Semendeferi, E. Armstrong, A. Schleicher, K. Zilles, and G. W. van Hoesen, “Prefrontal cortex in humans and apes: a comparative study of area 10,” American Journal of Physical Anthrorpology, vol. 114, no. 3, pp. 224–241, 2001. View at Publisher · View at Google Scholar
  46. N. M. Schenker, A. M. Desgouttes, and K. Semendeferi, “Neural connectivity and cortical substrates of cognition in hominoids,” Journal of Human Evolution, vol. 49, no. 5, pp. 547–569, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. C. M. Schumann and D. G. Amaral, “Stereological estimation of the number of neurons in the human amygdaloid complex,” Journal of Comparative Neurology, vol. 491, no. 4, pp. 320–329, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. R. A. Barton, J. P. Aggleton, and R. Grenyer, “Evolutionary coherence of the mammalian amygdala,” Proceedings of the Royal Society B, vol. 270, no. 1514, pp. 539–543, 2003. View at Publisher · View at Google Scholar
  49. L. Brothers, “The social brain: a project for integrationg primate behavior and neurophsyiology in a new domain,” Concepts in Neuroscience, vol. 1, pp. 27–51, 1990.
  50. N. Barger, L. Stefanacci, and K. Semendeferi, “A comparative volumetric analysis of the amygdaloid complex and basolateral division in the human and ape brain,” American Journal of Physical Anthropology, vol. 134, no. 3, pp. 392–403, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. F. H. Previc, “Dopamine and the origins of human intelligence,” Brain and Cognition, vol. 41, no. 3, pp. 299–350, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. W. M. Bortz II, “Physical exercise as an evolutionary force,” Journal of Human Evolution, vol. 14, no. 2, pp. 145–155, 1985. View at Scopus
  53. D. R. Carrier, “The energetic paradox of human running and hominid evolution,” Current Anthropology, vol. 25, no. 4, pp. 483–495, 1984. View at Publisher · View at Google Scholar
  54. W. R. Leonard and M. S. Robertson, “Comparative primate energetics and hominid evolution,” American Journal of Physical Anthropology, vol. 102, no. 2, pp. 265–281, 1997. View at Publisher · View at Google Scholar
  55. M. A. Raghanti, C. D. Stimpson, J. L. Marcinkiewicz, J. M. Erwin, P. R. Hof, and C. C. Sherwood, “Cortical dopaminergic innervation among humans, chimpanzees, and macaque monkeys: a comparative study,” Neuroscience, vol. 155, no. 1, pp. 203–220, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. B. Berger, P. Gaspar, and C. Verney, “Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates,” Trends in Neurosciences, vol. 14, no. 1, pp. 21–27, 1991. View at Publisher · View at Google Scholar · View at Scopus
  57. D. A. Lewis, D. S. Melchitzky, S. R. Sesack, R. E. Whitehead, S. Auh, and A. Sampson, “Dopamine transporter immunoreactivity in monkey cerebral cortex: regional, laminar, and ultrastructural localization,” Journal of Comparative Neurology, vol. 432, no. 1, pp. 119–136, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. R. L. Jakab and P. S. Goldman Rakic, “Segregation of serotonin 5HT 2A and 5HT 3 receptors in inhibitory circuits in the primate cerebral cortex,” The Journal of Comparative Neurology, vol. 417, no. 3, pp. 337–348, 2000.
  59. P. Soubrié, “Reconciling the role of central serotonin neurons in human and animal behavior,” Behavioral and Brain Sciences, vol. 9, no. 2, pp. 319–364, 1986. View at Publisher · View at Google Scholar
  60. M. Sarter and V. Parikh, “Choline transporters, cholinergic transmission and cognition,” Nature Reviews Neuroscience, vol. 6, no. 1, pp. 48–56, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. E. D. Levin and B. B. Simon, “Nicotinic acetylcholine involvement in cogitive function in animals,” Psychopharmacology, vol. 138, no. 3-4, pp. 217–230, 1998. View at Publisher · View at Google Scholar · View at Scopus
  62. F. Subiaul, “Mosaic cognitive evolution: the case of imitation behavior,” in The Human Brain Evolving, D. Broadfield, M. Yuan, K. Schick, and N. Toth, Eds., Stone Age Publication, Stone Age Institute Press, Gosport, UK, 2010.
  63. S. T. Brady, G. J. Siegel, R. W. Albers, and D. L. Price, Eds., Basic Neurochemistry: Principles of Molecular, Cellular and Medical Neurobiology, Academic Press, Amsterdam, The Netherlands, 8th edition, 2012.
  64. E. J. Nestler, S. E. Hyman, and Malenka, Molecular Neuropharmacology: A Foundation for Clinical Neurocience, McGraw Hill, New York, NY, USA, 2009.
  65. D. G. Lichter and J. L. Cummings, “Introduction and overview,” in Frontal—Subcortical Circuits in Psychiatric and Neurological Disorders, D. G. Lichter and J. L. Cummings, Eds., The Guilford Press, New York, NY, USA, 2001.
  66. J. L. Cummings, “Frontal-subcortical circuits and human behavior,” Archives of Neurology, vol. 50, no. 8, pp. 873–880, 1993. View at Scopus
  67. M. Catani, D. K. Jones, and D. H. Ffytche, “Perisylvian language networks of the human brain,” Annals of Neurology, vol. 57, no. 1, pp. 8–16, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. N. Mallet, B. R. Micklem, P. Henny et al., “Dichotomous organization of the external globus pallidus,” Neuron, vol. 74, no. 6, pp. 1075–1086, 2012. View at Publisher · View at Google Scholar
  69. E. H. Yeterian and D. N. Pandya, “Striatal connections of the parietal association cortices in rhesus monkeys,” Journal of Comparative Neurology, vol. 332, no. 2, pp. 175–197, 1993. View at Publisher · View at Google Scholar · View at Scopus
  70. D. T. Stuss, D. Floden, M. P. Alexander, B. Levine, and D. Katz, “Stroop performance in focal lesion patients: dissociation of processes and frontal lobe lesion location,” Neuropsychologia, vol. 39, no. 8, pp. 771–786, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. J. T. Fesenmeier, R. Kuzniecky, and J. H. Garcia, “Akinetic mutism caused by bilateral anterior cerebral tuberculous obliterative arteritis,” Neurology, vol. 40, no. 6, pp. 1005–1006, 1990. View at Scopus
  72. J. Bogousslavsky and F. Regli, “Anterior cerebral artery territory infarction in the Lausanne stroke registry,” Archives of Neurology, vol. 47, no. 2, pp. 144–150, 1990. View at Scopus
  73. M. L. Berthier, J. Kulisevsky, A. Gironell, and J. A. Heras, “Obsessive-compulsive disorder associated with brain lesions: clinical phenomenology, cognitive function, and anatomic correlates,” Neurology, vol. 47, no. 2, pp. 353–361, 1996. View at Scopus
  74. M. L. Berthier, S. E. Starkstein, R. G. Robinson, and R. Leiguarda, “Limbic lesions in a patient with recurrent mania,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 2, no. 2, pp. 235–236, 1990. View at Scopus
  75. D. T. Stuss, “New approaches to prefrontal lobe testing,” in The Human Frontal Lobes, B. Miller and J. L. Cummings, Eds., The Guilford Press, New York, NY, USA, 2009.
  76. D. T. Stuss, M. A. Binns, K. J. Murphy, and M. P. Alexander, “Dissociations within the anterior attentional system: effects of task complexity and irrelevant information on reaction time speed and accuracy,” Neuropsychology, vol. 16, no. 4, pp. 500–513, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. D. T. Stuss, A. Guberman, R. Nelson, and S. Larochelle, “The neuropsychology of paramedian thalamic infarction,” Brain and Cognition, vol. 8, no. 3, pp. 348–378, 1988. View at Scopus
  78. K. D. Cicerone, “Attention deficits and dual task demands after mild traumatic brain injury,” Brain Injury, vol. 10, no. 2, pp. 79–89, 1996. View at Publisher · View at Google Scholar · View at Scopus
  79. J. Aharon-Peretz and R. Tomer, “Traumatic brain injury,” in The Human Frontal Lobes, B. Miller and J. L. Cummings, Eds., The Guilford Press, New York, NY, USA, 2009.
  80. R. Bar-On, D. Tranel, N. L. Denburg, and A. Bechara, “Exploring the neurological substrate of emotional and social intelligence,” Brain, vol. 126, no. 8, pp. 1790–1800, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. S. G. Shamay-Tsoory, R. Tomer, D. Goldsher, B. D. Berger, and J. Aharon-Peretz, “Impairment in cognitive and affective empathy in patients with brain lesions: anatomical and cognitive correlates,” Journal of Clinical and Experimental Neuropsychology, vol. 26, no. 8, pp. 1113–1127, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. L. Pessoa, “On the relationship between emotion and cognition,” Nature Reviews Neuroscience, vol. 9, no. 2, pp. 148–158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Hoffmann, L. Benes Cases, B. Hoffmann, and R. Chen, “The impact of stroke on emotional intelligence,” BMC Neurology, vol. 10, article 103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. N. Kapur, “Paradoxical functional facilitation in brain-behaviour research: a critical review,” Brain, vol. 119, no. 5, pp. 1775–1790, 1996. View at Publisher · View at Google Scholar · View at Scopus
  85. G. D. Schott, “Pictures as a neurological tool: lessons from enhanced and emergent artistry in brain disease,” Brain, vol. 135, no. 6, pp. 1947–1963, 2012. View at Publisher · View at Google Scholar
  86. G. N. Christodoulou, M. Margariti, V. P. Kontaxakis, and N. G. Christodoulou, “The delusional misidentification syndromes: strange, fascinating, and instructive,” Current Psychiatry Reports, vol. 11, no. 3, pp. 185–189, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. M. D. Pell, “Judging emotion and attitudes from prosody following brain damage,” Progress in Brain Research, vol. 156, pp. 303–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. J. Peña-Casanova, T. Roig-Rovira, A. Bermudez, and E. Tolosa-Sarro, “Optic aphasia, optic apraxia, and loss of dreaming,” Brain and Language, vol. 26, no. 1, pp. 63–71, 1985. View at Scopus
  89. D. A. Treffert, Islands of Genius, Jessica Kingsley Publishers, London, UK, 2010.
  90. “Assessment: neuropsychological testing of adults. Considerations for neurologists,” Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology, 1996.
  91. J. H. Kramer, B. R. Reed, D. Mungas, M. W. Weiner, and H. C. Chui, “Executive dysfunction in subcortical ischaemic vascular disease,” Journal of Neurology Neurosurgery and Psychiatry, vol. 72, no. 2, pp. 217–220, 2002. View at Publisher · View at Google Scholar · View at Scopus
  92. N. D. Prins, E. J. van Dijk, T. den Heijer et al., “Cerebral small-vessel disease and decline in information processing speed, executive function and memory,” Brain, vol. 128, no. 9, pp. 2034–2041, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. Z. S. Nasreddine, N. A. Phillips, V. Bédirian et al., “The montreal cognitive assessment, MoCA: s brief screening tool for mild cognitive impairment,” Journal of the American Geriatrics Society, vol. 53, no. 4, pp. 695–699, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. B. Dubois, A. Slachevsky, I. Litvan, and B. Pillon, “The FAB: a frontal assessment battery at bedside,” Neurology, vol. 55, no. 11, pp. 1621–1626, 2000. View at Scopus
  95. D. R. Royall, R. K. Mahurin, and K. F. Gray, “Bedside assessment of executive cognitive impairment: the executive interview,” Journal of the American Geriatrics Society, vol. 40, no. 12, pp. 1221–1226, 1992. View at Scopus
  96. M. Hoffmann, F. Schmitt, and E. Bromley, “Comprehensive cognitive neurological assessment in stroke,” Acta Neurologica Scandinavica, vol. 119, no. 3, pp. 162–171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Hoffmann and F. Schmitt, “Metacognition in stroke: bedside assessment and relation to location, size, and stroke severity,” Cognitive and Behavioral Neurology, vol. 19, no. 2, pp. 85–94, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. T. Dwolatzky, V. Whitehead, G. M. Doniger et al., “Validity of a novel computerized cognitive battery for mild cognitive impairment,” BMC Geriatrics, vol. 3, article 1, 2003. View at Publisher · View at Google Scholar · View at Scopus
  99. T. W. Robbins, M. James, A. M. Owen, B. J. Sahakian, L. McInnes, and P. Rabbitt, “Cambridge neuropsychological test automated battery (CANTAB): a factor analytic study of a large sample of normal elderly volunteers,” Dementia, vol. 5, no. 5, pp. 266–281, 1994. View at Scopus
  100. R. J. Kiernan, J. Mueller, J. W. Langston, and C. van Dyke, “The neurobehavioral cognitive status examination: a brief but differentiated approach to cognitive assessment,” Annals of Internal Medicine, vol. 107, no. 4, pp. 481–485, 1987. View at Scopus
  101. C. T. Gualtieri and L. G. Johnson, “Reliability and validity of a computerized neurocognitive test battery, CNS Vital Signs,” Archives of Clinical Neuropsychology, vol. 21, no. 7, pp. 623–643, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. D. C. Delis, E. Kaplan, and J. H. Kramer, DKEFS, Psychological Corporation, a Harcourt Assessment Company, 2001.
  103. D. Wechsler, Wechsler Adult Intelligence Scale, The Psychological Corporation, Harcourt Brace and Company, San Antonio, Tex, USA, 4th edition, 2008.
  104. J. Grace and P. F. Malloy, Frontal Systems Behavior Scale, PAR Neuropsychological Assessment Resources, Lutz, Fla, USA, 2001.
  105. R. M. Roth, P. K. Isquith, and G. A. Gioia, BRIEF-A: Behavior Rating Inventory of Executive Funtion-Adult Version, PAR Neuropsychological Assessment Resources, Lutz, Fla, USA, 2005.
  106. A. Kertesz, W. Davidson, and H. Fox, “Frontal behavioral inventory: diagnostic criteria for frontal lobe dementia,” Canadian Journal of Neurological Sciences, vol. 24, no. 1, pp. 29–36, 1997. View at Scopus
  107. C. R. Reynolds, Comprehensive Trail Making Test, Pro-Ed, Austin, Tex, USA, 2002.
  108. J. A. Gladsjo, W. Walden Miller, and R. K. Heaton, Norms for Letter and Category Fluency: Demographic Corrections for Age, Education and Ethnicity, Psychological Assessment Resources, Lutz, Fla, USA, 1999.
  109. R. K. Heaton, Wisconsin Card Sorting Test Computer Version 4, PAR Psychological Assessment Resources, Lutz, Fla, USA, 2003.
  110. W. C. Culbertson and E. A. Zillmer, Tower of London, Multi Health Systems, Toronto, Canada, 2001.
  111. R. Bar-On, The Bar-On EmotIonal QuotIent Inventory (EQ-I): TechnIcal Manual, Multi Health Systems, Toronto, Canada, 1997.
  112. MSCEIT, Mayer, Salovey, & Caruso, Multi Health Systems, Toronto, Canada, 2002.
  113. M. R. Trenerry, B. Crosson, J. DeBoe, and W. R. Leber, Stroop Neuropsychological Screening Test, Psychological Assessment Resources (PAR), Lutz, Fla, USA, 1989.
  114. A. Bechara, Iowa Gambling Test, Psychological Assessment Resources, Lutz, Fla, USA, 2007.
  115. M. Rutter, A. Le Couteur, and C. Lord, ADI-R, Western Psychological Services, Los Angeles, Calif, USA, 2005.
  116. S. Baron-Cohen, S. Wheelwright, R. Skinner, J. Martin, and E. Clubley, “The autism-spectrum quotient (AQ): evidence from asperger syndrome/high-functioning autism, males and females, scientists and mathematicians,” Journal of Autism and Developmental Disorders, vol. 31, no. 1, pp. 5–17, 2001. View at Publisher · View at Google Scholar · View at Scopus
  117. T. E. Brown, Brown Attention Deficit Disorder Scales, The Psychological Corporation, A Harcourt Assessment Company, Hamden, Conn, USA, 1996.
  118. L. Radloff, “The CES-D scale: a self report depression scale for research in the general population,” Applied Psychological Measurement, vol. 1, no. 3, pp. 385–401, 1977. View at Publisher · View at Google Scholar
  119. A. T. Beck, R. A. Steer, and G. K. Brown, Beck Depression Inventory II, Psychological Corporation, San Antonio, Tex, USA, 1996.
  120. W. M. Reynolds and K. A. Kobak, Hamilton Depression Inventory, Psychological Assessment Resources, Lutz, Fla, USA, 1995.
  121. V. E. Stone, S. Baron-Cohen, and R. T. Knight, “Frontal lobe contributions to theory of mind,” Journal of Cognitive Neuroscience, vol. 10, no. 5, pp. 640–656, 1998. View at Publisher · View at Google Scholar · View at Scopus
  122. S. Baron-Cohen, T. Jolliffe, C. Mortimore, and M. Robertson, “Another advanced test of theory of mind: evidence from very high functioning adults with autism or Asperger syndrome,” Journal of Child Psychology and Psychiatry and Allied Disciplines, vol. 38, no. 7, pp. 813–822, 1997. View at Publisher · View at Google Scholar · View at Scopus
  123. T. Manly, K. Hawkins, J. Evans, K. Woldt, and I. H. Robertson, “Rehabilitation of executive function: facilitation of effective goal management on complex tasks using periodic auditory alerts,” Neuropsychologia, vol. 40, no. 3, pp. 271–281, 2002. View at Publisher · View at Google Scholar · View at Scopus
  124. C. Knight, N. Alderman, and P. W. Burgess, “Development of a simplified version of the multiple errrands test for use in hospital settings,” Neuropsychological Rehabilitation, vol. 12, no. 3, pp. 231–255, 2002. View at Publisher · View at Google Scholar
  125. S. Windmann, M. Wehrmann, P. Calabrese, and O. Güntürkün, “Role of the prefrontal cortex in attentional control over bistable vision,” Journal of Cognitive Neuroscience, vol. 18, no. 3, pp. 456–471, 2006. View at Publisher · View at Google Scholar · View at Scopus
  126. E. P. Torrance, “Influence of dyadic interaction on creative functioning,” Psychological Reports, vol. 26, no. 2, pp. 391–394, 1970. View at Scopus
  127. M. R. Trenerry, B. Cross, J. de Boe, and W. R. Leber, Visual Search and Attention Test (VSAT), Psychological Assessment Resources, Lutz, Fla, USA, 1990.
  128. J. H. Bernstein and D. P. Waber, Developmental Scoring System for the Rey Osterrieth Complex Figure, Psychological Assessment Resources, Lutz, Fla, USA, 1996.
  129. E. Goldberg, K. Podelle, R. Bilder, and J. Jaeger, The Executive Control Battery, Psych Press, Melbourne, Australia, 1999.
  130. A. Kertesz, The Western Aphasia Battery, The Psychological Corporation, Harcourt Brace Jovanovich, 1982.
  131. H. Goodglass, E. Kaplan, and B. Barresi, Boston Diagnostic Aphasia Test, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 3rd edition, 2001.
  132. R. Doty, Sensonics, Haddon Heights,NJ, USA, 2006.
  133. M. M. Mesulam, “Large-scale neurocognitive networks and distributed processing for attention, language, and memory,” Annals of Neurology, vol. 28, no. 5, pp. 597–613, 1990. View at Scopus
  134. E. Goldberg, The Executive Brain: Frontal Lobes and the Civilized Mind, Oxford University Press, London, UK, 2001.
  135. B. Winter, B. Bert, H. Fink, U. Dirnagl, and M. Endres, “Dysexecutive syndrome after mild cerebral ischemia? Mice learn normally but have deficits in strategy switching,” Stroke, vol. 35, no. 1, pp. 191–195, 2004. View at Publisher · View at Google Scholar · View at Scopus
  136. P. K. Gillman, “A review of serotonin toxicity data: implications for the mechanisms of antidepressant drug action,” Biological Psychiatry, vol. 59, no. 11, pp. 1046–1051, 2006. View at Publisher · View at Google Scholar · View at Scopus
  137. N. Gnanadesignan, R. T. Espinoza, and R. L. Smith, “The serotonin syndrome,” The New England Journal of Medicine, vol. 352, no. 11, pp. 2454–2456, 2005. View at Publisher · View at Google Scholar
  138. I. M. Whyte, Serotonin Toxicity/Syndrome: Medical Toxicology, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2004.
  139. J. R. Strawn, P. E. Keck, and S. N. Caroff, “Neuroleptic malignant syndrome,” American Journal of Psychiatry, vol. 164, no. 6, pp. 870–876, 2007. View at Publisher · View at Google Scholar · View at Scopus
  140. R. S. Litman and H. Rosenberg, “Malignant hyperthermia: update on susceptibility testing,” The Journal of the American Medical Association, vol. 293, no. 23, pp. 2918–2924, 2005. View at Publisher · View at Google Scholar · View at Scopus
  141. K. L. Ochs, M. Zell-Kanter, M. B. Mycyk, and Toxikon Consortium, “Hot, blind and mad: avoidable geriatric anticholinergic delirium,” The American Journal of Emergency Medicine, vol. 30, no. 3, pp. 514.e1–514.e3, 2012. View at Publisher · View at Google Scholar
  142. J. A. Blackman, P. D. Patrick, M. L. Buck, and R. S. Rust, “Paroxysmal autonomic instability with dystonia after brain injury,” Archives of Neurology, vol. 61, no. 3, pp. 321–328, 2004. View at Publisher · View at Google Scholar · View at Scopus
  143. J. K. Johnson, J. Diehl, M. F. Mendez et al., “Frontotemporal lobar degeneration: demographic characteristics of 353 patients,” Archives of Neurology, vol. 62, no. 6, pp. 925–930, 2005. View at Publisher · View at Google Scholar · View at Scopus
  144. S. M. Rosso, L. D. Kaat, T. Baks et al., “Frontotemporal dementia in The Netherlands: patient characteristics and prevalence estimates from a population-based study,” Brain, vol. 126, no. 9, pp. 2016–2022, 2003. View at Publisher · View at Google Scholar · View at Scopus
  145. B. L. Miller, J. L. Cummings, J. Villanueva-Meyer et al., “Frontal lobe degeneration: clinical, neuropsychological, and SPECT characteristics,” Neurology, vol. 41, no. 9, pp. 1374–1382, 1991. View at Scopus
  146. D. Neary, J. S. Snowden, L. Gustafson et al., “Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria,” Neurology, vol. 51, no. 6, pp. 1546–1554, 1998. View at Scopus
  147. K. Rascovsky, J. R. Hodges, D. Knopman, M. F. Mendez, J. H. Kramer, et al., “Sensitivity of revised diagnostic criteria for the behavioral variant of frontotemproal dementia,” Brain, vol. 134, no. 9, pp. 2456–2477, 2011. View at Publisher · View at Google Scholar
  148. C. P. Coste, S. Sadaghiani, K. J. Friston, and A. Kleinschmidt, “Ongoing brain activity fluctuations directly account for intertrial and indirectly for intersubject variability in Stroop task performance,” Cerebral Cortex, vol. 21, no. 11, pp. 2612–2619, 2011. View at Publisher · View at Google Scholar
  149. K. J. Hatanpaa, D. M. Blass, O. Pletnikova et al., “Most cases of dementia with hippocampal sclerosis may represent frontotemporal dementia,” Neurology, vol. 63, no. 3, pp. 538–542, 2004. View at Scopus
  150. M. Neumann, M. Tolnay, and I. R. Mackenzie, “The molecular basis of frontotemporal dementia,” Expert Reviews in Molecular Medicine, vol. 11, article e23, 2009. View at Publisher · View at Google Scholar · View at Scopus
  151. W. W. Seeley, “Selective functional, regional, and neuronal vulnerability in frontotemporal dementia,” Current Opinion in Neurology, vol. 21, no. 6, pp. 701–707, 2008. View at Publisher · View at Google Scholar · View at Scopus
  152. C. Lomen-Hoerth, “Characterization of amyotrophic lateral sclerosis and frontotemporal dementia,” Dementia and Geriatric Cognitive Disorders, vol. 17, no. 4, pp. 337–341, 2004. View at Publisher · View at Google Scholar · View at Scopus
  153. P. Foulds, E. McAuley, L. Gibbons et al., “TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer's disease and frontotemporal lobar degeneration,” Acta Neuropathologica, vol. 116, no. 2, pp. 141–146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  154. T. Arai, I. R. A. Mackenzie, M. Hasegawa et al., “Phosphorylated TDP-43 in Alzheimer's disease and dementia with Lewy bodies,” Acta Neuropathologica, vol. 117, no. 2, pp. 125–136, 2009. View at Publisher · View at Google Scholar · View at Scopus
  155. M. G. Spillantini, H. Yoshida, C. Rizzini, et al., “A novel tau mutation (N296N) in familial dementia with swollen achromatic neurons and corticobasal inclusion bodies,” Annals of Neurology, vol. 48, no. 6, pp. 939–943, 2000. View at Publisher · View at Google Scholar
  156. E. J. Kim, M. Sidhu, S. E. Gaus et al., “Selective fronto insular von Economo neuron and fork cell loss in early behavioral variant of frontotemporal dementia,” Cerebral Cortex, vol. 22, no. 2, pp. 251–259, 2012. View at Publisher · View at Google Scholar
  157. J. D. Rohrer, R. Guerreiro, J. Vandrovcova et al., “The heritability and genetics of frontotemporal lobar degeneration,” Neurology, vol. 73, no. 18, pp. 1451–1456, 2009. View at Publisher · View at Google Scholar · View at Scopus
  158. W. T. Hu, Z. Wang, V. M. Y. Lee, J. Q. Trojanowski, J. A. Detre, and M. Grossman, “Distinct cerebral perfusion patterns in FTLD and AD,” Neurology, vol. 75, no. 10, pp. 881–888, 2010. View at Publisher · View at Google Scholar · View at Scopus
  159. H. Bian, J. C. van Swieten, S. Leight et al., “CSF biomarkers in frontotemporal lobar degeneration with known pathology,” Neurology, vol. 70, no. 19, pp. 1827–1835, 2008. View at Publisher · View at Google Scholar · View at Scopus
  160. E. D. Huey, K. T. Putnam, and J. Grafman, “A systematic review of neurotransmitter deficits and treatments in frontotemporal dementia,” Neurology, vol. 66, no. 1, pp. 17–22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  161. G. G. Yener, H. J. Rosen, and J. Papatriantafyllou, “Frontotemporal degeneration,” Continuum Lifelong Learning in Neurology, vol. 16, no. 2, pp. 191–211, 2010. View at Publisher · View at Google Scholar · View at Scopus
  162. D. Mungas, W. J. Jagust, B. R. Reed et al., “MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer's disease,” Neurology, vol. 57, no. 12, pp. 2229–2235, 2001. View at Scopus
  163. J. C. L. Looi and P. S. Sachdev, “Differentiation of vascular dementia from AD on neuropsychological tests,” Neurology, vol. 53, no. 4, pp. 670–678, 1999. View at Scopus
  164. G. Gold, P. Giannakopoulos, C. Montes-Paixao Jr. et al., “Sensitivity and specificity of newly proposed clinical criteria for possible vascular dementia,” Neurology, vol. 49, no. 3, pp. 690–694, 1997. View at Scopus
  165. J. L. Ingles, C. Wentzel, J. D. Fisk, and K. Rockwood, “Neuropsychological predictors of incident dementia in patients with vascular cognitive impairment, without dementia,” Stroke, vol. 33, no. 8, pp. 1999–2002, 2002. View at Publisher · View at Google Scholar · View at Scopus
  166. A. R. Varma, R. Laitt, J. J. Lloyd et al., “Diagnostic value of high signal abnormalities on T2 weighted MRI in the differentiation of Alzheimer's, frontotemporal and vascular dementias,” Acta Neurologica Scandinavica, vol. 105, no. 5, pp. 355–364, 2002. View at Publisher · View at Google Scholar · View at Scopus
  167. D. J. Libon, C. C. Price, T. Giovannetti et al., “Linking MRI hyperintensities with patterns of neuropsychological impairment: evidence for a threshold effect,” Stroke, vol. 39, no. 3, pp. 806–813, 2008. View at Publisher · View at Google Scholar · View at Scopus
  168. J. J. Hauw, “The neuropathology of vascular and mixed dementia and vascular cognitive impairment,” in Handbook of Clinical Neurology Dementias, M. J. Aminoff, F. Boller, and D. F. Swaab, Eds., vol. 89, series 3, Elsevier, New York, NY, USA, 2008.
  169. L. Delano-Wood, N. Abeles, J. M. Sacco, C. E. Wierenga, N. R. Horne, and A. Bozoki, “Regional white matter pathology in mild cognitive impairment: differential influence of lesion type on neuropsychological functioning,” Stroke, vol. 39, no. 3, pp. 794–799, 2008. View at Publisher · View at Google Scholar · View at Scopus
  170. H. Yatsuya, A. R. Folsom, T. Y. Wong, R. Klein, B. E. K. Klein, and A. R. Sharrett, “Retinal microvascular abnormalities and risk of lacunar stroke: atherosclerosis risk in communities study,” Stroke, vol. 41, no. 7, pp. 1349–1355, 2010. View at Publisher · View at Google Scholar · View at Scopus
  171. A. Viswanathan, W. A. Rocca, and C. Tzourio, “The Vascular—dementiacontinuum,” Neurology, vol. 72, no. 4, pp. 368–374, 2009. View at Publisher · View at Google Scholar
  172. Y. Deschaintre, F. Richard, D. Leys, and F. Pasquier, “Treatment of vascular risk factors is associated with slower decline in Alzheimer disease,” Neurology, vol. 73, no. 9, pp. 674–680, 2009. View at Publisher · View at Google Scholar · View at Scopus
  173. J. T. Becker, F. J. Huff, R. D. Nebes, A. Holland, and F. Boller, “Neuropsychological function in Alzheimer's disease. Pattern of impairment and rates of progression,” Archives of Neurology, vol. 45, no. 3, pp. 263–268, 1988. View at Scopus
  174. R. D. Nebes and B. Brady, “Focused and divided attention in Alzheimer's disease,” Cortex, vol. 25, no. 2, pp. 305–315, 1989. View at Scopus
  175. A. Baddeley, S. Della Sala, and H. Spinnler, “The two-component hypothesis of memory deficit in Alzheimer's disease,” Journal of Clinical and Experimental Neuropsychology, vol. 13, no. 2, pp. 372–380, 1991. View at Scopus
  176. F. Collette, M. van der Linden, G. Delrue, and E. Salmon, “Frontal hypometabolism does not explain inhibitory dysfunction in Alzheimer disease,” Alzheimer Disease and Associated Disorders, vol. 16, no. 4, pp. 228–238, 2002. View at Publisher · View at Google Scholar · View at Scopus
  177. N. D. Chiaravalloti and J. DeLuca, “Cognitive impairment in multiple sclerosis,” The Lancet Neurology, vol. 7, no. 12, pp. 1139–1151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  178. M. Roca, T. Torralva, F. Meli et al., “Cognitive deficits in multiple sclerosis correlate with changes in fronto-subcortical tracts,” Multiple Sclerosis, vol. 14, no. 3, pp. 364–369, 2008. View at Publisher · View at Google Scholar · View at Scopus
  179. T. K. Len and J. P. Neary, “Cerebrovascular pathophysiology following mild traumatic brain injury,” Clinical Physiology and Functional Imaging, vol. 31, no. 2, pp. 85–93, 2011. View at Publisher · View at Google Scholar · View at Scopus
  180. B. Johnson, K. Zhang, M. Gay et al., “Alteration of brain default network in subacute phase of injury in concussed individuals: resting-state fMRI study,” Neuroimage, vol. 59, no. 1, pp. 511–518, 2012. View at Publisher · View at Google Scholar
  181. S. Skuja, V. Groma, and L. Smane, “Alocholism and cellular variability in different brain regions,” Ultrastructural Pathology, vol. 36, no. 1, pp. 40–47, 2012. View at Publisher · View at Google Scholar
  182. J. Sabeti, “Ethanol exposure in early adolescence inhibits intrinsic neuronal plasticity via sigma 1 receptor activation in hippocampal CA1 neurons,” Alcoholism: Clinical and Experimental Research, vol. 35, no. 5, pp. 885–904, 2011. View at Publisher · View at Google Scholar · View at Scopus
  183. H. Kazui, “Cognitive impairment in patients with idiopathic normal pressure hydrocephalus,” Brain and Nerve, vol. 60, no. 3, pp. 225–231, 2008. View at Scopus
  184. E. Gleichgerrcht, A. Cervio, J. Salvat et al., “Executive function improvement in normal pressure hydrocephalus following shunt surgery,” Behavioural Neurology, vol. 21, no. 3-4, pp. 181–185, 2009. View at Publisher · View at Google Scholar · View at Scopus
  185. A. Tarnaris, N. D. Kitchen, and L. D. Watkins, “Noninvasive biomarkers in normal pressure hydrocephalus: evidence for the role of neuroimaging—a review,” Journal of Neurosurgery, vol. 110, no. 5, pp. 837–851, 2009. View at Publisher · View at Google Scholar · View at Scopus
  186. F. Graus, A. Saiz, M. Lai et al., “Neuronal surface antigen antibodies in limbic encephalitis: clinical-immunologic associations,” Neurology, vol. 71, no. 12, pp. 930–936, 2008. View at Publisher · View at Google Scholar · View at Scopus
  187. E. Flanagan, A. McKeon, V. Lennon, et al., “Immunotherapy responsive dementia or encephalopathy: clinical course and predictors of improvements,” Annals of Neurology, vol. 66, article S41, 2009.
  188. H. Rafael, “Secondary Alzheimer started by cryptococcal meningitis (multiple letters),” Journal of Alzheimer's Disease, vol. 7, no. 2, pp. 99–100, 2005. View at Scopus
  189. T. A. Ala, R. C. Doss, and C. J. Sullivan, “Reversible dementia: a case of cryptococcal meningitis masquerading as Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 6, no. 5, pp. 503–508, 2004. View at Scopus
  190. M. Hoffmann, J. Muniz, E. Carroll, and J. de Villasante, “Cryptococcal meningitis misdiagnosed as alzheimer's disease: complete neurological and cognitive recovery with treatment,” Journal of Alzheimer's Disease, vol. 16, no. 3, pp. 517–520, 2009. View at Publisher · View at Google Scholar · View at Scopus
  191. C. Salvarani, R. D. Brown, K. T. Calamia et al., “Primary central nervous system vasculitis: analysis of 101 patients,” Annals of Neurology, vol. 62, no. 5, pp. 442–451, 2007. View at Publisher · View at Google Scholar · View at Scopus
  192. R. A. Hajj-Ali, A. B. Singhal, S. Benseler, E. Molloy, and L. H. Calabrese, “Primary angiitis of the CNS,” The Lancet Neurology, vol. 10, no. 6, pp. 561–572, 2011. View at Publisher · View at Google Scholar · View at Scopus
  193. P. M. Moore and L. H. Calabrese, “Neurologic manifestations of systemic vasculitides,” Seminars in Neurology, vol. 14, no. 4, pp. 300–306, 1994. View at Scopus
  194. N. L. Foster, J. L. Heidebrink, C. M. Clark et al., “FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer's disease,” Brain, vol. 130, no. 10, pp. 2616–2635, 2007. View at Publisher · View at Google Scholar · View at Scopus
  195. V. Berti, A. Pupi, and L. Mosconi, “PET/CT in diagnosis of dementia,” Annals of the New York Academy of Sciences, vol. 1228, no. 1, pp. 81–92, 2011. View at Publisher · View at Google Scholar · View at Scopus
  196. R. Migliaccio, F. Agosta, K. Rascovsky et al., “Clinical syndromes associated with posterior atrophy: early age at onset AD spectrum,” Neurology, vol. 73, no. 19, pp. 1571–1578, 2009. View at Publisher · View at Google Scholar · View at Scopus
  197. Y. Stern, “Cognitive reserve and Alzheimer disease,” Alzheimer Disease and Associated Disorders, vol. 20, no. 2, pp. 112–117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  198. M. E. Robinson, J. G. Craggs, D. D. Price, W. M. Perlstein, and R. Staud, “Gray matter volumes of pain-related brain areas are decreased in fibromyalgia syndrome,” Journal of Pain, vol. 12, no. 4, pp. 436–443, 2011. View at Publisher · View at Google Scholar
  199. M. Obermann, K. Nebel, C. Schumann et al., “Gray matter changes related to chronic posttraumatic headache,” Neurology, vol. 73, no. 12, pp. 978–983, 2009. View at Publisher · View at Google Scholar · View at Scopus
  200. P. Y. Geha, M. N. Baliki, R. N. Harden, W. R. Bauer, T. B. Parrish, and A. V. Apkarian, “The brain in chronic CRPS pain: abnormal gray-white matter interactions in emotional and autonomic regions,” Neuron, vol. 60, no. 4, pp. 570–581, 2008. View at Publisher · View at Google Scholar · View at Scopus
  201. A. V. Apkarian, Y. Sosa, S. Sonty et al., “Chronic back pain is associated with decreased prefrontal and thalamic gray matter density,” Journal of Neuroscience, vol. 24, no. 46, pp. 10410–10415, 2004. View at Publisher · View at Google Scholar · View at Scopus
  202. P. Rainville, G. H. Duncan, D. D. Price, B. Carrier, and M. C. Bushnell, “Pain affect encoded in human anterior cingulate but not somatosensory cortex,” Science, vol. 277, no. 5328, pp. 968–971, 1997. View at Publisher · View at Google Scholar · View at Scopus
  203. R. C. Coghill, C. N. Sang, J. M. Maisog, and M. J. Iadarola, “Pain intensity processing within the human brain: a bilateral, distributed mechanism,” Journal of Neurophysiology, vol. 82, no. 4, pp. 1934–1943, 1999. View at Scopus
  204. K. L. Casey, “Concepts of pain mechanisms the contribution of functional imaging of the human brain,” Progress in Brain Research, vol. 129, pp. 277–287, 2000. View at Publisher · View at Google Scholar
  205. C. L. Kwan, A. P. Crawley, D. J. Mikulis, and K. D. Davis, “An fMRI study of the anterior cingulate cortex and surrounding medial wall activations evoked by noxious cutaneous heat and cold stimuli,” Pain, vol. 85, no. 3, pp. 359–374, 2000. View at Publisher · View at Google Scholar · View at Scopus
  206. N. Sawamoto, M. Honda, T. Okada et al., “Expectation of pain enhances responses to nonpainful somatosensory stimulation in the anterior cingulate cortex and parietal operculum/posterior insula: an event-related functional magnetic resonance imaging study,” Journal of Neuroscience, vol. 20, no. 19, pp. 7438–7445, 2000. View at Scopus
  207. F. A. Nielsen, D. Balslev, and L. K. Hansen, “Mining the posterior cingulate: segregation between memory and pain components,” NeuroImage, vol. 27, no. 3, pp. 520–532, 2005. View at Publisher · View at Google Scholar · View at Scopus
  208. W. T. Hu, Z. Wang, V. M. Y. Lee, J. Q. Trojanowski, J. A. Detre, and M. Grossman, “Distinct cerebral perfusion patterns in FTLD and AD,” Neurology, vol. 75, no. 10, pp. 881–888, 2010. View at Publisher · View at Google Scholar · View at Scopus
  209. A. Kadir, T. Darreh-Shori, O. Almkvist, A. Wall, B. Långström, and A. Nordberg, “Changes in brain 11C-nicotine binding sites in patients with mild Alzheimer's disease following rivastigmine treatment as assessed by PET,” Psychopharmacology, vol. 191, no. 4, pp. 1005–1014, 2007. View at Publisher · View at Google Scholar · View at Scopus
  210. R. Hilker, A. V. Thomas, J. C. Klein et al., “Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways,” Neurology, vol. 65, no. 11, pp. 1716–1722, 2005. View at Publisher · View at Google Scholar · View at Scopus
  211. S. S. Shin, T. Verstynen, S. Pathak et al., “High definition fiber tracking for assessment of neurological deficit of traumatic brain injury finding, visualizing and interpreting small sites of damage,” Journal of Neurosurgery, vol. 116, no. 5, pp. 1062–1069, 2012. View at Publisher · View at Google Scholar
  212. S. Mesaros, M. A. Rocca, K. Kacar et al., “Diffusion tensor MRI tractography and cognitive impairment in multiple sclerosis,” Neurology, vol. 78, no. 13, pp. 969–975, 2012. View at Publisher · View at Google Scholar
  213. M. Sarter, M. E. Hasselmo, J. P. Bruno, and B. Givens, “Unraveling the attentional functions of cortical cholinergic inputs: Interactions between signal-driven and cognitive modulation of signal detection,” Brain Research Reviews, vol. 48, no. 1, pp. 98–111, 2005. View at Publisher · View at Google Scholar · View at Scopus
  214. S. J. Sara and A. Hervé-Minvielle, “Inhibitory influence of frontal cortex on locus coeruleus neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 13, pp. 6032–6036, 1995. View at Publisher · View at Google Scholar · View at Scopus
  215. J. Amat, M. V. Baratta, E. Paul, S. T. Bland, L. R. Watkins, and S. F. Maier, “Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus,” Nature Neuroscience, vol. 8, no. 3, pp. 365–371, 2005. View at Publisher · View at Google Scholar · View at Scopus
  216. S. C. Cramer, “Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery,” Annals of Neurology, vol. 63, no. 3, pp. 272–287, 2008. View at Publisher · View at Google Scholar · View at Scopus
  217. T. W. Robbins TW and A. F. T. Arnsten, “The neuropsychopharmacology of fronto-executive function: monoaminergic modulation,” Annual Review of Neuroscience, vol. 32, pp. 267–287, 2009. View at Publisher · View at Google Scholar
  218. R. M. Yerkes and J. D. Dodson, “The relation of strength of stimulus to rapidity of habit formation,” Journal of Comparative Neurology and Psychology, vol. 18, no. 5, pp. 459–482, 1908. View at Publisher · View at Google Scholar
  219. A. F. T. Arnsten, “Through the looking glass: differential noradenergic modulation of prefrontal cortical function,” Neural Plasticity, vol. 7, no. 1-2, pp. 133–146, 2000. View at Scopus
  220. S. B. Floresco, O. Magyar, S. Ghods-Sharifi, C. Vexelman, and M. T. L. Tse, “Multiple dopamine receptor subtypes in the medial prefrontal cortex of the rat regulate set-shifting,” Neuropsychopharmacology, vol. 31, no. 2, pp. 297–309, 2006. View at Publisher · View at Google Scholar · View at Scopus
  221. S. B. Floresco and O. Magyar, “Mesocortical dopamine modulation of executive functions: beyond working memory,” Psychopharmacology, vol. 188, no. 4, pp. 567–585, 2006. View at Publisher · View at Google Scholar · View at Scopus
  222. B. M. Li and Z. T. Mei, “Delayed-response deficit induced by local injection of the α2-adrenergic antagonist yohimbine into the dorsolateral prefrontal cortex in young adult monkeys,” Behavioral and Neural Biology, vol. 62, no. 2, pp. 134–139, 1994. View at Scopus
  223. M. Wang, B. P. Ramos, C. D. Paspalas et al., “α2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex,” Cell, vol. 129, no. 2, pp. 397–410, 2007. View at Publisher · View at Google Scholar · View at Scopus
  224. J. K. Seamans and T. W. Robbins, “Dopamine modulation of the prefrontal cortex and cognition function,” in Dopamine Receptors, K. Neve, Ed., Humana Press, Totowa, NJ, USA, 2009.
  225. J. K. Seamans, D. Durstewitz, B. R. Christie, C. F. Stevens, and T. J. Sejnowski, “Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 1, pp. 301–306, 2001.
  226. G. Aston-Jones and J. D. Cohen, “An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance,” Annual Review of Neuroscience, vol. 28, pp. 403–450, 2005. View at Publisher · View at Google Scholar · View at Scopus
  227. K. J. Millar, S. Mackie, S. J. Clapcote et al., “Disrupted in schizophrenia 1 and phosphodiesterase 4B: towards an understanding of psychiatric illness,” Journal of Physiology, vol. 584, no. 2, pp. 401–405, 2007. View at Publisher · View at Google Scholar · View at Scopus
  228. K. Mirnics, F. A. Middleton, G. D. Stanwood, D. A. Lewis, and P. Levitt, “Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia,” Molecular Psychiatry, vol. 6, no. 3, pp. 293–301, 2001. View at Publisher · View at Google Scholar · View at Scopus
  229. A. E. Baum, N. Akula, M. Cabanero et al., “A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder,” Molecular Psychiatry, vol. 13, no. 2, pp. 197–207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  230. H. K. Manji and R. H. Lenox, “Protein kinase C signaling in the brain: molecular transduction of mood stabilization in the treatment of manic-depressive illness,” Biological Psychiatry, vol. 46, no. 10, pp. 1328–1351, 1999. View at Publisher · View at Google Scholar · View at Scopus
  231. A. Yildiz, S. Guleryuz, D. P. Ankerst, D. Öngür, and P. F. Renshaw, “Protein kinase C inhibition in the treatment of mania: a double-blind, placebo-controlled trial of tamoxifen,” Archives of General Psychiatry, vol. 65, no. 3, pp. 255–263, 2008. View at Publisher · View at Google Scholar · View at Scopus
  232. R. B. Fields, D. P. van Kammen, J. L. Peters et al., “Clonidine improves memory function in schizophrenia independently from change in psychosis. Preliminary findings,” Schizophrenia Research, vol. 1, no. 6, pp. 417–423, 1988. View at Publisher · View at Google Scholar · View at Scopus
  233. R. G. Mair and W. J. McEntee, “Cognitive enhancement in Korsakoff's psychosis by clonidine: a comparison with L-Dopa and ephedrine,” Psychopharmacology, vol. 88, no. 3, pp. 374–380, 1986. View at Scopus
  234. A. F. T. Arnsten and P. S. Goldman-Rakic, “α2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates,” Science, vol. 230, no. 4731, pp. 1273–1276, 1985. View at Scopus
  235. A. F. T. Arnsten, J. C. Steere, and R. D. Hunt, “The contribution of α2-noradrenergic mechanisms to prefrontal cortical cognitive function: potential significance for attention-deficit hyperactivity disorder,” Archives of General Psychiatry, vol. 53, no. 5, pp. 448–455, 1996. View at Scopus
  236. B. J. Sahakian, J. J. Coull, and J. R. Hodges, “Selective enhancement of executive function by idazoxan in a patient with dementia of the frontal lobe type,” Journal of Neurology Neurosurgery and Psychiatry, vol. 57, no. 1, pp. 120–121, 1994. View at Scopus
  237. T. Ljungberg, L. Ståhle, and U. Ungerstedt, “Effects of repeated administration of low doses of apomorphine in three behavioural models in the rat,” Journal of Neural Transmission. Parkinson's Disease and Dementia Section, vol. 1, no. 3, pp. 165–175, 1989.
  238. T. Ljungberg and U. Ungerstedt, “Reinstatement of eating by dopamine agonists in aphagic dopamine denervated rats,” Physiology and Behavior, vol. 16, no. 3, pp. 277–283, 1976. View at Publisher · View at Google Scholar · View at Scopus
  239. E. D. Ross and R. M. Stewart, “Akinetic mutism from hypothalamic damage: successful treatment with dopamine agonists,” Neurology, vol. 31, no. 11, pp. 1435–1439, 1981. View at Scopus
  240. M. P. Alexander, “Reversal of chronic akinetic mutism after mesencephalic injury with dopaminergic agents.,” Neurology, vol. 45, article A330, 1995.
  241. R. S. Marin, B. S. Fogel, J. Hawkins, J. Duffy, and B. Krupp, “Apathy: a treatable syndrome,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 7, no. 1, pp. 23–30, 1995. View at Scopus
  242. M. D. Watanabe, E. M. Martin, O. A. DeLeon, M. Gaviria, D. G. Pavel, and D. W. Trepashko, “Successful methylphenidate treatment of apathy after subcortical infarcts,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 7, no. 4, pp. 502–504, 1995. View at Scopus
  243. K. Barrett, “Treating organic abulia with bromocriptine and lisuride: four case studies,” Journal of Neurology Neurosurgery and Psychiatry, vol. 54, no. 8, pp. 718–721, 1991. View at Scopus
  244. V. F. Holmes, F. Fernandez, and J. K. Levy, “Psychostimulant response in AIDS-related complex patients,” Journal of Clinical Psychiatry, vol. 50, no. 1, pp. 5–8, 1989. View at Scopus
  245. R. W. Parks, D. J. Crockett, H. K. Manji, and W. Ammann, “Assessment of bromocriptine intervention for the treatment of frontal lobe syndrome: a case study,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 4, no. 1, pp. 109–111, 1992. View at Scopus
  246. G. L. Brown and M. I. Linnoila, “CSF serotonin metabolite (5-HIAA) studies in depression, impulsivity, and violence,” Journal of Clinical Psychiatry, vol. 51, no. 4, pp. 31–41, 1990. View at Scopus
  247. E. F. Coccaro, L. J. Siever, H. M. Klar et al., “Serotonergic studies in patients with affective and personality disorders. Correlates with suicidal and impulsive aggressive behavior,” Archives of General Psychiatry, vol. 46, no. 7, pp. 587–599, 1989. View at Scopus
  248. E. F. Coccaro, “Central serotonin and impulsive aggression,” British Journal of Psychiatry, vol. 155, no. 8, pp. 52–62, 1989. View at Scopus
  249. E. Hollander and C. M. Wong, “Body dysmorphic disorder, pathological gambling, and sexual compulsions,” Journal of Clinical Psychiatry, vol. 56, no. 4, pp. 7–13, 1995. View at Scopus
  250. B. Olivier and J. Mos, “Serenics and aggression,” Stress Medicine, vol. 2, no. 3, pp. 197–209, 1986. View at Scopus
  251. S. Bakchine, L. Lacomblez, N. Benoit, D. Parisot, F. Chain, and F. Lhermitte, “Manic-like state after bilateral orbitofrontal and right temporoparietal injury: efficacy of clonidine,” Neurology, vol. 39, no. 6, pp. 777–781, 1989. View at Scopus
  252. P. N. Tariot, L. S. Schneider, J. Cummings et al., “Chronic divalproex sodium to attenuate agitation and clinical progression of Alzheimer disease,” Archives of General Psychiatry, vol. 68, no. 8, pp. 853–861, 2011. View at Publisher · View at Google Scholar · View at Scopus
  253. L. R. Baxter, E. C. Clark, M. Iqbal, and R. F. Ackerman, “Cortical subcortical system in the mediation of obsessive compulsive disorder,” in Frontal Subcortical Circuits in Psychiatric and Neurological Disorders, E. G. Lichter and J. L. Cummings, Eds., Guilford Press, New York, NY, USA, 2001.
  254. L. R. Baxter, J. M. Schwartz, K. S. Bergman et al., “Caudate glucose metabolic rate changes with both drug and behavior therapy for obsessive-compulsive disorder,” Archives of General Psychiatry, vol. 49, no. 9, pp. 681–689, 1992. View at Scopus
  255. D. F. Wong, J. R. Brašić, H. S. Singer et al., “Mechanisms of dopaminergic and serotonergic neurotransmission in Tourette syndrome: clues from an in vivo neurochemistry study with PET,” Neuropsychopharmacology, vol. 33, no. 6, pp. 1239–1251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  256. A. L. Brody, S. Saxena, J. M. Schwartz et al., “FDG-PET predictors of response to behavioral therapy and pharmacotherapy in obsessive compulsive disorder,” Psychiatry Research—Neuroimaging, vol. 84, no. 1, pp. 1–6, 1998. View at Publisher · View at Google Scholar · View at Scopus
  257. L. Stern, J. Zohar, R. Cohen, and Y. Sasson, “Treatment of severe, drug resistant obsessive compulsive disorder with the 5HT(1D) agonist sumatriptan,” European Neuropsychopharmacology, vol. 8, no. 4, pp. 325–328, 1998. View at Publisher · View at Google Scholar · View at Scopus
  258. K. O'Connor, C. Todorov, S. Robillard, F. Borgeat, and M. Brault, “Cognitive-behaviour therapy and medication in the treatment of obsessive-compulsive disorder: a controlled study,” Canadian Journal of Psychiatry, vol. 44, no. 1, pp. 64–71, 1999. View at Scopus
  259. J. T. Giacino, J. Whyte, E. Bagiella et al., “Placebo-controlled trial of amantadine for severe traumatic brain injury. .,” The New England Journal of Medicine, vol. 366, pp. 819–826, 2012. View at Publisher · View at Google Scholar
  260. C. Willmott and J. Ponsford, “Efficacy of methylphenidate in the rehabilitation of attention following traumatic brain injury: a randomised, crossover, double blind, placebo controlled inpatient trial,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 80, no. 5, pp. 552–557, 2009. View at Publisher · View at Google Scholar · View at Scopus
  261. E. D. Huey, K. T. Putnam, and J. Grafman, “A systematic review of neurotransmitter deficits and treatments in frontotemporal dementia,” Neurology, vol. 66, no. 1, pp. 17–22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  262. F. Lebert, W. Stekke, C. Hasenbroekx, and F. Pasquier, “Frontotemporal dementia: a randomised, controlled trial with trazodone,” Dementia and Geriatric Cognitive Disorders, vol. 17, no. 4, pp. 355–359, 2004. View at Publisher · View at Google Scholar · View at Scopus
  263. F. Chollet, J. Tardy, J. F. Albucher et al., “Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial,” The Lancet Neurology, vol. 10, no. 2, pp. 123–130, 2011. View at Publisher · View at Google Scholar · View at Scopus
  264. S. E. Hyman, “Can neuroscience be integrated into the DSM-V?” Nature Reviews Neuroscience, vol. 8, no. 9, pp. 725–732, 2007. View at Publisher · View at Google Scholar · View at Scopus
  265. D. J. Carlat, Unhinged: The Trouble with Psychiatry—A Doctor’s Revelations about a Profession in Crisis, Free Press, New York, NY, USA, 2010.
  266. J. Rimer, K. Dwan, D. A. Lawlor et al., “Exercise for depression,” Cochrane Database of Systematic Reviews, no. 7, Article ID CD004366, 2012.
  267. J. C. Lee, D. M. Blumberger, P. Fitzgerald, Z. Daskalakis, and A. Levinson, “The role of transcranial magnetic stimulation in treatment-resistant depression: a review,” Current Pharmaceutical Design, vol. 18, no. 36, pp. 5846–5852, 2012.
  268. A. Farahani and C. U. Correll, “Are antipsychotics or antidepressants needed for psychotic depression: a systematic review and meta-analysis of trials comparing antidepressant or antipsychotic monotherapy with combination treatment,” Journal of Clinical Psychiatry, vol. 73, no. 4, pp. 486–496, 2012. View at Publisher · View at Google Scholar
  269. I. Apostolova, S. Block, R. Buchert et al., “Effects of behavioral therapy or pharmacotherapy on brain glucose metabolism in subjects with obsessive-compulsive disorder as assessed by brain FDG PET,” Psychiatry Research: Neuroimaging, vol. 184, no. 2, pp. 105–116, 2010. View at Publisher · View at Google Scholar
  270. A. C. Butler, J. E. Chapman, E. M. Forman, and A. T. Beck, “The empirical status of cognitive-behavioral therapy: a review of meta-analyses,” Clinical Psychology Review, vol. 26, no. 1, pp. 17–31, 2006. View at Publisher · View at Google Scholar · View at Scopus
  271. S. D. Martin, E. Martin, S. S. Rai, M. A. Richardson, and R. Royall, “Brain blood flow changes in depressed patients treated with interpersonal psychotherapy or venlafaxine hydrochloride: preliminary findings,” Archives of General Psychiatry, vol. 58, no. 7, pp. 641–648, 2001. View at Scopus
  272. D. D. Dougherty, A. P. Weiss, G. R. Cosgrove et al., “Cerebral metabolic correlates as potential predictors of response to anterior cingulotomy for treatment of major depression,” Journal of Neurosurgery, vol. 99, no. 6, pp. 1010–1017, 2003. View at Publisher · View at Google Scholar · View at Scopus
  273. S. R. Chamberlain, N. del Campo, J. Dowson et al., “Atomoxetine improved response inhibition in adults with attention deficit/hyperactivity disorder,” Biological Psychiatry, vol. 62, no. 9, pp. 977–984, 2007. View at Publisher · View at Google Scholar · View at Scopus
  274. H. S. Panitch, R. A. Thisted, R. A. Smith et al., “Randomized, controlled trial of dextromethorphan/quinidine for pseudobulbar affect in multiple sclerosis,” Annals of Neurology, vol. 59, no. 5, pp. 780–787, 2006. View at Publisher · View at Google Scholar · View at Scopus
  275. A. Miller, H. Pratt, and R. B. Schiffer, “Pseudobulbar affect: the spectrum of clinical presentations, etiologies and treatments,” Expert Review of Neurotherapeutics, vol. 11, no. 7, pp. 1077–1088, 2011. View at Publisher · View at Google Scholar · View at Scopus
  276. R. J. Davidson, Begley S in Their Book the Emotional Life of Your Brain, Hudson Street Press, 2012.
  277. G. A. Fava and E. Tomba, “Increasing psychological well-being and resilience by psychotherapeutic methods,” Journal of Personality, vol. 77, no. 6, pp. 1903–1934, 2009. View at Publisher · View at Google Scholar · View at Scopus
  278. B. K. Hodie;lzel, U. Ott, T. Gard et al., “Investigation of mindfulness meditation practitioners with voxel-based morphometry,” Social Cognitive and Affective Neuroscience, vol. 3, no. 1, pp. 55–61, 2008. View at Publisher · View at Google Scholar · View at Scopus
  279. S. F. Cappa, T. Benke, S. Clarke, B. Rossi, B. Stemmer, and C. M. van Heugten, “EFNS guidelines on cognitive rehabilitation: report of an EFNS task force,” European Journal of Neurology, vol. 12, no. 9, pp. 665–680, 2005. View at Publisher · View at Google Scholar · View at Scopus
  280. S. L. Wolf, C. J. Winstein, J. P. Miller et al., “Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial,” Journal of the American Medical Association, vol. 296, no. 17, pp. 2095–2104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  281. S. L. Wolf, P. A. Thompson, C. J. Winstein et al., “The EXCITE stroke trial: comparing early and delayed constraint-induced movement therapy,” Stroke, vol. 41, no. 10, pp. 2309–2315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  282. M. S. George, S. H. Lisanby, D. Avery et al., “Daily left prefrontal transcranial magnetic stimulation therapy for major depressive disorder: a sham-controlled randomized trial,” Archives of General Psychiatry, vol. 67, no. 5, pp. 507–516, 2010. View at Publisher · View at Google Scholar · View at Scopus
  283. V. S. Ramachandran and E. L. Altschuler, “The use of visual feedback, in particular mirror visual feedback, in restoring brain function,” Brain, vol. 132, no. 7, pp. 1693–1710, 2009. View at Publisher · View at Google Scholar · View at Scopus
  284. C. S. McCabe, R. C. Haigh, E. F. J. Ring, P. W. Halligan, P. D. Wall, and D. R. Blake, “A controlled pilot study of the utility of mirror visual feedback in the treatment of complex regional pain syndrome (type 1),” Rheumatology, vol. 42, no. 1, pp. 97–101, 2003. View at Publisher · View at Google Scholar · View at Scopus
  285. G. Yavuzer, R. Selles, N. Sezer et al., “Mirror therapy improves hand function in subacute stroke a randomized controlled trial,” Archives of Physical Medicine and Rehabilitation, vol. 89, no. 3, pp. 393–398, 2008. View at Publisher · View at Google Scholar
  286. S. Sütbeyaz, G. Yavuzer, N. Sezer, and B. F. Koseoglu, “Mirror therapy enhances lower-extremity motor recovery and motor functioning after stroke: a randomized controlled trial,” Archives of Physical Medicine and Rehabilitation, vol. 88, no. 5, pp. 555–559, 2007. View at Publisher · View at Google Scholar · View at Scopus
  287. M. Franceschini, M. Agosti, A. Cantagallo, P. Sale, M. Mancuso, and G. Buccino, “Mirror neurons: action observation treatment as a tool in stroke rehabilitation,” European journal of physical and rehabilitation medicine, vol. 46, no. 4, pp. 517–523, 2010. View at Scopus
  288. P. Sale and M. Franceschini, “Action observation and mirror neuron network a tool for motor stroke rehabilitation,” European Journal of Physical and Rehabilitation Medicine, vol. 48, no. 2, pp. 313–318, 2012.