About this Journal Submit a Manuscript Table of Contents
ISRN Virology
Volume 2013 (2013), Article ID 898730, 33 pages
http://dx.doi.org/10.5402/2013/898730
Review Article

Parvovirus B19 Achievements and Challenges

Department of Pharmacy and Biotechnology, University of Bologna, and Microbiology, S.Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy

Received 3 March 2013; Accepted 29 March 2013

Academic Editors: C.-T. Bock, M. Magnani, M. Michaelis, and V. Yedavalli

Copyright © 2013 Giorgio Gallinella. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. King, E. Lefkowitz, M. Adams, and E. Carstens, Eds., Ninth Report of the International Committee on Taxonomy of Viruses, Elsevier, New York, NY, USA, 2011.
  2. Y. E. Cossart, A. M. Field, B. Cant, and D. Widdows, “Parvovirus like particles in human sera,” The Lancet, vol. 1, no. 7898, pp. 72–73, 1975. View at Scopus
  3. J. Summers, S. E. Jones, and M. J. Anderson, “Characterization of the genome of the agent of erythrocyte aplasia permits its classification as a human parvovirus,” Journal of General Virology, vol. 64, no. 11, pp. 2527–2532, 1983. View at Scopus
  4. J. P. Clewley, “Biochemical characterization of a human parvovirus,” Journal of General Virology, vol. 65, no. 1, pp. 241–245, 1984. View at Scopus
  5. S. F. Cotmore and P. Tattersall, “Characterization and molecular cloning of a human parvovirus genome,” Science, vol. 226, no. 4679, pp. 1161–1165, 1984. View at Scopus
  6. R. O. Shade, M. C. Blundell, S. F. Cotmore, P. Tattersall, and C. R. Astell, “Nucleotide sequence and genome organization of human parvovirus B19 isolated from the serum of a child during aplastic crisis,” Journal of Virology, vol. 58, no. 3, pp. 921–936, 1986. View at Scopus
  7. V. Deiss, J. D. Tratschin, M. Weitz, and G. Siegl, “Cloning of the human parvovirus B19 genome and structural analysis of its palindromic termini,” Virology, vol. 175, no. 1, pp. 247–254, 1990. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Zuccheri, A. Bergia, G. Gallinella, M. Musiani, and B. Samorì, “Scanning force microscopy study on a single-stranded DNA: the genome of parvovirus B19,” ChemBioChem, vol. 2, no. 3, pp. 199–204, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. S. F. Cotmore, V. C. McKie, and L. J. Anderson, “Identification of the major structural and nonstructural proteins encoded by human parvovirus B19 and mapping of their genes by procaryotic expression of isolated genomic fragments,” Journal of Virology, vol. 60, no. 2, pp. 548–557, 1986. View at Scopus
  10. M. S. Chapman and M. G. Rossmann, “Structure, sequence, and function correlations among parvoviruses,” Virology, vol. 194, no. 2, pp. 491–508, 1993. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Agbandje, R. McKenna, M. G. Rossmann, S. Kajigaya, and N. S. Young, “Preliminary X-ray crystallographic investigation of human parvovirus B19,” Virology, vol. 184, no. 1, pp. 170–174, 1991. View at Scopus
  12. M. Agbandje, S. Kajigaya, R. MoKenna, N. S. Young, and M. G. Rossmann, “The structure of human parvovirus B19 at 8 Å resolution,” Virology, vol. 203, no. 1, pp. 106–115, 1994. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Kaufmann, A. A. Simpson, and M. G. Rossmann, “The structure of human parvovirus B19,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 32, pp. 11628–11633, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Kaufmann, P. R. Chipman, V. A. Kostyuchenko, S. Modrow, and M. G. Rossmann, “Visualization of the externalized VP2 N termini of infectious human parvovirus B19,” Journal of Virology, vol. 82, no. 15, pp. 7306–7312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. Zádori, J. Szelei, M. C. Lacoste et al., “A viral phospholipase A2 is required for parvovirus infectivity,” Developmental Cell, vol. 1, no. 2, pp. 291–302, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Canaan, Z. Zádori, F. Ghomashchi et al., “Interfacial enzymology of parvovirus phospholipases A2,” Journal of Biological Chemistry, vol. 279, no. 15, pp. 14502–14508, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Gallinella, S. Venturoli, E. Manaresi, M. Musiani, and M. Zerbini, “B19 virus genome diversity: epidemiological and clinical correlations,” Journal of Clinical Virology, vol. 28, no. 1, pp. 1–13, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. Q. T. Nguyen, C. Sifer, V. Schneider et al., “Novel human erythrovirus associated with transient aplastic anemia,” Journal of Clinical Microbiology, vol. 37, no. 8, pp. 2483–2487, 1999. View at Scopus
  19. K. Hokynar, M. Söderlund-Venermo, M. Pesonen et al., “A new parvovirus genotype persistent in human skin,” Virology, vol. 302, no. 2, pp. 224–228, 2002. View at Scopus
  20. Q. T. Nguyen, S. Wong, E. D. Heegaard, and K. E. Brown, “Identification and characterization of a second novel human Erythrovirus variant, A6,” Virology, vol. 301, no. 2, pp. 374–380, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Servant, S. Laperche, F. Lallemand et al., “Genetic diversity within human erythroviruses: identification of three genotypes,” Journal of Virology, vol. 76, no. 18, pp. 9124–9134, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. N. L. Toan, A. Duechting, P. G. Kremsner et al., “Phylogenetic analysis of human parvovirus B19, indicating two subgroups of genotype 1 in Vietnamese patients,” Journal of General Virology, vol. 87, no. 10, pp. 2941–2949, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Parsyan, C. Szmaragd, J. P. Allain, and D. Candotti, “Identification and genetic diversity of two human parvovirus B19 genotype 3 subtypes,” Journal of General Virology, vol. 88, no. 2, pp. 428–431, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Candotti, N. Etiz, A. Parsyan, and J. P. Allain, “Identification and characterization of persistent human erythrovirus infection in blood donor samples,” Journal of Virology, vol. 78, no. 22, pp. 12169–12178, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Sanabani, W. K. Neto, J. Pereira, and E. C. Sabino, “Sequence variability of human erythroviruses present in bone marrow of Brazilian patients with various parvovirus B19-related hematological symptoms,” Journal of Clinical Microbiology, vol. 44, no. 2, pp. 604–606, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. R. B. Freitas, F. L. Melo, D. S. Oliveira et al., “Molecular characterization of human erythrovirus B19 strains obtained from patients with several clinical presentations in the Amazon region of Brazil,” Journal of Clinical Virology, vol. 43, no. 1, pp. 60–65, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. M. Hübschen, Z. Mihneva, A. F. Mentis et al., “Phylogenetic analysis of human parvovirus B19 sequences from eleven different countries confirms the predominance of genotype 1 and suggests the spread of genotype 3b,” Journal of Clinical Microbiology, vol. 47, no. 11, pp. 3735–3738, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Corcoran, D. Hardie, J. Yeats, and H. Smuts, “Genetic variants of human parvovirus B19 in South Africa: cocirculation of three genotypes and identification of a novel subtype of genotype 1,” Journal of Clinical Microbiology, vol. 48, no. 1, pp. 137–142, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Liefeldt, A. Plentz, B. Klempa et al., “Recurrent high level parvovirus B19/genotype 2 viremia in a renal transplant recipient analyzed by real-time PCR for simultaneous detection of genotypes 1 to 3,” Journal of Medical Virology, vol. 75, no. 1, pp. 161–169, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. B. J. Cohen, J. Gandhi, and J. P. Clewley, “Genetic variants of parvovirus B19 identified in the United Kingdom: implications for diagnostic testing,” Journal of Clinical Virology, vol. 36, no. 2, pp. 152–155, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Grabarczyk, A. Kalinska, M. Kara et al., “Identification and characterization of acute infection with parvovirus B19 genotype 2 in immunocompromised patients in Poland,” Journal of Medical Virology, vol. 83, pp. 142–149, 2011.
  32. P. Norja, K. Hokynar, L. M. Aaltonen et al., “Bioportfolio: lifelong persistence of variant and prototypic erythrovirus DNA genomes in human tissue,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 19, pp. 7450–7453, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Schneider, A. Höne, R. H. Tolba, H. P. Fischer, J. Blümel, and A. M. Eis-Hübinger, “Simultaneous persistence of multiple genome variants of human parvovirus B19,” Journal of General Virology, vol. 89, no. 1, pp. 164–176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Corcioli, K. Zakrzewska, A. Rinieri et al., “Tissue persistence of parvovirus B19 genotypes in asymptomatic persons,” Journal of Medical Virology, vol. 80, no. 11, pp. 2005–2011, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. L. A. Shackelton and E. C. Holmes, “Phylogenetic evidence for the rapid evolution of human B19 erythrovirus,” Journal of Virology, vol. 80, no. 7, pp. 3666–3669, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Norja, A. M. Eis-Hübinger, M. Söderlund-Venermo, K. Hedman, and P. Simmonds, “Rapid sequence change and geographical spread of human parvovirus B19: comparison of B19 virus evolution in acute and persistent infections,” Journal of Virology, vol. 82, no. 13, pp. 6427–6433, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Suzuki, Y. Yoto, A. Ishikawa, and H. Tsutsumi, “Analysis of nucleotide sequences of human parvovirus B19 genome reveals two different modes of evolution, a gradual alteration and a sudden replacement: a retrospective study in Sapporo, Japan, from 1980 to 2008,” Journal of Virology, vol. 83, no. 21, pp. 10975–10980, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. M. W. Molenaar-de Backer, V. V. Lukashov, R. S. van Binnendijk, H. J. Boot, and H. L. Zaaijer, “Global co-existence of two evolutionary lineages of parvovirus B19 1a, different in genome-wide synonymous positions,” PLoS ONE, vol. 7, Article ID e43206, 2012.
  39. A. Ekman, K. Hokynar, L. Kakkola et al., “Biological and immunological relations among human parvovirus B19 genotypes 1 to 3,” Journal of Virology, vol. 81, no. 13, pp. 6927–6935, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. P. P. Mortimer, R. K. Humphries, and J. G. Moore, “A human parvovirus-like virus inhibits haematopoietic colony formation in vitro,” Nature, vol. 302, no. 5907, pp. 426–429, 1983. View at Scopus
  41. N. S. Young, P. P. Mortimer, J. G. Moore, and R. K. Humphries, “Characterization of a virus that causes transient aplastic crisis,” Journal of Clinical Investigation, vol. 73, no. 1, pp. 224–230, 1984. View at Scopus
  42. N. Young, M. Harrison, and J. Moore, “Direct demonstration of the human parvovirus in erythroid progenitor cells infected in vitro,” Journal of Clinical Investigation, vol. 74, no. 6, pp. 2024–2032, 1984. View at Scopus
  43. K. Ozawa, G. Kurtzman, and N. Young, “Replication of the B19 parvovirus in human bone marrow cell cultures,” Science, vol. 233, no. 4766, pp. 883–886, 1986. View at Scopus
  44. K. Ozawa, G. Kurtzman, and N. Young, “Productive infection by B19 parvovirus of human erythroid bone marrow cells in vitro,” Blood, vol. 70, no. 2, pp. 384–391, 1987. View at Scopus
  45. A. Srivastava and L. Lu, “Replication of B19 parvovirus in highly enriched hematopoietic progenitor cells from normal human bone marrow,” Journal of Virology, vol. 62, no. 8, pp. 3059–3063, 1988. View at Scopus
  46. T. F. Schwarz, S. Serke, B. Hottentrager et al., “Replication of parvovirus B19 in hematopoietic progenitor cells generated in vitro from normal human peripheral blood,” Journal of Virology, vol. 66, no. 2, pp. 1273–1276, 1992. View at Scopus
  47. A. Hemauer, A. Gigler, R. Gareus, A. Reichle, H. Wolf, and S. Modrow, “Infection of apheresis cells by parvovirus B19,” Journal of General Virology, vol. 80, no. 3, pp. 627–630, 1999. View at Scopus
  48. K. E. Brown, J. Mori, B. J. Cohen, and A. M. Field, “In vitro propagation of parvovirus B19 in primary foetal liver culture,” Journal of General Virology, vol. 72, no. 3, pp. 741–745, 1991. View at Scopus
  49. A. L. Morey, G. Patou, S. Myint, and K. A. Fleming, “In vitro culture for the detection of infectious human parvovirus B19 and B19-specific antibodies using foetal haematopoietic precursor cells,” Journal of General Virology, vol. 73, no. 12, pp. 3313–3317, 1992. View at Scopus
  50. N. Yaegashi, H. Shiraishi, T. Takeshita, M. Nakamura, A. Yajima, and K. Sugamura, “Propagation of human parvovirus B19 in primary culture of erythroid lineage cells derived from fetal liver,” Journal of Virology, vol. 63, no. 6, pp. 2422–2426, 1989. View at Scopus
  51. C. E. Sosa, J. B. Mahony, K. E. Luinstra, M. Sternbach, and M. A. Chernesky, “Replication and cytopathology of human parvovirus B19 in human umbilical cord blood erythroid progenitor cells,” Journal of Medical Virology, vol. 36, no. 2, pp. 125–130, 1992. View at Scopus
  52. C. H. Srivastava, S. Zhou, N. C. Munshi, and A. Srivastava, “Parvovirus B19 replication in human umbilical cord blood cells,” Virology, vol. 189, no. 2, pp. 456–461, 1992. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Wong, N. Zhi, C. Filippone et al., “Ex vivo-generated CD36+ erythroid progenitors are highly permissive to human parvovirus B19 replication,” Journal of Virology, vol. 82, no. 5, pp. 2470–2476, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Filippone, R. Franssila, A. Kumar et al., “Erythroid progenitor cells expanded from peripheral blood without mobilization or preselection: molecular characteristics and functional competence,” PLoS ONE, vol. 5, no. 3, Article ID e9496, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Shimomura, N. Komatsu, N. Frickhofen, S. Anderson, S. Kajigaya, and N. S. Young, “First continuous propagation of B19 parvovirus in a cell line,” Blood, vol. 79, no. 1, pp. 18–24, 1992. View at Scopus
  56. E. Miyagawa, T. Yoshida, H. Takahashi et al., “Infection of the erythroid cell line, KU812Ep6 with human parvovirus B19 and its application to titration of B19 infectivity,” Journal of Virological Methods, vol. 83, no. 1-2, pp. 45–54, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Wong and K. E. Brown, “Development of an improved method of detection of infectious parvovirus B19,” Journal of Clinical Virology, vol. 35, no. 4, pp. 407–413, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. C. H. Srivastava, R. J. Samulski, L. Lu, S. H. Larsen, and A. Srivastava, “Construction of a recombinant human parvovirus B19: adeno-associated virus 2 (AAV) DNA inverted terminal repeats are functional in a AAV-B19 hybrid virus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 20, pp. 8078–8082, 1989. View at Scopus
  59. S. Ponnazhagan, K. A. Weigel, S. P. Raikwar, P. Mukherjee, M. C. Yoder, and A. Srivastava, “Recombinant human parvovirus B19 vectors: erythroid cell-specific delivery and expression of transduced genes,” Journal of Virology, vol. 72, no. 6, pp. 5224–5230, 1998. View at Scopus
  60. N. Zhi, Z. Zádori, K. E. Brown, and P. Tijssen, “Construction and sequencing of an infectious clone of the human parvovirus B19,” Virology, vol. 318, no. 1, pp. 142–152, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Filippone, N. Zhi, S. Wong et al., “VP1u phospholipase activity is critical for infectivity of full-length parvovirus B19 genomic clones,” Virology, vol. 374, no. 2, pp. 444–452, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. N. Zhi, I. P. Mills, J. Lu, S. Wong, C. Filippone, and K. E. Brown, “Molecular and functional analyses of a human parvovirus B19 infectious clone demonstrates essential roles for NS1, VP1, and the 11-kilodalton protein in virus replication and infectivity,” Journal of Virology, vol. 80, no. 12, pp. 5941–5950, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. K. E. Brown and B. J. Cohen, “Haemagglutination by parvovirus B19,” Journal of General Virology, vol. 73, no. 8, pp. 2147–2149, 1992. View at Scopus
  64. K. E. Brown, S. M. Anderson, and N. S. Young, “Erythrocyte P antigen: cellular receptor for B19 parvovirus,” Science, vol. 262, no. 5130, pp. 114–117, 1993. View at Scopus
  65. K. E. Brown, J. R. Hibbs, G. Gallinella et al., “Resistance to parvovirus B19 infection due to lack of virus receptor (erythrocyte P antigen),” The New England Journal of Medicine, vol. 330, no. 17, pp. 1192–1196, 1994. View at Publisher · View at Google Scholar · View at Scopus
  66. K. A. Weigel-Kelley, M. C. Yoder, and A. Srivastava, “Recombinant human parvovirus B19 vectors: erythrocyte P antigen is necessary but not sufficient for successful transduction of human hematopoietic cells,” Journal of Virology, vol. 75, no. 9, pp. 4110–4116, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. K. A. Weigel-Kelley, M. C. Yoder, and A. Srivastava, “α5β1 integrin as a cellular coreceptor for human parvovirus B19: requirement of functional activation of β1 integrin for viral entry,” Blood, vol. 102, no. 12, pp. 3927–3933, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. K. A. Weigel-Kelley, M. C. Yoder, L. Chen, and A. Srivastava, “Role of integrin cross-regulation in parvovirus B19 targeting,” Human Gene Therapy, vol. 17, no. 9, pp. 909–920, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. K. A. K. Weigel-Van Aken, “Pharmacological activation of guanine nucleotide exchange factors for the small GTPase Rap1 recruits high-affinity β1 integrins as coreceptors for parvovirus B19: improved ex vivo gene transfer to human erythroid progenitor cells,” Human Gene Therapy, vol. 20, no. 12, pp. 1665–1678, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. L. L. W. Cooling, T. A. W. Koerner, and S. J. Naides, “Multiple glycosphingolipids determine the tissue tropism of parvovirus B19,” Journal of Infectious Diseases, vol. 172, no. 5, pp. 1198–1205, 1995. View at Scopus
  71. Y. Munakata, T. Saito-Ito, K. Kumura-Ishii et al., “Ku80 autoantigen as a cellular coreceptor for human parvovirus B19 infection,” Blood, vol. 106, no. 10, pp. 3449–3456, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. P. R. Chipman, M. Agbandje-Mckenna, S. Kajigaya et al., “Cryo-electron microscopy studies of empty capsids of human parvovirus B19 complexed with its cellular receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 15, pp. 7502–7506, 1996. View at Publisher · View at Google Scholar · View at Scopus
  73. B. Kaufmann, U. Baxa, P. R. Chipman, M. G. Rossmann, S. Modrow, and R. Seckler, “Parvovirus B19 does not bind to membrane-associated globoside in vitro,” Virology, vol. 332, no. 1, pp. 189–198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. C. Ros, M. Gerber, and C. Kempf, “Conformational changes in the VP1-unique region of native human parvovirus B19 lead to exposure of internal sequences that play a role in virus neutralization and infectivity,” Journal of Virology, vol. 80, no. 24, pp. 12017–12024, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. C. Bönsch, C. Kempf, and C. Ros, “Interaction of parvovirus B19 with human erythrocytes alters virus structure and cell membrane integrity,” Journal of Virology, vol. 82, no. 23, pp. 11784–11791, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. C. Bönsch, C. Zuercher, P. Lieby, C. Kempf, and C. Ros, “The globoside receptor triggers structural changes in the B19 virus capsid that facilitate virus internalization,” Journal of Virology, vol. 84, no. 22, pp. 11737–11746, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Quattrocchi, N. Ruprecht, C. Bonsch et al., “Characterization of the early steps of human parvovirus B19 infection,” Journal of Virology, vol. 86, pp. 9274–9284, 2012.
  78. C. Bönsch, C. Kempf, I. Mueller et al., “Chloroquine and its derivatives exacerbate B19V associated anemia by promoting viral replication,” PLoS Neglected Tropical Diseases, vol. 4, no. 4, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. F. Bonvicini, C. Filippone, E. Manaresi, M. Zerbini, M. Musiani, and G. Gallinella, “HepG2 hepatocellular carcinoma cells are a non-permissive system for B19 virus infection,” Journal of General Virology, vol. 89, no. 12, pp. 3034–3038, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. S. Dorsch, G. Liebisch, B. Kaufmann et al., “The VP1 unique region of parvovirus B19 and its constituent phospholipase A2-like activity,” Journal of Virology, vol. 76, no. 4, pp. 2014–2018, 2002. View at Publisher · View at Google Scholar · View at Scopus
  81. G. Gallinella, E. Manaresi, E. Zuffi et al., “Different patterns of restriction to B19 parvovirus replication in human blast cell lines,” Virology, vol. 278, no. 2, pp. 361–367, 2000. View at Publisher · View at Google Scholar · View at Scopus
  82. W. Guan, S. Wong, N. Zhi, and J. Qiu, “The genome of human parvovirus B19 can replicate in nonpermissive cells with the help of adenovirus genes and produces infectious virus,” Journal of Virology, vol. 83, no. 18, pp. 9541–9553, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. M. C. Blundell, C. Beard, and C. R. Astell, “In vitro identification of a B19 parvovirus promoter,” Virology, vol. 157, no. 2, pp. 534–538, 1987. View at Scopus
  84. C. Doerig, P. Beard, and B. Hirt, “A transcriptional promoter of the human parvovirus B19 active in vitro and in vivo,” Virology, vol. 157, no. 2, pp. 539–542, 1987. View at Scopus
  85. M. C. Blundell and C. R. Astell, “A GC-box motif upstream of the B19 parvovirus unique promoter is important for in vitro transcription,” Journal of Virology, vol. 63, no. 11, pp. 4814–4823, 1989. View at Scopus
  86. C. Doerig, B. Hirt, J. P. Antonietti, and P. Beard, “Nonstructural protein of parvoviruses B19 and minute virus of mice controls transcription,” Journal of Virology, vol. 64, no. 1, pp. 387–396, 1990. View at Scopus
  87. J. M. Liu, H. Fujii, S. W. Green, N. Komatsu, N. S. Young, and T. Shimada, “Indiscriminate activity from the B19 parvovirus P6 promoter in nonpermissive cells,” Virology, vol. 182, no. 1, pp. 361–364, 1991. View at Publisher · View at Google Scholar · View at Scopus
  88. J. M. Liu, S. W. Green, H. Yu-Shu, K. T. McDonagh, N. S. Young, and T. Shimada, “Upstream sequences within the terminal hairpin positively regulate the P6 promoter of B19 parvovirus,” Virology, vol. 185, no. 1, pp. 39–47, 1991. View at Publisher · View at Google Scholar · View at Scopus
  89. R. Gareus, A. Gigler, A. Hemauer et al., “Characterization of cis-acting and Ns1 protein-responsive ELEMENTS in the p6 promoter of parvovirus B19,” Journal of Virology, vol. 72, no. 1, pp. 609–616, 1998. View at Scopus
  90. M. Momoeda, M. Kawase, S. M. Jane, K. Miyamura, N. S. Young, and S. Kajigaya, “The transcriptional regulator YY1 binds to the 5-terminal region of B19 parvovirus and regulates P6 promoter activity,” Journal of Virology, vol. 68, no. 11, pp. 7159–7168, 1994. View at Scopus
  91. I. Vassias, U. Hazan, Y. Michel et al., “Regulation of human B19 parvovirus promoter expression by hGABP (E4TF1) transcription factor,” Journal of Biological Chemistry, vol. 273, no. 14, pp. 8287–8293, 1998. View at Publisher · View at Google Scholar · View at Scopus
  92. U. Raab, B. Bauer, A. Gigler, K. Beckenlehner, H. Wolf, and S. Modrow, “Cellular transcription factors that interact with p6 promoter elements of parvovirus B19,” Journal of General Virology, vol. 82, no. 6, pp. 1473–1480, 2001. View at Scopus
  93. U. Raab, K. Beckenlehner, T. Lowin, H. H. Niller, S. Doyle, and S. Modrow, “NS1 protein of parvovirus B19 interacts directly with DNA sequences of the p6 promoter and with the cellular transcription factors Sp1/Sp3,” Virology, vol. 293, no. 1, pp. 86–93, 2002. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Pillet, N. Le Guyader, T. Hofer et al., “Hypoxia enhances human B19 erythrovirus gene expression in primary erythroid cells,” Virology, vol. 327, no. 1, pp. 1–7, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. K. Ozawa, J. Ayub, and H. Yu-Shu, “Novel transcription map for the B19 (human) pathogenic parvovirus,” Journal of Virology, vol. 61, no. 8, pp. 2395–2406, 1987. View at Scopus
  96. K. Ozawa, J. Ayub, and N. Young, “Functional mapping of the genome of the B19 (human) parvovirus by in vitro translation after negative hybrid selection,” Journal of Virology, vol. 62, no. 7, pp. 2508–2511, 1988. View at Scopus
  97. C. Beard, J. St. Amand J., and C. R. Astell, “Transient expression of B19 parvovirus gene products in COS-7 cells transfected with B19-SV40 hybrid vectors,” Virology, vol. 172, no. 2, pp. 659–664, 1989. View at Scopus
  98. J. S. Amand, C. Beard, K. Humphries, and C. R. Astell, “Analysis of splice junctions and in vitro and in vivo translation potential of the small, abundant B19 parvovirus RNAs,” Virology, vol. 183, no. 1, pp. 133–142, 1991. View at Publisher · View at Google Scholar · View at Scopus
  99. W. Guan, F. Cheng, Q. Huang, S. Kleiboeker, and J. Qiu, “Inclusion of the central exon of parvovirus B19 precursor mRNA is determined by multiple splicing enhancers in both the exon and the downstream intron,” Journal of Virology, vol. 85, no. 5, pp. 2463–2468, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. Y. Yoto, J. Qiu, and D. J. Pintel, “Identification and characterization of two internal cleavage and polyadenylation sites of parvovirus B19 RNA,” Journal of Virology, vol. 80, no. 3, pp. 1604–1609, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. W. Guan, Q. Huang, F. Cheng, and J. Qiu, “Internal polyadenylation of the parvovirus B19 precursor mRNA is regulated by alternative splicing,” Journal of Biological Chemistry, vol. 286, no. 28, pp. 24793–24805, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. J. M. Liu, S. W. Green, T. Shimada, and N. S. Young, “A block in full-length transcript maturation in cells nonpermissive for B19 parvovirus,” Journal of Virology, vol. 66, no. 8, pp. 4686–4692, 1992. View at Scopus
  103. W. Guan, F. Cheng, Y. Yoto et al., “Block to the production of full-length B19 virus transcripts by internal polyadenylation is overcome by replication of the viral genome,” Journal of Virology, vol. 82, no. 20, pp. 9951–9963, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. S. Shimomura, S. Wong, K. E. Brown, N. Komatsu, S. Kajigaya, and N. S. Young, “Early and late gene expression in UT-7 cells infected with B19 parvovirus,” Virology, vol. 194, no. 1, pp. 149–156, 1993. View at Publisher · View at Google Scholar · View at Scopus
  105. F. Bonvicini, C. Filippone, S. Delbarba et al., “Parvovirus B19 genome as a single, two-state replicative and transcriptional unit,” Virology, vol. 347, no. 2, pp. 447–454, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. F. Bonvicini, C. Filippone, E. Manaresi, M. Zerbini, M. Musiani, and G. Gallinella, “Functional analysis and quantitative determination of the expression profile of human parvovirus B19,” Virology, vol. 381, no. 2, pp. 168–177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. F. Bonvicini, E. Manaresi, F. Di Furio, L. De Falco, and G. Gallinella, “Parvovirus B19 DNA CpG dinucleotide methylation and epigenetic regulation of viral expression,” PLoS ONE, vol. 7, Article ID :e33316, 2012.
  108. K. Ozawa and N. Young, “Characterization of capsid and noncapsid proteins of B19 parvovirus propagated in human erythroid bone marrow cell cultures,” Journal of Virology, vol. 61, no. 8, pp. 2627–2630, 1987. View at Scopus
  109. J. St Amand and C. R. Astell, “Identification and characterization of a family of 11-kDa proteins encoded by the human parvovirus B19,” Virology, vol. 192, no. 1, pp. 121–131, 1993. View at Publisher · View at Google Scholar · View at Scopus
  110. W. Luo and C. R. Astell, “A novel protein encoded by small RNAs of parvovirus B19,” Virology, vol. 195, no. 2, pp. 448–455, 1993. View at Publisher · View at Google Scholar · View at Scopus
  111. K. Ozawa, J. Ayub, and N. Young, “Translational regulation of B19 parvovirus capsid protein production by multiple upstream AUG triplets,” Journal of Biological Chemistry, vol. 263, no. 22, pp. 10922–10926, 1988. View at Scopus
  112. M. Leruez, C. Pallier, I. Vassias, J. F. Elouet, P. Romeo, and F. Morinet, “Differential transcription, without replication, of non-structural and structural genes of human parvovirus B19 in the UT7/EPO cell line as demonstrated by in situ hybridization,” Journal of General Virology, vol. 75, no. 6, pp. 1475–1478, 1994. View at Scopus
  113. C. Pallier, A. Greco, J. Le Junter, A. Saib, I. Vassias, and F. Morinet, “The 3' untranslated region of the B19 parvovirus capsid protein mRNAs inhibits its own mRNA translation in nonpermissive cells,” Journal of Virology, vol. 71, no. 12, pp. 9482–9489, 1997. View at Scopus
  114. N. Zhi, Z. Wan, X. Liu et al., “Codon optimization of human parvovirus B19 capsid genes greatly increases their expression in nonpermissive cells,” Journal of Virology, vol. 84, no. 24, pp. 13059–13062, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. O. Berillo, V. Khailenko, A. Ivashchenko, L. Perlmuter-Shoshany, and A. Bolshoy, “miRNA and tropism of human parvovirus B19,” Computational Biology and Chemistry, vol. 40, pp. 1–6, 2012.
  116. N. Sol, F. Morinet, M. Alizon, and U. Hazan, “Trans-activation of the long terminal repeat of human immunodeficiency virus type 1 by the parvovirus B19 NS1 gene product,” Journal of General Virology, vol. 74, no. 9, pp. 2011–2014, 1993. View at Scopus
  117. S. Moffatt, N. Tanaka, K. Tada et al., “A cytotoxic nonstructural protein, NS1, of human parvovirus B19 induces activation of interleukin-6 gene expression,” Journal of Virology, vol. 70, no. 12, pp. 8485–8491, 1996. View at Scopus
  118. Y. Fu, K. K. Ishii, Y. Munakata, T. Saitoh, M. Kaku, and T. Sasaki, “Regulation of tumor necrosis factor alpha promoter by human parvovirus B19 NS1 through activation of AP-1 and AP-2,” Journal of Virology, vol. 76, no. 11, pp. 5395–5403, 2002. View at Publisher · View at Google Scholar · View at Scopus
  119. K. Ozawa, J. Ayub, S. Kajigaya, T. Shimada, and N. Young, “The gene encoding the nonstructural protein of B19 (human) parvovirus may be lethal in transfected cells,” Journal of Virology, vol. 62, no. 8, pp. 2884–2889, 1988. View at Scopus
  120. M. Momoeda, S. Wong, M. Kawase, N. S. Young, and S. Kajigaya, “A putative nucleoside triphosphate-binding domain in the nonstructural protein of B19 parvovirus is required for cytotoxicity,” Journal of Virology, vol. 68, no. 12, pp. 8443–8446, 1994. View at Scopus
  121. S. Moffatt, N. Yaegashi, K. Tada, N. Tanaka, and K. Sugamura, “Human parvovirus B19 nonstructural (NS1) protein induces apoptosis in erythroid lineage cells,” Journal of Virology, vol. 72, no. 4, pp. 3018–3028, 1998. View at Scopus
  122. N. Sol, J. Le Junter, I. Vassias et al., “Possible interactions between the NS-1 protein and tumor necrosis factor alpha pathways in erythroid cell apoptosis induced by human parvovirus B19,” Journal of Virology, vol. 73, no. 10, pp. 8762–8770, 1999. View at Scopus
  123. S. Pillet, Z. Annan, S. Fichelson, and F. Morinet, “Identification of a nonconventional motif necessary for the nuclear import of the human parvovirus B19 major capsid protein (VP2),” Virology, vol. 306, no. 1, pp. 25–32, 2003. View at Publisher · View at Google Scholar · View at Scopus
  124. S. Kajigaya, T. Shimada, S. Fujita, and N. S. Young, “A genetically engineered cell line that produces empty capsids of B19 (human) parvovirus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 19, pp. 7601–7605, 1989. View at Scopus
  125. B. J. Cohen, A. M. Field, J. Mori et al., “Morphology and antigenicity of recombinant B19 parvovirus capsids expressed in transfected COS-7 cells,” Journal of General Virology, vol. 76, no. 5, pp. 1233–1237, 1995. View at Scopus
  126. C. S. Brown, M. M. M. Salimans, M. H. M. Noteborn, and H. T. Weiland, “Antigenic parvovirus B19 coat proteins VP1 and VP2 produced in large quantities in a baculovirus expression system,” Virus Research, vol. 15, no. 3, pp. 197–211, 1990. View at Publisher · View at Google Scholar · View at Scopus
  127. C. S. Brown, J. W. M. Van Lent, J. M. Vlak, and W. J. M. Spaan, “Assembly of empty capsids by using baculovirus recombinants expressing human parvovirus B19 structural proteins,” Journal of Virology, vol. 65, no. 5, pp. 2702–2706, 1991. View at Scopus
  128. S. Kajigaya, H. Fujii, A. Field et al., “Self-assembled B19 parvovirus capsids, produced in a baculovirus system, are antigenically and immunogenically similar to native virions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 11, pp. 4646–4650, 1991. View at Scopus
  129. S. Wong, M. Momoeda, A. Field, S. Kajigaya, and N. S. Young, “Formation of empty B19 parvovirus capsids by the truncated minor capsid protein,” Journal of Virology, vol. 68, no. 7, pp. 4690–4694, 1994. View at Scopus
  130. M. Kawase, M. Momoeda, N. S. Young, and S. Kajigaya, “Modest truncation of the major capsid protein abrogates B19 parvovirus capsid formation,” Journal of Virology, vol. 69, no. 10, pp. 6567–6571, 1995. View at Scopus
  131. M. Kawase, M. Momoeda, N. S. Young, and S. Kajigaya, “Most of the VP1 unique region of B19 parvovirus is on the capsid surface,” Virology, vol. 211, no. 2, pp. 359–366, 1995. View at Publisher · View at Google Scholar · View at Scopus
  132. M. M. Y. Fan, L. Tamburic, C. Shippam-Brett, D. B. Zagrodney, and C. R. Astell, “The small 11-kDa protein from B19 parvovirus binds growth factor receptor-binding protein 2 in vitro in a Src homology 3 domain/ligand-dependent manner,” Virology, vol. 291, no. 2, pp. 285–291, 2001. View at Publisher · View at Google Scholar · View at Scopus
  133. A. Y. Chen, E. Y. Zhang, W. Guan et al., “The small 11kDa nonstructural protein of human parvovirus B19 plays a key role in inducing apoptosis during B19 virus infection of primary erythroid progenitor cells,” Blood, vol. 115, no. 5, pp. 1070–1080, 2010. View at Publisher · View at Google Scholar · View at Scopus
  134. Y. Dong, Y. Huang, Y. Wang et al., “The effects of the 11 kDa protein and the putative X protein on the p6 promoter activity of parvovirus B19 in Hela cells,” Virus Genes, vol. 46, no. 1, pp. 167–169, 2012. View at Publisher · View at Google Scholar
  135. A. L. Morey, D. J. P. Ferguson, and K. A. Fleming, “Ultrastructural features of fetal erythroid precursors infected with parvovirus B19 in vitro: evidence of cell death by apoptosis,” Journal of Pathology, vol. 169, no. 2, pp. 213–220, 1993. View at Scopus
  136. A. Y. Chen, W. Guan, S. Lou, Z. Liu, S. Kleiboeker, and J. Qiu, “Role of erythropoietin receptor signaling in parvovirus B19 replication in human erythroid progenitor cells,” Journal of Virology, vol. 84, no. 23, pp. 12385–12396, 2010. View at Publisher · View at Google Scholar · View at Scopus
  137. A. Y. Chen, S. Kleiboeker, and J. Qiu, “Productive parvovirus B19 infection of primary human erythroid progenitor cells at hypoxia is regulated by STAT5A and MEK signaling but not HIFα,” PLoS Pathogens, vol. 7, no. 6, Article ID e1002088, 2011. View at Publisher · View at Google Scholar · View at Scopus
  138. K. Winter, K. von Kietzell, R. Heilbronn, T. Pozzuto, H. Fechner, and S. Weger, “Roles of E4orf6 and VA I RNA in adenovirus-mediated stimulation of human parvovirus B19 DNA replication and structural gene expression,” Journal of Virology, vol. 86, pp. 5099–5109, 2012.
  139. E. Morita, K. Tada, H. Chisaka et al., “Human parvovirus B19 induces cell cycle arrest at G2 phase with accumulation of mitotic cyclins,” Journal of Virology, vol. 75, no. 16, pp. 7555–7563, 2001. View at Publisher · View at Google Scholar · View at Scopus
  140. E. Morita, A. Nakashima, H. Asao, H. Sato, and K. Sugamura, “Human parvovirus B19 nonstructural protein (NS1) induces cell cycle arrest at G1 phase,” Journal of Virology, vol. 77, no. 5, pp. 2915–2921, 2003. View at Publisher · View at Google Scholar · View at Scopus
  141. A. Nakashima, E. Morita, S. Saito, and K. Sugamura, “Human parvovirus B19 nonstructural protein transactivates the p21/WAF1 through Sp1,” Virology, vol. 329, no. 2, pp. 493–504, 2004. View at Publisher · View at Google Scholar · View at Scopus
  142. Z. Wan, N. Zhi, S. Wong et al., “Human parvovirus B19 causes cell cycle arrest of human erythroid progenitors via deregulation of the E2F family of transcription factors,” Journal of Clinical Investigation, vol. 120, no. 10, pp. 3530–3544, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. Y. Luo, S. Lou, X. Deng et al., “Parvovirus B19 infection of human primary erythroid progenitor cells triggers ATR-Chk1 signaling, which promotes B19 virus replication,” Journal of Virology, vol. 85, no. 16, pp. 8046–8055, 2011. View at Publisher · View at Google Scholar · View at Scopus
  144. S. Lou, Y. Luo, F. Cheng et al., “Human parvovirus B19 DNA replication induces a DNA damage response that is dispensable for cell cycle arrest at phase G2/M,” Journal of Virology, vol. 86, pp. 10748–10758, 2012.
  145. T. Takahashi, K. Ozawa, K. Takahashi, S. Asano, and F. Takaku, “Susceptibility of human erythropoietic cells to B19 parvovirus in vitro increases with differentiation,” Blood, vol. 75, no. 3, pp. 603–610, 1990. View at Scopus
  146. N. Yaegashi, T. Niinuma, H. Chisaka et al., “Parvovirus B19 infection induces apoptosis of erythroid cells in vitro and in vivo,” Journal of Infection, vol. 39, no. 1, pp. 68–76, 1999. View at Publisher · View at Google Scholar · View at Scopus
  147. A. Nakashima, N. Tanaka, K. Tamai et al., “Survival of parvovirus B19-infected cells by cellular autophagy,” Virology, vol. 349, no. 2, pp. 254–263, 2006. View at Publisher · View at Google Scholar · View at Scopus
  148. Y. Munakata, I. Kato, T. Saito, T. Kodera, K. K. Ishii, and T. Sasaki, “Human parvovirus B19 infection of monocytic cell line U937 and antibody-dependent enhancement,” Virology, vol. 345, no. 1, pp. 251–257, 2006. View at Publisher · View at Google Scholar · View at Scopus
  149. K. Zakrzewska, R. Cortivo, C. Tonello et al., “Human parvovirus B19 experimental infection in human fibroblasts and endothelial cells cultures,” Virus Research, vol. 114, no. 1-2, pp. 1–5, 2005. View at Publisher · View at Google Scholar · View at Scopus
  150. A. Duechting, C. Tschöpe, H. Kaiser et al., “Human parvovirus B19 NS1 protein modulates inflammatory signaling by activation of STAT3/PIAS3 in human endothelial cells,” Journal of Virology, vol. 82, no. 16, pp. 7942–7952, 2008. View at Publisher · View at Google Scholar · View at Scopus
  151. T. Pozzuto, K. von Kietzell, T. Bock et al., “Transactivation of human parvovirus B19 gene expression in endothelial cells by adenoviral helper functions,” Virology, vol. 411, pp. 50–64, 2011.
  152. N. P. H. Miki and J. K. Chantler, “Non-permissiveness of synovial membrane cells to human parvovirus B19 in vitro,” Journal of General Virology, vol. 73, no. 6, pp. 1559–1562, 1992. View at Scopus
  153. Y. Takahashi, C. Murai, S. Shibata et al., “Human parvovirus B19 as a causative agent for rheumatoid arthritis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 14, pp. 8227–8232, 1998. View at Publisher · View at Google Scholar · View at Scopus
  154. N. B. Ray, D. R. Nieva, E. A. Seftor, Z. Khalkhali-Ellis, and S. J. Naides, “Induction of an invasive phenotype by human parvovirus B19 in normal human synovial fibroblasts,” Arthritis & Rheumatism, vol. 44, pp. 1582–1586, 2001.
  155. J. Lu, N. Zhi, S. Wong, and K. E. Brown, “Activation of synoviocytes by the secreted phospholipase A2 motif in the VP1-unique region of parvovirus B19 minor capsid protein,” Journal of Infectious Diseases, vol. 193, no. 4, pp. 582–590, 2006. View at Publisher · View at Google Scholar · View at Scopus
  156. P. Cassinotti, G. Burtonboy, M. Fopp, and G. Siegl, “Evidence for persistence of human parvovirus B19 DNA in bone marrow,” Journal of Medical Virology, vol. 53, pp. 229–232, 1997.
  157. P. Cassinotti, G. Siegl, B. A. Michel, and P. Bruhlmann, “Presence and significance of human parvovirus B19 DNA in synovial membranes and bone marrow from patients with arthritis of unknown origin,” Journal of Medical Virology, vol. 56, pp. 199–204, 1998.
  158. A. Manning, S. J. Willey, J. E. Bell, and P. Simmonds, “Comparison of tissue distribution, persistence, and molecular epidemiology of parvovirus B19 and novel human parvoviruses PARV4 and human bocavirus,” Journal of Infectious Diseases, vol. 195, no. 9, pp. 1345–1352, 2007. View at Publisher · View at Google Scholar · View at Scopus
  159. A. M. Eis-Hbinger, U. Reber, T. Abdul-Nour, U. Glatzel, H. Lauschke, and U. Ptz, “Persistence of parvovirus B19 DNA in synovium of patients with haemophilic arthritis,” Journal of Medical Virology, vol. 65, no. 2, pp. 402–407, 2001. View at Publisher · View at Google Scholar · View at Scopus
  160. S. Modrow, “Parvovirus B19: the causative agent of dilated cardiomyopathy or a harmless passenger of the human myocard?” Ernst Schering Research Foundation workshop., no. 55, pp. 63–82, 2006. View at Scopus
  161. M. Söderlund, R. von Essen, J. Haapasaari, U. Kiistala, O. Kiviluoto, and K. Hedman, “Persistence of parvovirus B19 DNA in synovial membranes of young patients with and without chronic arthropathy,” The Lancet, vol. 349, no. 9058, pp. 1063–1065, 1997. View at Publisher · View at Google Scholar · View at Scopus
  162. F. Bonvicini, M. La Placa, E. Manaresi et al., “Parvovirus B19 DNA is commonly harboured in human skin,” Dermatology, vol. 220, no. 2, pp. 138–142, 2010. View at Publisher · View at Google Scholar · View at Scopus
  163. T. Tolfvenstam, N. Papadogiannakis, A. Andersen, and O. Akre, “No association between human parvovirus B19 and testicular germ cell cancer,” Journal of General Virology, vol. 83, no. 9, pp. 2321–2324, 2002. View at Scopus
  164. K. Hokynar, J. Brunstein, M. Söderlund-Venermo et al., “Integrity and full coding sequence of B19 virus DNA persisting in human synovial tissue,” Journal of General Virology, vol. 81, no. 4, pp. 1017–1025, 2000. View at Scopus
  165. M. J. Anderson, P. G. Higgins, L. R. Davis et al., “Experimental parvoviral infection in humans,” The Journal of Infectious Diseases, vol. 152, pp. 257–265, 1985.
  166. C. G. Potter, A. C. Potter, and C. S. R. Hatton, “Variation of erythroid and myeloid precursors in the marrow and peripheral blood of volunteer subjects infected with human parvovirus (B19),” Journal of Clinical Investigation, vol. 79, no. 5, pp. 1486–1492, 1987. View at Scopus
  167. A. Srivastava, E. Bruno, R. Briddell et al., “Parvovirus B19-induced perturbation of human megakaryocytopoiesis in vitro,” Blood, vol. 76, no. 10, pp. 1997–2004, 1990. View at Scopus
  168. K. E. Brown, “Haematological consequences of parvovirus B19 infection,” Bailliere's Best Practice and Research in Clinical Haematology, vol. 13, no. 2, pp. 245–259, 2000. View at Publisher · View at Google Scholar · View at Scopus
  169. M. Musiani, M. Zerbini, G. Gentilomi, M. Plazzi, G. Gallinella, and S. Venturoli, “Parvovirus B19 clearance from peripheral blood after acute infection,” Journal of Infectious Diseases, vol. 172, no. 5, pp. 1360–1363, 1995. View at Scopus
  170. A. Lindblom, A. Isa, O. Norbeck et al., “Slow clearance of human parvovirus B19 viremia following acute infection,” Clinical Infectious Diseases, vol. 41, no. 8, pp. 1201–1203, 2005. View at Publisher · View at Google Scholar · View at Scopus
  171. J. J. Lefrére, A. Servant-Delmas, D. Candotti et al., “Persistent B19 infection in immunocompetent individuals: implications for transfusion safety,” Blood, vol. 106, no. 8, pp. 2890–2895, 2005. View at Publisher · View at Google Scholar · View at Scopus
  172. N. S. Young, J. L. Abkowitz, and L. Luzzatto, “New insights into the pathophysiology of acquired cytopenias,” Hematology: American Society of Hematology Education Program, pp. 18–38, 2000.
  173. P. R. Koduri, “Parvovirus B19-related anemia in HIV-infected patients,” AIDS Patient Care and STDs, vol. 14, no. 1, pp. 7–11, 2000. View at Publisher · View at Google Scholar · View at Scopus
  174. K. Broliden, T. Tolfvenstam, S. Ohlsson, and J. I. Henter, “Persistent B19 parvovirus infection in pediatric malignancies,” Medical and Pediatric Oncology, vol. 31, pp. 66–72, 1998.
  175. A. Lindblom, M. Heyman, I. Gustafsson et al., “Parvovirus B19 infection in children with acute lymphoblastic leukemia is associated with cytopenia resulting in prolonged interruptions of chemotherapy,” Clinical Infectious Diseases, vol. 46, no. 4, pp. 528–536, 2008. View at Publisher · View at Google Scholar · View at Scopus
  176. G. Gallinella, E. Manaresi, S. Venturoli, G. L. Grazi, M. Musiani, and M. Zerbini, “Occurrence and clinical role of active parvovirus B19 infection in transplant recipients,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 18, no. 11, pp. 811–813, 1999. View at Scopus
  177. K. Broliden, “Parvovirus B19 infection in pediatric solid-organ and bone marrow transplantation,” Pediatric Transplantation, vol. 5, no. 5, pp. 320–330, 2001. View at Publisher · View at Google Scholar · View at Scopus
  178. A. J. Eid, R. A. Brown, R. Patel, and R. R. Razonable, “Parvovirus B19 infection after transplantation: a review of 98 cases,” Clinical Infectious Diseases, vol. 43, no. 1, pp. 40–48, 2006. View at Publisher · View at Google Scholar · View at Scopus
  179. M. J. Anderson, S. E. Jones, and S. P. Fisher Hoch, “Human parvovirus, the cause of erythema infectiosum (fifth disease)?” The Lancet, vol. 1, no. 8338, p. 1378, 1983. View at Scopus
  180. T. Chorba, P. Coccia, and R. C. Holman, “The role of parvovirus B19 in aplastic crisis and erythema infectiosum (fifth disease),” Journal of Infectious Diseases, vol. 154, no. 3, pp. 383–393, 1986. View at Scopus
  181. D. G. White, A. D. Woolf, and P. P. Mortimer, “Human parvovirus arthropathy,” The Lancet, vol. 1, no. 8426, pp. 419–421, 1985. View at Scopus
  182. D. M. Reid, T. M. S. Reid, and T. Brown, “Human parvovirus-associated arthritis: a clinical and laboratory description,” The Lancet, vol. 1, no. 8426, pp. 422–425, 1985. View at Scopus
  183. C. Lunardi, M. Tiso, L. Borgato et al., “Chronic parvovirus B19 infection induces the production of anti-virus antibodies with autoantigen binding properties,” European Journal of Immunology, vol. 28, pp. 936–948, 1998.
  184. C. Lunardi, E. Tinazzi, C. Bason, M. Dolcino, R. Corrocher, and A. Puccetti, “Human parvovirus B19 infection and autoimmunity,” Autoimmunity Reviews, vol. 8, no. 2, pp. 116–120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  185. K. Klingel, M. Sauter, C. T. Bock, G. Szalay, J. J. Schnorr, and R. Kandolf, “Molecular pathology of inflammatory cardiomyopathy,” Medical Microbiology and Immunology, vol. 193, no. 2-3, pp. 101–107, 2004. View at Publisher · View at Google Scholar · View at Scopus
  186. L. Andréoletti, N. Lévêque, C. Boulagnon, C. Brasselet, and P. Fornes, “Viral causes of human myocarditis,” Archives of Cardiovascular Diseases, vol. 102, no. 6-7, pp. 559–568, 2009. View at Scopus
  187. S. Pankuweit and K. Klingel, “Viral myocarditis: from experimental models to molecular diagnosis in patients,” Heart Failure Reviews, 2012. View at Publisher · View at Google Scholar
  188. K. O. Schowengerdt, J. Ni, S. W. Denfield et al., “Association of parvovirus B19 genome in children with myocarditis and cardiac allograft rejection: diagnosis using the polymerase chain reaction,” Circulation, vol. 96, no. 10, pp. 3549–3554, 1997. View at Scopus
  189. R. Dettmeyer, R. Kandolf, A. Baasner, S. Banaschak, A. M. Eis-Hübinger, and B. Madea, “Fatal parvovirus B19 myocarditis in an 8-year-old boy,” Journal of Forensic Sciences, vol. 48, no. 1, pp. 183–186, 2003.
  190. K. Munro, M. C. Croxson, S. Thomas, and N. J. Wilson, “Three cases of myocarditis in childhood associated with human parvovirus (B19 virus),” Pediatric Cardiology, vol. 24, no. 5, pp. 473–475, 2003. View at Publisher · View at Google Scholar · View at Scopus
  191. F. Zack, K. Klingel, R. Kandolf, and R. Wegener, “Sudden cardiac death in a 5-year-old girl associated with parvovirus B19 infection,” Forensic Science International, vol. 155, no. 1, pp. 13–17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  192. J. P. Breinholt, M. Moulik, W. J. Dreyer et al., “Viral epidemiologic shift in inflammatory heart disease: the increasing involvement of parvovirus B19 in the myocardium of pediatric cardiac transplant patients,” Journal of Heart and Lung Transplantation, vol. 29, no. 7, pp. 739–746, 2010. View at Publisher · View at Google Scholar · View at Scopus
  193. B. D. Bültmann, K. Klingel, K. Sotlar et al., “Fatal parvovirus B19-associated myocarditis clinically mimicking ischemic heart disease: an endothelial cell-mediated disease,” Human Pathology, vol. 34, no. 1, pp. 92–95, 2003. View at Publisher · View at Google Scholar · View at Scopus
  194. U. Kühl, M. Pauschinger, T. Bock et al., “Parvovirus B19 infection mimicking acute myocardial infarction,” Circulation, vol. 108, no. 8, pp. 945–950, 2003. View at Publisher · View at Google Scholar · View at Scopus
  195. H. Mahrholdt, A. Wagner, C. C. Deluigi et al., “Presentation, patterns of myocardial damage, and clinical course of viral myocarditis,” Circulation, vol. 114, no. 15, pp. 1581–1590, 2006. View at Publisher · View at Google Scholar · View at Scopus
  196. C. T. Bock, K. Klingel, and R. Kandolf, “Human parvovirus B19-associated myocarditis,” The New England Journal of Medicine, vol. 362, no. 13, pp. 1248–1249, 2010. View at Publisher · View at Google Scholar · View at Scopus
  197. S. Pankuweit, R. Moll, U. Baandrup, I. Portig, G. Hufnagel, and B. Maisch, “Prevalence of the parvovirus B19 genome in endomyocardial biopsy specimens,” Human Pathology, vol. 34, no. 5, pp. 497–503, 2003. View at Publisher · View at Google Scholar · View at Scopus
  198. O. Donoso Mantke, A. Nitsche, R. Meyer, K. Klingel, and M. Niedrig, “Analysing myocardial tissue from explanted hearts of heart transplant recipients and multi-organ donors for the presence of parvovirus B19 DNA,” Journal of Clinical Virology, vol. 31, no. 1, pp. 32–39, 2004. View at Publisher · View at Google Scholar · View at Scopus
  199. O. D. Mantke, R. Meyer, S. Prösch et al., “High prevalence of cardiotropic viruses in myocardial tissue from explanted hearts of heart transplant recipients and heart donors: a 3-year retrospective study from a German patients' pool,” Journal of Heart and Lung Transplantation, vol. 24, no. 10, pp. 1632–1638, 2005. View at Publisher · View at Google Scholar · View at Scopus
  200. R. M. Klein, H. Jiang, D. Niederacher et al., “Frequency and quantity of the parvovirus B19 genome in endomyocardial biopsies from patients with suspected myocarditis or idiopathic left ventricular dysfunction,” Zeitschrift fur Kardiologie, vol. 93, no. 4, pp. 300–309, 2004. View at Publisher · View at Google Scholar · View at Scopus
  201. U. Kühl, M. Pauschinger, B. Seeberg et al., “Viral persistence in the myocardium is associated with progressive cardiac dysfunction,” Circulation, vol. 112, no. 13, pp. 1965–1970, 2005. View at Publisher · View at Google Scholar · View at Scopus
  202. C. Tschöpe, C. T. Bock, M. Kasner et al., “High prevalence of cardiac parvovirus B19 infection in patients with isolated left ventricular diastolic dysfunction,” Circulation, vol. 111, no. 7, pp. 879–886, 2005. View at Publisher · View at Google Scholar · View at Scopus
  203. U. Kühl, D. Lassner, M. Pauschinger et al., “Prevalence of erythrovirus genotypes in the myocardium of patients with dilated cardiomyopathy,” Journal of Medical Virology, vol. 80, no. 7, pp. 1243–1251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  204. V. Ruppert, T. Meyer, A. Balbach, et al., “Genotype-specific effects on left ventricular function in parvovirus B19-positive patients with dilated cardiomyopathy,” Journal of Medical Virology, vol. 83, no. 10, pp. 1818–1825, 2011. View at Publisher · View at Google Scholar
  205. R. Dennert, P. van Paassen, P. Wolffs et al., “Differences in virus prevalence and load in the hearts of patients with idiopathic dilated cardiomyopathy with and without immune-mediated inflammatory diseases,” Clinical and Vaccine Immunology, vol. 19, pp. 1182–1187, 2012.
  206. F. Kuethe, H. H. Sigusch, K. Hilbig et al., “Detection of viral genome in the myocardium: lack of prognostic and functional relevance in patients with acute dilated cardiomyopathy,” American Heart Journal, vol. 153, no. 5, pp. 850–858, 2007. View at Publisher · View at Google Scholar · View at Scopus
  207. F. Kuethe, J. Lindner, K. Matschke et al., “Prevalence of parvovirus B19 and human bocavirus DNA in the heart of patients with no evidence of dilated cardiomyopathy or myocarditis,” Clinical Infectious Diseases, vol. 49, no. 11, pp. 1660–1666, 2009. View at Publisher · View at Google Scholar · View at Scopus
  208. T. Schenk, M. Enders, S. Pollak, R. Hahn, and D. Huzly, “High prevalence of human parvovirus B19 DNA in myocardial autopsy samples from subjects without myocarditis or dilative cardiomyopathy,” Journal of Clinical Microbiology, vol. 47, no. 1, pp. 106–110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  209. U. Lotze, R. Egerer, B. Glück et al., “Low level myocardial parvovirus B19 persistence is a frequent finding in patients with heart disease but unrelated to ongoing myocardial injury,” Journal of Medical Virology, vol. 82, no. 8, pp. 1449–1457, 2010. View at Publisher · View at Google Scholar · View at Scopus
  210. G. C. Stewart, J. Lopez-Molina, R. V. S. R. K. Gottumukkala et al., “Myocardial parvovirus B19 persistence: lack of association with clinicopathologic phenotype in adults with heart failure,” Circulation: Heart Failure, vol. 4, no. 1, pp. 71–78, 2011. View at Publisher · View at Google Scholar · View at Scopus
  211. S. A. Koepsell, D. R. Anderson, and S. J. Radio, “Parvovirus B19 is a bystander in adult myocarditis,” Cardiovascular Pathology, vol. 21, pp. 476–481, 2012.
  212. S. Moimas, S. Zacchigna, M. Merlo et al., “Idiopathic dilated cardiomyopathy and persistent viral infection: lack of association in a controlled study using a quantitative assay,” Heart, Lung & Circulation, vol. 21, no. 12, pp. 787–793, 2012. View at Publisher · View at Google Scholar
  213. T. L. Moore, “Parvovirus-associated arthritis,” Current Opinion in Rheumatology, vol. 12, pp. 289–294, 2000.
  214. J. R. Kerr, “Pathogenesis of human parvovirus B19 in rheumatic disease,” Annals of the Rheumatic Diseases, vol. 59, no. 9, pp. 672–683, 2000. View at Publisher · View at Google Scholar · View at Scopus
  215. Y. Mehraein, C. Lennerz, S. Ehlhardt et al., “Detection of parvovirus B19 capsid proteins in lymphocytic cells in synovial tissue of autoimmune chronic arthritis,” Modern Pathology, vol. 16, no. 8, pp. 811–817, 2003. View at Publisher · View at Google Scholar · View at Scopus
  216. L. Pironi, F. Bonvicini, P. Gionchetti et al., “Parvovirus B19 infection localized in the intestinal mucosa and associated with severe inflammatory bowel disease,” Journal of Clinical Microbiology, vol. 47, no. 5, pp. 1591–1595, 2009. View at Publisher · View at Google Scholar · View at Scopus
  217. O. Meyer, “Parvovirus B19 and autoimmune diseases,” Joint Bone Spine, vol. 70, no. 1, pp. 6–11, 2003. View at Publisher · View at Google Scholar · View at Scopus
  218. H. W. Lehmann, P. von Landenberg, and S. Modrow, “Parvovirus B19 infection and autoimmune disease,” Autoimmunity Reviews, vol. 2, no. 4, pp. 218–223, 2003. View at Publisher · View at Google Scholar · View at Scopus
  219. P. von Landenberg, H. W. Lehmann, and S. Modrow, “Human parvovirus B19 infection and antiphospholipid antibodies,” Autoimmunity Reviews, vol. 6, no. 5, pp. 278–285, 2007. View at Publisher · View at Google Scholar · View at Scopus
  220. A. Anand, E. S. Gray, and T. Brown, “Human parvovirus infection in pregnancy and hydrops fetalis,” The New England Journal of Medicine, vol. 316, no. 4, pp. 183–186, 1987. View at Scopus
  221. J. A. Jordan and J. A. Deloia, “Globoside expression within the human placenta,” Placenta, vol. 20, no. 1, pp. 103–108, 1999. View at Publisher · View at Google Scholar · View at Scopus
  222. C. C. Wegner and J. A. Jordan, “Human parvovirus B19 VP2 empty capsids bind to human villous trophoblast cells in vitro via the globoside receptor,” Infectious Disease in Obstetrics and Gynecology, vol. 12, no. 2, pp. 69–78, 2004. View at Publisher · View at Google Scholar · View at Scopus
  223. J. A. Jordan, D. Huff, and J. A. DeLoia, “Placental cellular immune response in women infected with human parvovirus B19 during pregnancy,” Clinical and Diagnostic Laboratory Immunology, vol. 8, no. 2, pp. 288–292, 2001. View at Publisher · View at Google Scholar · View at Scopus
  224. J. A. Jordan and A. R. Butchko, “Apoptotic activity in villous trophoblast cells during B19 infection correlates with clinical outcome: assessment by the caspase-related M30 cytodeath antibody,” Placenta, vol. 23, no. 7, pp. 547–553, 2002. View at Publisher · View at Google Scholar · View at Scopus
  225. G. Pasquinelli, F. Bonvicini, L. Foroni, N. Salfi, and G. Gallinella, “Placental endothelial cells can be productively infected by parvovirus B19,” Journal of Clinical Virology, vol. 44, no. 1, pp. 33–38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  226. J. P. Clewley, B. J. Cohen, and A. M. Field, “Detection of parvovirus B19 DNA, antigen, and particles in the human fetus,” Journal of Medical Virology, vol. 23, no. 4, pp. 367–376, 1987. View at Scopus
  227. A. L. Morey, J. W. Keeling, H. J. Porter, and K. A. Fleming, “Clinical and histopathological features of parvovirus B19 infection in the human fetus,” British Journal of Obstetrics and Gynaecology, vol. 99, no. 7, pp. 566–574, 1992. View at Scopus
  228. M. Zerbini, M. Musiani, G. Gentilomi, S. Venturoli, G. Gallinella, and R. Morandi, “Comparative evaluation of virological and serological methods in prenatal diagnosis of parvovirus B19 fetal hydrops,” Journal of Clinical Microbiology, vol. 34, no. 3, pp. 603–608, 1996. View at Scopus
  229. F. Bonvicini, E. Manaresi, G. Gallinella, G. A. Gentilomi, M. Musiani, and M. Zerbini, “Diagnosis of fetal parvovirus B19 infection: value of virological assays in fetal specimens,” BJOG, vol. 116, no. 6, pp. 813–817, 2009. View at Publisher · View at Google Scholar · View at Scopus
  230. E. P. de Jong, F. J. Walther, A. C. M. Kroes, and D. Oepkes, “Parvovirus B19 infection in pregnancy: new insights and management,” Prenatal Diagnosis, vol. 31, no. 5, pp. 419–425, 2011. View at Publisher · View at Google Scholar · View at Scopus
  231. R. F. Lamont, J. D. Sobel, E. Vaisbuch et al., “Parvovirus B19 infection in human pregnancy,” BJOG, vol. 118, no. 2, pp. 175–186, 2011. View at Publisher · View at Google Scholar · View at Scopus
  232. H. J. Porter, A. M. Quantrill, and K. A. Fleming, “B19 parvovirus infection of myocardial cells,” The Lancet, vol. 1, no. 8584, pp. 535–536, 1988. View at Scopus
  233. A. O'Malley, C. Barry-Kinsella, C. Hughes et al., “Parvovirus Infects Cardiac Myocytes in Hydrops Fetalis,” Pediatric and Developmental Pathology, vol. 6, no. 5, pp. 414–420, 2003. View at Publisher · View at Google Scholar · View at Scopus
  234. M. Enders, A. Weidner, I. Zoellner, K. Searle, and G. Enders, “Fetal morbidity and mortality after acute human parvovirus B19 infection in pregnancy: prospective evaluation of 1018 cases,” Prenatal Diagnosis, vol. 24, no. 7, pp. 513–518, 2004. View at Publisher · View at Google Scholar · View at Scopus
  235. L. Skjöldebrand-Sparre, T. Tolfvenstam, N. Papadogiannakis, B. Wahren, K. Broliden, and M. Nyman, “Parvovirus B19 infection: association with third-trimester intrauterine fetal death,” British Journal of Obstetrics and Gynaecology, vol. 107, no. 4, pp. 476–480, 2000. View at Scopus
  236. T. Tolfvenstam, N. Papadogiannakis, O. Norbeck, K. Petersson, and K. Broliden, “Frequency of human parvovirus B19 infection in intrauterine fetal death,” The Lancet, vol. 357, no. 9267, pp. 1494–1497, 2001. View at Publisher · View at Google Scholar · View at Scopus
  237. O. Norbeck, N. Papadogiannakis, K. Petersson, T. Hirbod, K. Broliden, and T. Tolfvenstam, “Revised clinical presentation of parvovirus B19-associated intrauterine fetal death,” Clinical Infectious Diseases, vol. 35, no. 9, pp. 1032–1038, 2002. View at Publisher · View at Google Scholar · View at Scopus
  238. A. Riipinen, E. Väisänen, M. Nuutila et al., “Parvovirus B19 infection in fetal deaths,” Clinical Infectious Diseases, vol. 47, no. 12, pp. 1519–1525, 2008. View at Publisher · View at Google Scholar · View at Scopus
  239. F. Bonvicini, C. Puccetti, N. C. Salfi et al., “Gestational and fetal outcomes in B19 maternal infection: a problem of diagnosis,” Journal of Clinical Microbiology, vol. 49, pp. 3514–3518, 2011.
  240. C. Puccetti, M. Contoli, F. Bonvicini et al., “Parvovirus B19 in pregnancy: possible consequences of vertical transmission,” Prenatal Diagnosis, vol. 32, pp. 897–902, 2012.
  241. Z. Ergaz and A. Ornoy, “Parvovirus B19 in pregnancy,” Reproductive Toxicology, vol. 21, no. 4, pp. 421–435, 2006. View at Publisher · View at Google Scholar · View at Scopus
  242. H. T. C. Nagel, T. R. De Haan, F. P. H. A. Vandenbussche, D. Oepkes, and F. J. Walther, “Long-term outcome after fetal transfusion for hydrops associated with parvovirus B19 infection,” Obstetrics and Gynecology, vol. 109, no. 1, pp. 42–47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  243. J. M. van Klink, H. M. Koopman, D. Oepkes, F. J. Walther, and E. Lopriore, “Long-term neurodevelopmental outcome after intrauterine transfusion for fetal anemia,” Early Human Development, vol. 87, pp. 589–593, 2011.
  244. E. P. De Jong, I. T. Lindenburg, J. M. van Klink et al., “Intrauterine transfusion for parvovirus B19 infection: long-term neurodevelopmental outcome,” American Journal of Obstetrics & Gynecology, vol. 206, pp. e1–e5, 2012.
  245. Y. M. Guo, K. Ishii, M. Hirokawa et al., “CpG-ODN 2006 and human parvovirus B19 genome consensus sequences selectively inhibit growth and development of erythroid progenitor cells,” Blood, vol. 115, no. 22, pp. 4569–4579, 2010. View at Publisher · View at Google Scholar · View at Scopus
  246. G. J. Hsu, B. S. Tzang, C. C. Tsai, C. C. Chiu, C. Y. Huang, and T. C. Hsu, “Effects of human parvovirus B19 on expression of defensins and Toll-like receptors,” The Chinese Journal of Physiology, vol. 54, pp. 367–376, 2011.
  247. H. Sato, J. Hirata, M. Furukawa et al., “Identification of the region including the epitope for a monoclonal antibody which can neutralize human parvovirus B19,” Journal of Virology, vol. 65, no. 4, pp. 1667–1672, 1991. View at Scopus
  248. H. Sato, J. Hirata, N. Kuroda, H. Shiraki, Y. Maeda, and K. Okochi, “Identification and mapping of neutralizing epitopes of human parvovirus B19 by using human antibodies,” Journal of Virology, vol. 65, no. 10, pp. 5485–5490, 1991. View at Scopus
  249. K. Yoshimoto, S. Rosenfeld, N. Frickhofen et al., “A second neutralizing epitope of B19 parvovirus implicates the spike region in the immune response,” Journal of Virology, vol. 65, no. 12, pp. 7056–7060, 1991. View at Scopus
  250. S. J. Rosenfeld, K. Yoshimoto, S. Kajigaya et al., “Unique region of the minor capsid protein of human parvovirus B19 is exposed on the virion surface,” Journal of Clinical Investigation, vol. 89, no. 6, pp. 2023–2029, 1992. View at Scopus
  251. S. J. Rosenfeld, N. S. Young, D. Alling, J. Ayub, and C. Saxinger, “Subunit interaction in B19 parvovirus empty capsids,” Archives of Virology, vol. 136, no. 1-2, pp. 9–18, 1994. View at Scopus
  252. T. Saikawa, S. Anderson, M. Momoeda, S. Kajigaya, and N. S. Young, “Neutralizing linear epitopes of B19 parvovirus cluster in the VP1 unique and VP1-VP2 junction regions,” Journal of Virology, vol. 67, no. 6, pp. 3004–3009, 1993. View at Scopus
  253. S. Anderson, M. Momoeda, M. Kawase, S. Kajigaya, and N. S. Young, “Peptides derived from the unique region of B19 parvovirus minor capsid protein elicit neutralizing antibodies in rabbits,” Virology, vol. 206, no. 1, pp. 626–632, 1995. View at Publisher · View at Google Scholar · View at Scopus
  254. M. Soderlund, C. S. Brown, B. J. Cohen, and K. Hedman, “Accurate serodiagnosis of B19 parvovirus infections by measurement of IgG avidity,” Journal of Infectious Diseases, vol. 171, no. 3, pp. 710–713, 1995. View at Scopus
  255. M. Soderlund, C. S. Brown, W. J. M. Spaan, L. Hedman, and K. Hedman, “Epitope type-specific IgG responses to capsid proteins VP1 and VP2 of human parvovirus B19,” Journal of Infectious Diseases, vol. 172, no. 6, pp. 1431–1436, 1995. View at Scopus
  256. E. Manaresi, G. Gallinella, M. Zerbini, S. Venturoli, G. Gentilomi, and M. Musiani, “IgG immune response to B19 parvovirus VP1 and VP2 linear epitopes by immunoblot assay,” Journal of Medical Virology, vol. 57, pp. 174–178, 1999.
  257. E. Manaresi, P. Pasini, G. Gallinella et al., “Chemiluminescence Western blot assay for the detection of immunity against parvovirus B19 VP1 and VP2 linear epitopes using a videocamera based luminograph,” Journal of Virological Methods, vol. 81, no. 1-2, pp. 91–99, 1999. View at Publisher · View at Google Scholar · View at Scopus
  258. M. Musiani, E. Manaresi, G. Gallinella, S. Venturoli, E. Zuffi, and M. Zerbini, “Immunoreactivity against linear epitopes of parvovirus B19 structural proteins. Immunodominance of the amino-terminal half of the unique region of VP1,” Journal of Medical Virology, vol. 60, pp. 347–352, 2000.
  259. E. Manaresi, E. Zuffi, G. Gallinella, G. Gentilomi, M. Zerbini, and M. Musiani, “Differential IgM response to conformational and linear epitopes of parvovirus B19 VP1 and VP2 structural proteins,” Journal of Medical Virology, vol. 64, no. 1, pp. 67–73, 2001. View at Publisher · View at Google Scholar · View at Scopus
  260. E. Zuffi, E. Manaresi, G. Gallinella et al., “Identification of an immunodominant peptide in the parvovirus B19 VP1 unique region able to elicit a long-lasting immune response in humans,” Viral Immunology, vol. 14, no. 2, pp. 151–158, 2001. View at Scopus
  261. A. von Poblotzki, A. Gigler, B. Lang, H. Wolf, and S. Modrow, “Antibodies to parvovirus B19 NS-1 protein in infected individuals,” Journal of General Virology, vol. 76, no. 3, pp. 519–527, 1995. View at Scopus
  262. A. von Poblotzki, A. Hemauer, A. Gigler et al., “Antibodies to the nonstructural protein of parvovirus B19 in persistently infected patients: implications for pathogenesis,” Journal of Infectious Diseases, vol. 172, no. 5, pp. 1356–1359, 1995. View at Scopus
  263. S. Venturoli, G. Gallinella, E. Manaresi, G. Gentilomi, M. Musiani, and M. Zerbini, “IgG response to the immunoreactive region of parvovirus B19 nonstructural protein by immunoblot assay with recombinant antigen,” Journal of Infectious Diseases, vol. 178, no. 6, pp. 1826–1829, 1998. View at Publisher · View at Google Scholar · View at Scopus
  264. K. Searle, G. Schalasta, and G. Enders, “Development of antibodies to the nonstructural protein NS1 of parvovirus B19 during acute symptomatic and subclinical infection in pregnancy: implications for pathogenesis doubtful,” Journal of Medical Virology, vol. 56, pp. 192–198, 1998.
  265. L. P. Jones, D. D. Erdman, and L. J. Anderson, “Prevalence of antibodies to human parvovirus B19 nonstructural protein in persons with various clinical outcomes following B19 infection,” Journal of Infectious Diseases, vol. 180, no. 2, pp. 500–504, 1999. View at Publisher · View at Google Scholar · View at Scopus
  266. A. Hemauer, A. Gigler, K. Searle et al., “Seroprevalence of parvovirus B19 NS1-specific IgG in B19-infected and uninfected individuals and in infected pregnant women,” Journal of Medical Virology, vol. 60, pp. 48–55, 2000.
  267. J. R. Kerr and V. S. Cunniffe, “Antibodies to parvovirus B19 non-structural protein are associated with chronic but not acute arthritis following B19 infection,” Rheumatology, vol. 39, no. 8, pp. 903–908, 2000. View at Scopus
  268. E. D. Heegaard, C. J. Rasksen, and J. Christensen, “Detection of parvovirus B19 NS1-specific antibodies by ELISA and western blotting employing recombinant NS1 protein as antigen,” Journal of Medical Virology, vol. 67, no. 3, pp. 375–383, 2002. View at Publisher · View at Google Scholar · View at Scopus
  269. T. Tolfvenstam, A. Lundqvist, M. Levi, B. Wahren, and K. Broliden, “Mapping of B-cell epitopes on human Parvovirus B19 non-structural and structural proteins,” Vaccine, vol. 19, no. 7-8, pp. 758–763, 2000. View at Publisher · View at Google Scholar · View at Scopus
  270. A. Corcoran, B. P. Mahon, and S. Doyle, “B cell memory is directed toward conformational epitopes of parvovirus B19 capsid proteins and the unique region of VP1,” Journal of Infectious Diseases, vol. 189, no. 10, pp. 1873–1880, 2004. View at Publisher · View at Google Scholar · View at Scopus
  271. A. von Poblotzki, C. Gerdes, U. Reischl, H. Wolf, and S. Modrow, “Lymphoproliferative responses after infection with human parvovirus B19,” Journal of Virology, vol. 70, no. 10, pp. 7327–7330, 1996. View at Scopus
  272. R. Franssila, K. Hokynar, and K. Hedman, “T helper cell-mediated in vitro responses of recently and remotely infected subjects to a candidate recombinant vaccine for human parvovirus B19,” Journal of Infectious Diseases, vol. 183, no. 5, pp. 805–809, 2001. View at Publisher · View at Google Scholar · View at Scopus
  273. T. Tolfvenstam, A. Oxenius, D. A. Price et al., “Direct ex vivo measurement of CD8+ T-lymphocyte responses to human parvovirus B19,” Journal of Virology, vol. 75, no. 1, pp. 540–543, 2001. View at Publisher · View at Google Scholar · View at Scopus
  274. O. Norbeck, A. Isa, C. Pöhlmann et al., “Sustained CD8+ T-cell responses induced after acute parvovirus B19 infection in humans,” Journal of Virology, vol. 79, no. 18, pp. 12117–12121, 2005. View at Publisher · View at Google Scholar · View at Scopus
  275. A. Isa, O. Norbeck, T. Hirbod et al., “Aberrant cellular immune responses in humans infected persistently with parvovirus B19,” Journal of Medical Virology, vol. 78, no. 1, pp. 129–133, 2006. View at Publisher · View at Google Scholar · View at Scopus
  276. A. Isa, V. Kasprowicz, O. Norbeck et al., “Prolonged activation of virus-specific CD8+ T cells after acute B19 infection,” PLoS Medicine, vol. 2, no. 12, article e343, pp. 1280–1291, 2005. View at Publisher · View at Google Scholar · View at Scopus
  277. V. Kasprowicz, A. Isa, K. Jeffery et al., “A highly restricted T-cell receptor dominates the CD8+ T-cell response to parvovirus B19 infection in HLA-A*2402-positive individuals,” Journal of Virology, vol. 80, no. 13, pp. 6697–6701, 2006. View at Publisher · View at Google Scholar · View at Scopus
  278. R. Franssila and K. Hedman, “T-helper cell-mediated interferon-γ, interleukin-10 and proliferation responses to a candidate recombinant vaccine for human parvovirus B19,” Vaccine, vol. 22, no. 27-28, pp. 3809–3815, 2004. View at Publisher · View at Google Scholar · View at Scopus
  279. R. Franssila, J. Auramo, S. Modrow et al., “T helper cell-mediated interferon-gamma expression after human parvovirus B19 infection: persisting VP2-specific and transient VP1u-specific activity,” Clinical and Experimental Immunology, vol. 142, no. 1, pp. 53–61, 2005. View at Publisher · View at Google Scholar · View at Scopus
  280. V. Kasprowicz, A. Isa, T. Tolfvenstam, K. Jeffery, P. Bowness, and P. Klenerman, “Tracking of peptide-specific CD4+ T-cell responses after an acute resolving viral infection: a study of parvovirus B19,” Journal of Virology, vol. 80, no. 22, pp. 11209–11217, 2006. View at Publisher · View at Google Scholar · View at Scopus
  281. A. Isa, A. Lundqvist, A. Lindblom, T. Tolfvenstam, and K. Broliden, “Cytokine responses in acute and persistent human parvovirus B19 infection,” Clinical and Experimental Immunology, vol. 147, no. 3, pp. 419–425, 2007. View at Publisher · View at Google Scholar · View at Scopus
  282. J. Mossong, N. Hens, V. Friederichs et al., “Parvovirus B19 infection in five European countries: seroepidemiology, force of infection and maternal risk of infection,” Epidemiology and Infection, vol. 136, no. 8, pp. 1059–1068, 2008. View at Publisher · View at Google Scholar · View at Scopus
  283. N. Goeyvaerts, N. Hens, M. Aerts, and P. Beutels, “Model structure analysis to estimate basic immunological processes and maternal risk for parvovirus B19,” Biostatistics, vol. 12, no. 2, pp. 283–302, 2011. View at Publisher · View at Google Scholar · View at Scopus
  284. A. Parsyan, S. Kerr, S. Owusu-Ofori, G. Elliott, and J. P. Allain, “Reactivity of genotype-specific recombinant proteins of human erythrovirus B19 with plasmas from areas where genotype 1 or 3 is endemic,” Journal of Clinical Microbiology, vol. 44, no. 4, pp. 1367–1375, 2006. View at Publisher · View at Google Scholar · View at Scopus
  285. K. E. Brown, N. S. Young, B. M. Alving, and L. H. Barbosa, “Parvovirus B19: implications for transfusion medicine. Summary of a workshop,” Transfusion, vol. 41, no. 1, pp. 130–135, 2001. View at Publisher · View at Google Scholar · View at Scopus
  286. J. Blümel, R. Burger, C. Drosten et al., “Parvovirus B19—revised,” Transfusion Medicine and Hemotherapy, vol. 37, pp. 339–350, 2010. View at Publisher · View at Google Scholar
  287. M. H. G. M. Koppelman, H. T. M. Cuypers, T. Emrich, and H. L. Zaaijer, “Quantitative real-time detection of parvovirus B19 DNA in plasma,” Transfusion, vol. 44, no. 1, pp. 97–103, 2004. View at Publisher · View at Google Scholar · View at Scopus
  288. G. Schreiber, S. H. Kleinman, S. A. Glynn et al., “Prevalence and quantitation of parvovirus B19 DNA levels in blood donors with a sensitive polymerase chain reaction screening assay,” Transfusion, vol. 47, no. 10, pp. 1756–1764, 2007. View at Publisher · View at Google Scholar · View at Scopus
  289. H. Matsukura, S. Shibata, Y. Tani, H. Shibata, and R. A. Furuta, “Persistent infection by human parvovirus B19 in qualified blood donors,” Transfusion, vol. 48, no. 5, pp. 1036–1037, 2008. View at Publisher · View at Google Scholar · View at Scopus
  290. M. H. G. M. Koppelman, P. Van Swieten, and H. T. M. Cuijpers, “Real-time polymerase chain reaction detection of parvovirus B19 DNA in blood donations using a commercial and an in-house assay,” Transfusion, vol. 51, no. 6, pp. 1346–1354, 2011. View at Publisher · View at Google Scholar · View at Scopus
  291. K. Kooistra, H. J. Mesman, M. de Waal, M. H. G. M. Koppelman, and H. L. Zaaijer, “Epidemiology of high-level parvovirus B19 viraemia among Dutch blood donors, 2003–2009,” Vox Sanguinis, vol. 100, no. 3, pp. 261–266, 2011. View at Publisher · View at Google Scholar · View at Scopus
  292. S. A. Baylis and K. H. Buchheit, “A proficiency testing study to evaluate laboratory performance for the detection of different genotypes of parvovirus B19,” Vox Sanguinis, vol. 97, no. 1, pp. 13–20, 2009. View at Publisher · View at Google Scholar · View at Scopus
  293. S. A. Baylis, L. Ma, D. J. Padley, A. B. Heath, and M. W. Yu, “Collaborative study to establish a World Health Organization International genotype panel for parvovirus B19 DNA nucleic acid amplification technology (NAT)-based assays,” Vox Sanguinis, vol. 102, no. 3, pp. 204–211, 2012. View at Publisher · View at Google Scholar
  294. L. M. Bell, S. J. Naides, P. Stoffman, R. L. Hodinka, and S. A. Plotkin, “Human parvovirus B19 infection among hospital staff members after contact with infected patients,” The New England Journal of Medicine, vol. 321, no. 8, pp. 485–491, 1989. View at Scopus
  295. S. M. Ray, D. D. Erdman, J. D. Berschling, J. E. Cooper, T. J. Török, and H. M. Blumberg, “Nosocomial exposure to parvovirus B19: low risk of transmission to healthcare workers,” Infection Control and Hospital Epidemiology, vol. 18, no. 2, pp. 109–114, 1997. View at Scopus
  296. “Prospective study of human parvovirus (B19) infection in pregnancy. Public Health Laboratory Service Working Party on Fifth Disease,” BMJ, vol. 300, no. 6733, pp. 1166–1170, 1990.
  297. J. H. Harger, S. P. Adler, and W. C. Koch, “Prospective evaluation of 618 pregnant women exposed to parvovirus B19: risks and symptoms,” Obstetrics and Gynecology, vol. 91, no. 3, pp. 413–420, 1998. View at Publisher · View at Google Scholar · View at Scopus
  298. E. Miller, C. K. Fairley, B. J. Cohen, and C. Seng, “Immediate and long term outcome of human parvovirus B19 infection in pregnancy,” British Journal of Obstetrics and Gynaecology, vol. 105, no. 2, pp. 174–178, 1998. View at Scopus
  299. H. Chisaka, K. Ito, H. Niikura et al., “Clinical manifestations and outcomes of parvovirus B19 infection during pregnancy in Japan,” Tohoku Journal of Experimental Medicine, vol. 209, pp. 277–283, 2006.
  300. A. J. Vyse, N. J. Andrews, L. M. Hesketh, and R. Pebody, “The burden of parvovirus B19 infection in women of childbearing age in England and Wales,” Epidemiology and Infection, vol. 135, no. 8, pp. 1354–1362, 2007. View at Publisher · View at Google Scholar · View at Scopus
  301. A. P. Watt, M. Brown, M. Pathiraja, A. Anbazhagan, and P. V. Coyle, “The lack of routine surveillance of Parvovirus B19 infection in pregnancy prevents an accurate understanding of this regular cause of fetal loss and the risks posed by occupational exposure,” Journal of Medical Microbiology, vol. 62, pp. 86–92, 2012.
  302. I. P. Jensen, P. Thorsen, B. Jeune, B. R. Møller, and B. F. Vestergaard, “An epidemic of parvovirus B19 in a population of 3596 pregnant women: a study of sociodemographic and medical risk factors,” British Journal of Obstetrics and Gynaecology, vol. 107, no. 5, pp. 637–643, 2000. View at Scopus
  303. P. H. van Gessel, M. A. Gaytant, A. C. Vossen et al., “Incidence of parvovirus B19 infection among an unselected population of pregnant women in the Netherlands: a prospective study,” European Journal of Obstetrics & Gynecology and Reproductive Biology, vol. 128, pp. 46–49, 2006.
  304. A. A. Sarfraz, S. O. Samuelsen, A. L. Bruu, P. A. Jenum, and A. Eskild, “Maternal human parvovirus B19 infection and the risk of fetal death and low birthweight: a case-control study within 35 940 pregnant women,” BJOG, vol. 116, no. 11, pp. 1492–1497, 2009. View at Publisher · View at Google Scholar · View at Scopus
  305. J. Lassen, A. K. Jensen, P. Bager et al., “Parvovirus B19 infection in the first trimester of pregnancy and risk of fetal loss: a population-based case-control study,” American Journal of Epidemiology, vol. 176, no. 9, pp. 803–807, 2012. View at Publisher · View at Google Scholar
  306. N. S. Young and K. E. Brown, “Mechanisms of disease: parvovirus B19,” The New England Journal of Medicine, vol. 350, no. 6, pp. 586–597, 2004. View at Publisher · View at Google Scholar · View at Scopus
  307. G. Gallinella, E. Zuffi, G. Gentilomi et al., “Relevance of B19 markers in serum samples for a diagnosis of parvovirus B19-correlated diseases,” Journal of Medical Virology, vol. 71, no. 1, pp. 135–139, 2003. View at Publisher · View at Google Scholar · View at Scopus
  308. M. J. Anderson, S. E. Jones, and A. C. Minson, “Diagnosis of human parvovirus infection by dot-blot hybridization using cloned viral DNA,” Journal of Medical Virology, vol. 15, no. 2, pp. 163–172, 1985. View at Scopus
  309. J. Mori, A. M. Field, J. P. Clewley, and B. J. Cohen, “Dot blot hybridization assay of B19 virus DNA in clincial specimens,” Journal of Clinical Microbiology, vol. 27, no. 3, pp. 459–464, 1989. View at Scopus
  310. M. Zerbini, M. Musiani, S. Venturoli et al., “Rapid screening for B19 parvovirus DNA in clinical specimens with a digoxigenin-labeled DNA hybridization probe,” Journal of Clinical Microbiology, vol. 28, no. 11, pp. 2496–2499, 1990. View at Scopus
  311. M. Musiani, M. Zerbini, D. Gibellini et al., “Chemiluminescence dot blot hybridization assay for detection of B19 parvovirus DNA in human sera,” Journal of Clinical Microbiology, vol. 29, no. 9, pp. 2047–2050, 1991. View at Scopus
  312. M. M. M. Salimans, S. Holsappel, F. M. Van De Rijke, N. M. Jiwa, A. K. Raap, and H. T. Weiland, “Rapid detection of human parvovirus B19 DNA by dot-hybridization and the polymerase chain reaction,” Journal of Virological Methods, vol. 23, no. 1, pp. 19–28, 1989. View at Publisher · View at Google Scholar · View at Scopus
  313. W. C. Koch and S. P. Adler, “Detection of human parvovirus B19 DNA by using the polymerase chain reaction,” Journal of Clinical Microbiology, vol. 28, no. 1, pp. 65–69, 1990. View at Scopus
  314. E. L. Durigon, D. D. Erdman, G. W. Gary, M. A. Pallansch, T. J. Torok, and L. J. Anderson, “Multiple primer pairs for polymerase chain reaction (PCR) amplification of human parvovirus B19 DNA,” Journal of Virological Methods, vol. 44, no. 2-3, pp. 155–165, 1993. View at Publisher · View at Google Scholar · View at Scopus
  315. M. Zerbini, D. Gibellini, M. Musiani, S. Venturoli, G. Gallinella, and G. Gentilomi, “Automated detection of digoxigenin-labelled B19 parvovirus amplicons by a capture hybridization assay,” Journal of Virological Methods, vol. 55, no. 1, pp. 1–9, 1995. View at Publisher · View at Google Scholar · View at Scopus
  316. G. Gallinella, M. Zerbini, M. Musiani, S. Venturoli, G. Gentilomi, and E. Manaresi, “Quantitation of parvovirus B19 DNA sequences by competitive PCR: differential hybridization of the amplicons and immunoenzymatic detection on microplate,” Molecular and Cellular Probes, vol. 11, no. 2, pp. 127–133, 1997. View at Publisher · View at Google Scholar · View at Scopus
  317. M. Musiani, G. Gallinella, S. Venturoli, and M. Zerbini, “Competitive PCR-ELISA protocols for the quantitative and the standardized detection of viral genomes,” Nature protocols, vol. 2, no. 10, pp. 2511–2519, 2007. View at Publisher · View at Google Scholar · View at Scopus
  318. C. Aberham, C. Pendl, P. Gross, G. Zerlauth, and M. Gessner, “A quantitative, internally controlled real-time PCR assay for the detection of parvovirus B19 DNA,” Journal of Virological Methods, vol. 92, no. 2, pp. 183–191, 2001. View at Publisher · View at Google Scholar · View at Scopus
  319. F. Gruber, F. G. Falkner, F. Dorner, and T. Hämmerle, “Quantitation of viral DNA by real-time PCR applying duplex amplification, internal standardization, and two-color fluorescence detection,” Applied and Environmental Microbiology, vol. 67, no. 6, pp. 2837–2839, 2001. View at Publisher · View at Google Scholar · View at Scopus
  320. E. Manaresi, G. Gallinella, E. Zuffi, F. Bonvicini, M. Zerbini, and M. Musiani, “Diagnosis and quantitative evaluation of parvovirus B19 infections by real-time PCR in the clinical laboratory,” Journal of Medical Virology, vol. 67, no. 2, pp. 275–281, 2002. View at Publisher · View at Google Scholar · View at Scopus
  321. G. Gallinella, F. Bonvicini, C. Filippone et al., “Calibrated real-time PCR for evaluation of parvovirus B19 viral load,” Clinical Chemistry, vol. 50, no. 4, pp. 759–762, 2004. View at Publisher · View at Google Scholar · View at Scopus
  322. M. M. M. Salimans, F. M. Van de Rijke, A. K. Raap, and A. M. W. Van Elsacker-Niele, “Detection of parvovirus B19 DNA in fetal tissues by in situ hybridisation and polymerase chain reaction,” Journal of Clinical Pathology, vol. 42, no. 5, pp. 525–530, 1989. View at Scopus
  323. A. L. Morey, H. J. Porter, J. W. Keeling, and K. A. Fleming, “Non-isotopic in situ hybridisation and immunophenotyping of infected cells in the investigation of human fetal parvovirus infection,” Journal of Clinical Pathology, vol. 45, no. 8, pp. 673–678, 1992. View at Scopus
  324. G. Gentilomi, M. Zerbini, M. Musiani et al., “In situ detection of B19 DNA in bone marrow of immunodeficient patients using a digoxigenin-labelled probe,” Molecular and Cellular Probes, vol. 7, no. 1, pp. 19–24, 1993. View at Publisher · View at Google Scholar · View at Scopus
  325. G. Gallinella, N. S. Young, and K. E. Brown, “In situ hybridisation and in situ polymerase chain reaction detection of parvovirus B19 DNA within cells,” Journal of Virological Methods, vol. 50, no. 1–3, pp. 67–74, 1994. View at Publisher · View at Google Scholar · View at Scopus
  326. F. Bonvicini, C. Filippone, E. Manaresi et al., “Peptide nucleic acid-based in situ hybridization assay for detection of parvovirus B19 nucleic acids,” Clinical Chemistry, vol. 52, no. 6, pp. 973–978, 2006. View at Publisher · View at Google Scholar · View at Scopus
  327. F. Bonvicini, M. Mirasoli, G. Gallinella, M. Zerbini, M. Musiani, and A. Roda, “PNA-based probe for quantitative chemiluminescent in situ hybridisation imaging of cellular parvovirus B19 replication kinetics,” Analyst, vol. 132, no. 6, pp. 519–523, 2007. View at Publisher · View at Google Scholar · View at Scopus
  328. A. L. Morey, H. J. O'Neill, P. V. Coyle, and K. A. Fleming, “Immunohistological detection of human parvovirus B19 in formalin-fixed, paraffin-embedded tissues,” Journal of Pathology, vol. 166, no. 2, pp. 105–108, 1992. View at Scopus
  329. A. L. Morey, D. J. P. Ferguson, and K. A. Fleming, “Combined immunocytochemistry and non-isotopic in situ hybridization for the ultrastructural investigation of human parvovirus B19 infection,” Histochemical Journal, vol. 27, no. 1, pp. 46–53, 1995. View at Publisher · View at Google Scholar · View at Scopus
  330. B. J. Cohen, P. P. Mortimer, and M. S. Pereira, “Diagnostic assays with monoclonal antibodies for the human serum parvovirus-like virus (SPLV),” Journal of Hygiene, vol. 91, no. 1, pp. 113–130, 1983. View at Scopus
  331. L. J. Anderson, C. Tsou, and R. A. Parker, “Detection of antibodies and antigens of human parvovirus B19 by enzyme-linked immunosorbent assay,” Journal of Clinical Microbiology, vol. 24, no. 4, pp. 522–526, 1986. View at Scopus
  332. S. Kerr, G. O'Keeffe, C. Kilty, and S. Doyle, “Undenatured parvovirus B19 antigens are essential for the accurate detection of parvovirus B19 IgG,” Journal of Medical Virology, vol. 57, pp. 179–185, 1999.
  333. E. Manaresi, G. Gallinella, S. Venturoli, M. Zerbini, and M. Musiani, “Detection of parvovirus B19 IgG: choice of antigens and serological tests,” Journal of Clinical Virology, vol. 29, no. 1, pp. 51–53, 2004. View at Publisher · View at Google Scholar · View at Scopus
  334. L. Kaikkonen, H. Lankinen, I. Harjunpää et al., “Acute-phase-specific heptapeptide epitope for diagnosis of parvovirus B19 infection,” Journal of Clinical Microbiology, vol. 37, no. 12, pp. 3952–3956, 1999. View at Scopus
  335. M. Enders, G. Schalasta, C. Baisch et al., “Human parvovirus B19 infection during pregnancy—value of modern molecular and serological diagnostics,” Journal of Clinical Virology, vol. 35, no. 4, pp. 400–406, 2006. View at Publisher · View at Google Scholar · View at Scopus
  336. M. Y. W. Yu, H. J. Alter, M. L. A. Virata-Theimer et al., “Parvovirus B19 infection transmitted by transfusion of red blood cells confirmed by molecular analysis of linked donor and recipient samples,” Transfusion, vol. 50, no. 8, pp. 1712–1721, 2010. View at Publisher · View at Google Scholar · View at Scopus
  337. M. K. Hourfar, U. Mayr-Wohlfart, A. Themann et al., “Recipients potentially infected with parvovirus B19 by red blood cell products,” Transfusion, vol. 51, no. 1, pp. 129–136, 2011. View at Publisher · View at Google Scholar · View at Scopus
  338. S. H. Kleinman, S. A. Glynn, T. H. Lee et al., “A linked donor-recipient study to evaluate parvovirus B19 transmission by blood component transfusion,” Blood, vol. 114, no. 17, pp. 3677–3683, 2009. View at Publisher · View at Google Scholar · View at Scopus
  339. A. Parsyan and D. Candotti, “Human erythrovirus B19 and blood transfusion—an update,” Transfusion Medicine, vol. 17, no. 4, pp. 263–278, 2007. View at Publisher · View at Google Scholar · View at Scopus
  340. J. Brennand and A. Cameron, “Fetal anaemia: diagnosis and management,” Best Practice and Research in Clinical Obstetrics and Gynaecology, vol. 22, no. 1, pp. 15–29, 2008. View at Publisher · View at Google Scholar · View at Scopus
  341. L. Mouthon and O. Lortholary, “Intravenous immunoglobulins in infectious diseases: where do we stand?” Clinical Microbiology and Infection, vol. 9, no. 5, pp. 333–338, 2003. View at Publisher · View at Google Scholar · View at Scopus
  342. Y. Crabol, B. Terrier, F. Rozenberg et al., “Intravenous immunoglobulin therapy for pure red cell aplasia related to human parvovirus B19 infection: a retrospective study of 10 patients and review of the literature,” Clinical Infectious Diseases, vol. 56, no. 7, pp. 968–977, 2012. View at Publisher · View at Google Scholar
  343. P. Morelli, G. Bestetti, E. Longhi, C. Parravicini, M. Corbellino, and L. Meroni, “Persistent parvovirus B19-induced anemia in an HIV-infected patient under HAART. Case report and review of literature,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 26, no. 11, pp. 833–837, 2007. View at Publisher · View at Google Scholar · View at Scopus
  344. J. P. Rerolle, E. Morelon, I. Helal, M. N. Peraldi, M. F. Mamzer-Bruneel, and H. Kreis, “Parvovirus B19-related anaemia after renal transplantation,” Scandinavian Journal of Infectious Diseases, vol. 36, no. 6-7, pp. 513–516, 2004. View at Publisher · View at Google Scholar · View at Scopus
  345. A. Gigler, S. Dorsch, A. Hemauer et al., “Generation of neutralizing human monoclonal antibodies against parvovirus B19 proteins,” Journal of Virology, vol. 73, no. 3, pp. 1974–1979, 1999. View at Scopus
  346. G. P. Bansal, J. A. Hatfield, F. E. Dunn et al., “Candidate recombinant vaccine for human B19 parvovirus,” Journal of Infectious Diseases, vol. 167, no. 5, pp. 1034–1044, 1993. View at Scopus
  347. W. R. Ballou, J. L. Reed, W. Noble, N. S. Young, and S. Koenig, “Safety and immunogenicity of a recombinant parvovirus B19 vaccine formulated with MF59C.1,” Journal of Infectious Diseases, vol. 187, no. 4, pp. 675–678, 2003. View at Publisher · View at Google Scholar · View at Scopus
  348. D. I. Bernstein, H. M. El Sahly, W. A. Keitel et al., “Safety and immunogenicity of a candidate parvovirus B19 vaccine,” Vaccine, vol. 29, pp. 7357–7363, 2011.