About this Journal Submit a Manuscript Table of Contents
ISRN Nutrition
Volume 2013 (2013), Article ID 921972, 5 pages
http://dx.doi.org/10.5402/2013/921972
Clinical Study

Branched-Chain Amino Acid Plus Glucose Supplement Reduces Exercise-Induced Delayed Onset Muscle Soreness in College-Age Females

Department of Nutrition and Food Sciences, University of Vermont, Burlington, VT 05405, USA

Received 25 January 2013; Accepted 19 February 2013

Academic Editors: H. Kalhoff, M. G. Nikolaidis, and F. Sanchez de Medina

Copyright © 2013 Danielle T. Leahy and Stephen J. Pintauro. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. E. Harper, R. H. Miller, and K. P. Block, “Branched-chain amino acid metabolism,” Annual Review of Nutrition, vol. 4, pp. 409–454, 1984.
  2. Y. Shimomura, T. Murakami, N. Nakai, M. Nagasaki, and R. A. Harris, “Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise,” Journal of Nutrition, vol. 134, no. 6, pp. 1583S–1587S, 2004. View at Scopus
  3. R. A. Harris, K. M. Popov, Y. Zhao, and Y. Shimomura, “Regulation of branched-chain amino acid catabolism,” Journal of Nutrition, vol. 124, no. 8, pp. 1499S–1502S, 1994. View at Scopus
  4. A. Sitryawan, J. W. Hawes, R. A. Harris, Y. Shimomura, A. E. Jenkins, and S. M. Hutson, “A molecular model of human branched-chain amino acid metabolism,” American Journal of Clinical Nutrition, vol. 68, no. 1, pp. 72–81, 1998. View at Scopus
  5. Y. Shimomura, Y. Yamamoto, G. Bajotto et al., “Nutraceutical effects of branched-chain amino acids on skeletal muscle,” Journal of Nutrition, vol. 136, no. 2, pp. 529S–532S, 2006. View at Scopus
  6. D. A. Connolly, S. P. Sayers, and M. P. McHugh, “Treatment and prevention of delayed onset muscle soreness,” The Journal of Strength & Conditioning Research, vol. 17, no. 1, pp. 197–208, 2003.
  7. S. R. Jackman, O. C. Witard, A. E. Jeukendrup, and K. D. Tipton, “Branched-chain amino acid ingestion can ameliorate soreness from eccentric exercise,” Medicine and Science in Sports and Exercise, vol. 42, no. 5, pp. 962–970, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. B. B. Rasmussen, K. D. Tipton, S. L. Miller, S. E. Wolf, and R. R. Wolfe, “An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise,” Journal of Applied Physiology, vol. 88, no. 2, pp. 386–392, 2000. View at Scopus
  9. R. A. Gelfand and E. J. Barrett, “Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man,” Journal of Clinical Investigation, vol. 80, no. 1, pp. 1–6, 1987. View at Scopus
  10. C. G. Proud, “Regulation of protein synthesis by insulin,” Biochemical Society Transactions, vol. 34, no. 2, pp. 213–216, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Shimomura, H. Kobayashi, K. Mawatari et al., “Effects of squat exercise and branched-chain amino acid supplementation on plasma free amino acid concentrations in young women,” Journal of Nutritional Science and Vitaminology, vol. 55, no. 3, pp. 288–291, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Shimomura, A. Inaguma, S. Watanabe et al., “Branched-chain amino acid supplementation before squat exercise and delayed-onset muscle soreness,” International Journal of Sport Nutrition and Exercise Metabolism, vol. 20, no. 3, pp. 236–244, 2010. View at Scopus
  13. M. J. Hjermstad, P. M. Fayers, D. F. Haugen et al., “Studies comparing numerical rating scales, verbal rating scales, and visual analogue scales for assessment of pain intensity in adults: a systematic literature review,” Journal of Pain and Symptom Management, vol. 41, no. 6, pp. 1073–1093, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. P. J. Flakoll, T. Judy, K. Flinn, C. Carr, and S. Flinn, “Postexercise protein supplementation improves health and muscle soreness during basic military training in marine recruits,” Journal of Applied Physiology, vol. 96, no. 3, pp. 951–956, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. S. P. Sayers, C. A. Knight, P. M. Clarkson, E. H. Van Wegen, and G. Kamen, “Effect of ketoprofen on muscle function and sEMG activity after eccentric exercise,” Medicine and Science in Sports and Exercise, vol. 33, no. 5, pp. 702–710, 2001. View at Scopus
  16. M. P. McHugh, “Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise,” Scandinavian Journal of Medicine and Science in Sports, vol. 13, no. 2, pp. 88–97, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. H. L. Chen, K. Nosaka, and T. C. Chen, “Muscle damage protection by low intensity eccentric contractions remains for 2 weeks but not 3 weeks,” European Journal of Applied Physiology, vol. 112, no. 12, pp. 555–565, 2012.
  18. K. Nosaka, K. Sakamoto, M. Newton, and P. Sacco, “How long does the protective effect on eccentric exercise-induced muscle damage last?” Medicine and Science in Sports and Exercise, vol. 33, no. 9, pp. 1490–1495, 2001. View at Scopus