About this Journal Submit a Manuscript Table of Contents
ISRN Botany
Volume 2013 (2013), Article ID 952043, 22 pages
http://dx.doi.org/10.1155/2013/952043
Review Article

Modulating Plant Calcium for Better Nutrition and Stress Tolerance

Department of Plant Biology, North Carolina State University, P.O. Box 7612, Raleigh, NC 27695, USA

Received 10 January 2013; Accepted 2 February 2013

Academic Editors: M. Adrian, E. Collakova, G. T. Maatooq, I. Paponov, and K. Takeno

Copyright © 2013 Dominique (Niki) Robertson. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. J. Maathuis, “Physiological functions of mineral macronutrients,” Current Opinion in Plant Biology, vol. 12, no. 3, pp. 250–258, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. P. J. White and M. R. Broadley, “Calcium in plants,” Annals of Botany, vol. 92, no. 4, pp. 487–511, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. K. D. Hirschi, “The calcium conundrum. Both versatile nutrient and specific signal,” Plant Physiologyogy, vol. 136, no. 1, pp. 2348–2442, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Stael, B. Wurzinger, A. Mair, N. Mehlmer, U. C. Vothknecht, and M. Teige, “Plant organellar calcium signalling: an emerging field,” Journal of Experimental Botany, vol. 63, pp. 1525–1542, 2011.
  5. C. K. Y. Ng and M. R. Mcainsh, “Encoding specificity in plant calcium signalling: hot-spotting the ups and downs and waves,” Annals of Botany, vol. 92, no. 4, pp. 477–485, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Cholewa and C. A. Peterson, “Evidence for symplastic involvement in the radial movement of calcium in onion roots,” Plant Physiologyogy, vol. 134, no. 4, pp. 1793–1802, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Upadhyaya, B. K. Dutta, L. Sahoo, and S. K. Panda, “Comparative Effect of Ca, K, Mn and B on Post-Drought Stress Recovery in Tea (Camellia sinensis (L) O. Kuntze),” American Journal of Plant Sciences, vol. 3, no. 4, pp. 443–460, 2012. View at Publisher · View at Google Scholar
  8. T. Jiang, X. Zhan, Y. Xu, L. Zhou, and L. Zong, “Roles of calcium in stress-tolerance of plants and its ecological significance,” Chinese Journal of Applied Ecology, vol. 16, no. 5, pp. 971–976, 2005. View at Scopus
  9. C. A. Jaleel, P. Manivannan, B. Sankar et al., “Water deficit stress mitigation by calcium chloride in Catharanthus roseus: effects on oxidative stress, proline metabolism and indole alkaloid accumulation,” Colloids and Surfaces B, vol. 60, no. 1, pp. 110–116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Nayyar and S. K. Kaushal, “Alleviation of negative effects of water stress in two contrasting wheat genotypes by calcium and abscisic acid,” Biologia Plantarum, vol. 45, no. 1, pp. 65–70, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. S. M. Juice, T. J. Fahey, T. G. Siccama et al., “Response of sugar maple to calcium addition to northern hardwood forest,” Ecology, vol. 87, no. 5, pp. 1267–1280, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Sulochana and N. Sanithramma, “Effect of Calcium in Amelioration of PEG, (600) Induced Water Stress in Ground Nut (Araclus hypogaea L.) Cultivars during Seedling Growth,” Journal of Plant Biology, vol. 38, 2001.
  13. Y. E. Kolupaev, G. E. Akinina, and A. V. Mokrousov, “Induction of heat tolerance in wheat coleoptiles by calcium ions and its relation to oxidative stress,” Russian Journal of Plant Physiologyogy, vol. 52, no. 2, pp. 199–204, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Wu, X. Liu, W. Wang, S. Zhang, and B. Xu, “Calcium regulates the cell-to-cell water flow pathway in maize roots during variable water conditions,” Plant Physiologyogy and Biochemistry, vol. 58, pp. 212–219, 2012. View at Publisher · View at Google Scholar
  15. M. S. Aghdam, M. B. Hassanpouraghdam, G. Paliyath, and B. Farmani, “The language of calcium in postharvest life of fruits, vegetables and flowers,” Scientia Horticulturae, vol. 144, pp. 102–115, 2012.
  16. P. A. Lahaye and E. Epstein, “Salt toleration by plants: enhancement with calcium,” Science, vol. 166, no. 3903, pp. 395–396, 1969. View at Scopus
  17. P. A. Essah, R. Davenport, and M. Tester, “Sodium influx and accumulation in Arabidopsis,” Plant Physiologyogy, vol. 133, no. 1, pp. 307–318, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. C. M. Grieve and H. Fujiyama, “The response of two rice cultivars to external Na/Ca ratio,” Plant and Soil, vol. 103, no. 2, pp. 245–250, 1987. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Shaoyun, L. Yongchao, G. Zhenfei, L. Baosheng, and L. Mingqi, “Enhancement of drought resistance of rice seedlings by calcium,” Zhongguo Shuidao Kexue, vol. 13, pp. 161–164, 1999.
  20. Z. Rengel, “The role of calcium in salt toxicity,” Plant, Cell and Environment, vol. 15, pp. 625–632, 1992.
  21. H. Upadhyaya, S. K. Panda, and B. K. Dutta, “CaCl2 improves post-drought recovery potential in Camellia sinensis (L) O. Kuntze,” Plant Cell Reports, vol. 30, no. 4, pp. 495–503, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. E. P. Spalding and J. F. Harper, “The ins and outs of cellular Ca2+ transport,” Current Opinion in Plant Biology, vol. 14, no. 6, pp. 715–720, 2011.
  23. O. Batistic and J. Kudla, “Analysis of calcium signaling pathways in plants,” Biochimica et Biophysica Acta, vol. 8, pp. 1283–1293, 1820.
  24. A. M. Cameron, J. P. Steiner, A. J. Roskams, S. M. Ali, G. V. Ronnett, and S. H. Snyder, “Calcineurin associated with the inositol 1,4,5-trisphosphate receptor- FKBP12 complex modulates Ca2+ flux,” Cell, vol. 83, no. 3, pp. 463–472, 1995. View at Publisher · View at Google Scholar · View at Scopus
  25. M. D. Sjaastad, R. S. Lewis, and W. J. Nelson, “Mechanisms of integrin-mediated calcium signaling in MDCK cells: regulation of adhesion by IP3- and store-independent calcium influx,” Molecular Biology of the Cell, vol. 7, no. 7, pp. 1025–1041, 1996. View at Scopus
  26. I. Y. Perera, I. Heilmann, and W. F. Boss, “Transient and sustained increases in inositol 1,4,5-trisphosphate precede the differential growth response in gravistimulated maize pulvini,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 10, pp. 5838–5843, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. J. M. Stevenson, I. Y. Perera, I. Heilmann, S. Persson, and W. F. Boss, “Inositol signaling and plant growth,” Trends in Plant Science, vol. 5, no. 6, pp. 252–258, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Zhong, D. H. Burk, W. H. Morrison, and Z. H. Ye, “FRAGILE FIBER3, an Arabidopsis gene encoding a type ii inositol polyphosphate 5-phosphatase, is required for secondary wall synthesis and actin organization in fiber cells,” Plant Cell, vol. 16, no. 12, pp. 3242–3259, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. F. M. Carland and T. Nelson, “Cotyledon Vascular Pattern2-mediated inositol (1,4,5) triphosphate signal transduction is essential for closed venation patterns of Arabidopsis foliar organs,” Plant Cell, vol. 16, no. 5, pp. 1263–1275, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. W. H. Lin, R. Ye, H. Ma, Z. H. Xu, and H. W. Xue, “DNA chip-based expression profile analysis indicates involvement of the phosphatidylinositol signaling pathway in multiple plant responses to hormone and abiotic treatments,” Cell Research, vol. 14, no. 1, pp. 34–45, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. I. Y. Perera, C. Y. Hung, C. D. Moore, J. Stevenson-Paulik, and W. F. Boss, “Transgenic Arabidopsis plants expressing the type 1 inositol 5-phosphatase exhibit increased drought tolerance and altered abscisic acid signaling,” Plant Cell, vol. 20, no. 10, pp. 2876–2893, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. R. H. Tang, S. Han, H. Zheng et al., “Coupling diurnal cytosolic Ca2+ oscillations to the CAS-IP 3 pathway in Arabidopsis,” Science, vol. 315, no. 5817, pp. 1423–1426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Groenendyk, J. Lynch, and M. Michalak, “Calreticulin, Ca2+, and calcineurin—signaling from the endoplasmic reticulum,” Molecules and Cells, vol. 17, no. 3, pp. 383–389, 2004. View at Scopus
  34. L. Navazio, P. Mariani, and D. Sanders, “Mobilization of CA2+ by cyclic ADP-ribose from the endoplasmic reticulum of cauliflower florets,” Plant Physiologyogy, vol. 125, no. 4, pp. 2129–2138, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Mailhot, J. L. Petit, C. Demers, and M. Gascon-Barre, “Influence of the in vivo calcium status on cellular calcium homeostasis and the level of the calcium-binding protein calreticulin in rat hepatocytes,” Endocrinology, vol. 141, pp. 891–900, 2000.
  36. T. Yang and B. W. Poovaiah, “Calcium/calmodulin-mediated signal network in plants,” Trends in Plant Science, vol. 8, no. 10, pp. 505–512, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Sanders, J. Pelloux, C. Brownlee, and J. F. Harper, “Calcium at the crossroads of signaling,” Plant Cell, vol. 14, no. supplement 1, pp. S401–S417, 2002. View at Scopus
  38. V. Albrecht, S. Weinl, D. Blazevic et al., “The calcium sensor CBL1 integrates plant responses to abiotic stresses,” The Plant Journal, vol. 36, no. 4, pp. 457–470, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. H. Cheong, K. N. Kim, G. K. Pandey, R. Gupta, J. J. Grant, and S. Luan, “CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis,” Plant Cell, vol. 15, no. 8, pp. 1833–1845, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. L. L. Liu, H. M. Ren, L. Q. Chen, Y. Wang, and W. H. Wu, “A protein kinase CIPK9 interacts with calcium sensor CBL3 and regulates K+ homeostasis under low-KK+ stress in Arabidopsis,” Plant Physiology, vol. 161, pp. 266–277, 2013.
  41. M. Wang, D. Gu, T. Liu et al., “Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance,” Plant Molecular Biology, vol. 65, no. 6, pp. 733–746, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. H. Cheong, S. J. Sung, B. G. Kim et al., “Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis,” Molecules and Cells, vol. 29, no. 2, pp. 159–165, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. Z. Gu, B. Ma, Y. Jiang, Z. Chen, X. Su, and H. Zhang, “Expression analysis of the calcineurin B-like gene family in rice (Oryza sativa L.) under environmental stresses,” Gene, vol. 415, no. 1-2, pp. 1–12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. V. Tripathi, B. Parasuraman, A. Laxmi, and D. Chattopadhyay, “CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants,” The Plant Journal, vol. 58, no. 5, pp. 778–790, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. R. K. Wang, L. L. Li, Z. H. Cao, et al., “Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants,” Plant Molecular Biology, vol. 79, pp. 123–135, 2012.
  46. Y. Xiang, Y. Huang, and L. Xiong, “Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement,” Plant Physiologyogy, vol. 144, no. 3, pp. 1416–1428, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. W. Yang, Z. Kong, E. Omo-Ikerodah, W. Xu, Q. Li, and Y. Xue, “Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.),” Journal of Genetics and Genomics, vol. 35, no. 9, pp. 531.S1–543.S2, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. K. R. Konrad, M. M. Wudick, and J. A. Feijo, “Calcium regulation of tip growth: new genes for old mechanisms,” Current Opinion in Plant Biology, vol. 14, pp. 721–730, 2011.
  49. M. Gilliham, A. Athman, S. D. Tyerman, and S. J. Conn, “Cell-specific compartmentation of mineral nutrients is an essential mechanism for optimal plant productivity—another role for TPC1?” Plant Signaling & Behavior, vol. 6, pp. 1656–1661, 2011.
  50. J. Bose, I. I. Pottosin, S. S. Shabala, M. G. Palmgren, and S. Shabala, “Calcium efflux systems in stress signaling and adaptation in plants,” Frontiers in Plant Science, vol. 2, p. 85, 2011.
  51. R. Catala, E. Santos, J. M. Alonso, J. R. Ecker, J. M. Martinez-Zapater, and J. Salinas, “Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis,” Plant Cell, vol. 15, pp. 2940–2951, 2003.
  52. J. Lynch, V. S. Polito, and A. Lauchli, “Salinity stress increases cytoplasmic Ca activity in maize root protoplasts,” Plant Physiologyogy, vol. 90, pp. 1271–1274, 1989.
  53. A. J. Laude and A. W. M. Simpson, “Compartmentalized signalling: Ca2+ compartments, microdomains and the many facets of Ca2+ signalling,” FEBS Journal, vol. 276, no. 7, pp. 1800–1816, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Trewavas, “Le calcium, c'est la vie: calcium makes waves,” Plant Physiologyogy, vol. 120, no. 1, pp. 1–6, 1999. View at Scopus
  55. S. Papp, E. Dziak, M. Michalak, and M. Opas, “Is all of the endoplasmic reticulum created equal? The effects of the heterogeneous distribution of endoplasmic reticulum Ca2+-handling proteins,” Journal of Cell Biology, vol. 160, no. 4, pp. 475–479, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. J. M. Fasano, G. D. Massa, and S. Gilroy, “Ionic signaling in plant responses to gravity and touch,” Journal of Plant Growth Regulation, vol. 21, no. 2, pp. 71–88, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. I. C. Mori, Y. Murata, Y. Yang et al., “CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure,” PLoS Biology, vol. 4, no. 10, p. e327, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Marten, K. R. Konrad, P. Dietrich, M. R. G. Roelfsema, and R. Hedrich, “Ca2+-dependent and -independent abscisic acid activation of plasma membrane anion channels in guard cells of Nicotiana tabacum,” Plant Physiologyogy, vol. 143, no. 1, pp. 28–37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. S. J. Su, Y. F. Wang, A. Frelet et al., “The ATP binding cassette transporter AtMRP5 modulates anion and calcium channel activities in Arabidopsis guard cells,” Journal of Biological Chemistry, vol. 282, no. 3, pp. 1916–1924, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Cárdenas, “New findings in the mechanisms regulating polar growth in root hair cells,” Plant Signaling and Behavior, vol. 4, no. 1, pp. 4–8, 2009. View at Scopus
  61. D. Cho, S. A. Kim, Y. Murata et al., “De-regulated expression of the plant glutamate receptor homolog AtGLR3.1 impairs long-term Ca2+-programmed stomatal closure,” The Plant Journal, vol. 58, no. 3, pp. 437–449, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. R. S. Siegel, S. Xue, Y. Murata et al., “Calcium elevation-dependent and attenuated resting calcium-dependent abscisic acid induction of stomatal closure and abscisic acid-induced enhancement of calcium sensitivities of S-type anion and inward-rectifying K+ channels in Arabidopsis guard cells,” The Plant Journal, vol. 59, no. 2, pp. 207–220, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. W. H. Wang, X. Q. Yi, A. D. Han, et al., “Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis,” J Exp Bot, vol. 63, pp. 177–190, 2011.
  64. W. H. Wang and H. L. Zheng, “Mechanisms for calcium sensing receptor-regulated stomatal closure in response to the extracellular calcium signal,” Plant Signaling & Behavior, vol. 7, pp. 289–291, 2012.
  65. W. Capoen, J. D. Herder, J. Sun et al., “Calcium spiking patterns and the role of the calcium/calmodulin-dependent kinase CCaMK in lateral root base nodulation of sesbania rostrata,” Plant Cell, vol. 21, no. 5, pp. 1526–1540, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. P. K. Hepler, J. G. Kunkel, C. M. Rounds, and L. J. Winship, “Calcium entry into pollen tubes,” Trends in Plant Science, vol. 17, pp. 32–38, 2011.
  67. M. Rincón-Zachary, N. D. Teaster, J. Alan Sparks, A. H. Valster, C. M. Motes, and E. B. Blancaflor, “Fluorescence resonance energy transfer-sensitized emission of yellow cameleon 3.60 reveals root zone-specific calcium signatures in Arabidopsis in response to aluminum and other trivalent cations,” Plant Physiologyogy, vol. 152, no. 3, pp. 1442–1458, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. E. F. Short, K. A. North, M. R. Roberts, A. M. Hetherington, A. D. Shirras, and M. R. McAinsh, “A stress-specific calcium signature regulating an ozone-responsive gene expression network in Arabidopsis,” The Plant Journal, vol. 71, no. 6, pp. 948–961, 2012.
  69. K. Takahashi, M. Isobe, M. R. Knight, A. J. Trewavas, and S. Muto, “Hypoosmotic shock induces increases in cytosolic Ca2+ in tobacco suspension-culture cells,” Plant Physiologyogy, vol. 113, no. 2, pp. 587–594, 1997. View at Scopus
  70. J. C. Sedbrook, P. J. Kronebusch, G. G. Borisy, A. J. Trewavas, and P. H. Masson, “Transgenic AEQUORIN reveals organ-specific cytosolic Ca2+ responses to anoxia in Arabidopsis thaliana seedling,” Plant Physiologyogy, vol. 111, no. 1, pp. 243–257, 1996. View at Scopus
  71. M. C. Rentel and M. R. Knight, “Oxidative stress-induced calcium signaling in Arabidopsis,” Plant Physiologyogy, vol. 135, no. 3, pp. 1471–1479, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Song, R. Zhao, P. Fan, X. Wang, X. Chen, and Y. Li, “Overexpression of AtHsp90.2, AtHsp90.5 and AtHsp90.7 in Arabidopsis thaliana enhances plant sensitivity to salt and drought stresses,” Planta, vol. 229, no. 4, pp. 955–964, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. E. Kiegle, C. A. Moore, J. Haseloff, M. A. Tester, and M. R. Knight, “Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root,” The Plant Journal, vol. 23, no. 2, pp. 267–278, 2000. View at Publisher · View at Google Scholar · View at Scopus
  74. C. Huang, S. Ding, H. Zhang, H. Du, and L. An, “CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana,” Plant Science, vol. 181, no. 1, pp. 57–64, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Szczegielniak, L. Borkiewicz, B. Szurmak, et al., “Maize calcium-dependent protein kinase (ZmCPK11): local and systemic response to wounding, regulation by touch and components of jasmonate signaling,” Plant Physiologyogy, vol. 146, pp. 1–14, 2012.
  76. H. Nie, C. Zhao, G. Wu, Y. Wu, Y. Chen, and D. Tang, “SR1, a calmodulin-binding transcription factor, modulates plant defense and ethylene-induced senescence by directly regulating NDR1 and EIN3,” Plant Physiologyogy, vol. 158, pp. 1847–1859, 2012.
  77. W. Urquhart, K. Chin, H. Ung, W. Moeder, and K. Yoshioka, “The cyclic nucleotide-gated channels AtCNGC11 and 12 are involved in multiple Ca2+-dependent physiological responses and act in a synergistic manner,” Journal of Experimental Botany, vol. 62, no. 10, pp. 3671–3682, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. I. C. Mori and J. I. Schroeder, “Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction,” Plant Physiologyogy, vol. 135, no. 2, pp. 702–708, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. G. D. Massa, J. M. Fasano, and S. Gilroy, “Ionic signaling in plant gravity and touch responses,” Gravitational and Space Biology Bulletin, vol. 16, no. 2, pp. 71–82, 2003. View at Scopus
  80. L. Xiong, K. S. Schumaker, and J. K. Zhu, “Cell signaling during cold, drought, and salt stress,” Plant Cell, vol. 14, no. supplement 1, pp. S165–S183, 2002. View at Scopus
  81. M. Maffei, S. Bossi, D. Spiteller, A. Mithöfer, and W. Boland, “Effects of feeding Spodoptera littoralis on Lima bean leaves. I. Membrane potentials, intracellular calcium variations, oral secretions, and regurgitate components,” Plant Physiologyogy, vol. 134, no. 4, pp. 1752–1762, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. U. Jongebloed, J. Szederkényi, K. Hartig, C. Schobert, and E. Komor, “Sequence of morphological and physiological events during natural ageing and senescence of a castor bean leaf: sieve tube occlusion and carbohydrate back-up precede chlorophyll degradation,” Physiologia Plantarum, vol. 120, no. 2, pp. 338–346, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. W. Ma, A. Smigel, R. K. Walker, W. Moeder, K. Yoshioka, and G. A. Berkowitz, “Leaf senescence signaling: the Ca2+-Conducting Arabidopsis cyclic nucleotide gated channel2 acts through nitric Oxide to repress senescence programming,” Plant Physiologyogy, vol. 154, no. 2, pp. 733–743, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. W. Ma and G. A. Berkowitz, “Cyclic nucleotide gated channel and Ca2+-mediated signal transduction during plant senescence signaling,” Plant Signaling and Behavior, vol. 6, no. 3, pp. 413–415, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Masuda, K. Mizusawa, T. Narisawa, Y. Tozawa, H. Ohta, and K. I. Takamiya, “The bacterial stringent response, conserved in chloroplasts, controls plant fertilization,” Plant and Cell Physiology, vol. 49, no. 2, pp. 135–141, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. C. Dumas and T. Gaude, “Fertilization in plants: is calcium a key player?” Seminars in Cell and Developmental Biology, vol. 17, no. 2, pp. 244–253, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. M. Schiøtt, S. M. Romanowsky, L. Bækgaard, M. K. Jakobsen, M. G. Palmgren, and J. F. Harper, “A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 25, pp. 9502–9507, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. M. A. M. Aboul-Soud, A. M. Aboul-Enein, and G. J. Loake, “Nitric oxide triggers specific and dose-dependent cytosolic calcium transients in Arabidopsis,” Plant Signaling and Behavior, vol. 4, no. 3, pp. 191–196, 2009. View at Scopus
  89. J. K. Zhu, “Salt and drought stress signal transduction in plants,” Annual Review of Plant Biology, vol. 53, pp. 247–273, 2002. View at Publisher · View at Google Scholar · View at Scopus
  90. J. K. Zhu, “Regulation of ion homeostasis under salt stress,” Current Opinion in Plant Biology, vol. 6, no. 5, pp. 441–445, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. C. A. Moore, H. C. Bowen, S. Scrase-Field, M. R. Knight, and P. J. White, “The deposition of suberin lamellae determines the magnitude of cytosolic Ca2+ elevations in root endodermal cells subjected to cooling,” The Plant Journal, vol. 30, no. 4, pp. 457–465, 2002. View at Publisher · View at Google Scholar · View at Scopus
  92. J. F. Harper, G. Breton, and A. Harmon, “Decoding Ca2+ signals through plant protein kinases,” Annual Review of Plant Biology, vol. 55, pp. 263–288, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. A. A. Ludwig, T. Romeis, and J. D. G. Jones, “CDPK-mediated signalling pathways: specificity and cross-talk,” Journal of Experimental Botany, vol. 55, no. 395, pp. 181–188, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. A. C. Harmon, “Calcium-regulated protein kinases of plants,” Gravitational and Space Biology Bulletin, vol. 16, no. 2, pp. 83–90, 2003. View at Scopus
  95. E. M. Hrabak, C. W. M. Chan, M. Gribskov et al., “The Arabidopsis CDPK-SnRK superfamily of protein kinases,” Plant Physiologyogy, vol. 132, no. 2, pp. 666–680, 2003. View at Publisher · View at Google Scholar · View at Scopus
  96. I. S. Day, V. S. Reddy, G. Shad Ali, and A. S. Reddy, “Analysis of EF-hand-containing proteins in Arabidopsis,” Genome Biology, vol. 3, no. 10, 2002. View at Scopus
  97. M. Boudsocq, M. J. Droillard, L. Regad, and C. Lauriere, “Characterization of Arabidopsis calcium-dependent protein kinases: activated or not by calcium?” Biochemical Journal, vol. 447, no. 2, pp. 291–299, 2012.
  98. Y. Galon, R. Aloni, D. Nachmias et al., “Calmodulin-binding transcription activator 1 mediates auxin signaling and responds to stresses in Arabidopsis,” Planta, vol. 232, no. 1, pp. 165–178, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. Y. Galon, O. Snir, and H. Fromm, “How calmodulin binding transcription activators (CAMTAs) mediate auxin responses,” Plant Signaling and Behavior, vol. 5, no. 10, pp. 1311–1314, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. Y. Qiu, J. Xi, L. Du, J. C. Suttle, and B. W. Poovaiah, “Coupling calcium/calmodulin-mediated signaling and herbivore-induced plant response through calmodulin-binding transcription factor AtSR1/CAMTA3,” Plant Molecular Biology, vol. 79, pp. 89–99, 2012.
  101. C. J. Doherty, H. A. Van Buskirk, S. J. Myers, and M. F. Thomashow, “Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance,” Plant Cell, vol. 21, no. 3, pp. 972–984, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. L. Du, G. S. Ali, K. A. Simons et al., “Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity,” Nature, vol. 457, no. 7233, pp. 1154–1158, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. N. A. Eckardt, “CAMTA proteins: a direct link between calcium signals and cold acclimation?” Plant Cell, vol. 21, no. 3, p. 697, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. J. Vadassery, S. Ranf, C. Drzewiecki et al., “A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots,” The Plant Journal, vol. 59, no. 2, pp. 193–206, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. J. Vadassery and R. Oelmüller, “Calcium signaling in pathogenic and beneficial plant microbe interactions: what can we learn from the interaction between Piriformospora indica and Arabidopsis thaliana,” Plant Signaling & Behavior, vol. 4, no. 11, pp. 1024–1027, 2009. View at Scopus
  106. S. Stael, A. G. Rocha, T. Wimberger, D. Anrather, U. C. Vothknecht, and M. Teige, “Cross-talk between calcium signalling and protein phosphorylation at the thylakoid,” Journal of Experimental Botany, vol. 63, pp. 1725–1733, 2011.
  107. K. Hashimoto and J. Kudla, “Calcium decoding mechanisms in plants,” Biochimie, vol. 93, pp. 2054–2059, 2011.
  108. O. Batistič, R. Waadt, L. Steinhorst, K. Held, and J. Kudla, “CBL-mediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores,” The Plant Journal, vol. 61, no. 2, pp. 211–222, 2010. View at Publisher · View at Google Scholar · View at Scopus
  109. O. Batistič and J. Kudla, “Plant calcineurin B-like proteins and their interacting protein kinases,” Biochimica et Biophysica Acta, vol. 1793, no. 6, pp. 985–992, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. O. Batistic, M. Rehers, A. Akerman, et al., “S-acylation-dependent association of the calcium sensor CBL2 with the vacuolar membrane is essential for proper abscisic acid responses,” Cell Research, vol. 22, pp. 1155–1168, 2012.
  111. W. Z. Lan, S. C. Lee, Y. F. Che, Y. Q. Jiang, and S. Luan, “Mechanistic analysis of AKT1 regulation by the CBL-CIPK-PP2CA interactions,” Molecular Plant, vol. 4, no. 3, pp. 527–536, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. H. L. Piao, Y. H. Xuan, S. H. Park et al., “OsCIPK31, a CBL-interacting protein kinase is involved in germination and seedling growth under abiotic stress conditions in rice plants,” Molecules and Cells, vol. 30, no. 1, pp. 19–27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. K. Held, F. Pascaud, C. Eckert et al., “Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex,” Cell Research, vol. 21, no. 7, pp. 1116–1130, 2011. View at Publisher · View at Google Scholar · View at Scopus
  114. L. Li, B. G. Kim, Y. H. Cheong, G. K. Pandey, and S. Luan, “A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 33, pp. 12625–12630, 2006. View at Publisher · View at Google Scholar · View at Scopus
  115. J. Xu, H. D. Li, L. Q. Chen et al., “A Protein Kinase, Interacting with Two Calcineurin B-like Proteins, Regulates K+ Transporter AKT1 in Arabidopsis,” Cell, vol. 125, no. 7, pp. 1347–1360, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. Y. H. Cheong, G. K. Pandey, J. J. Grant et al., “Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis,” The Plant Journal, vol. 52, no. 2, pp. 223–239, 2007. View at Publisher · View at Google Scholar · View at Scopus
  117. B. G. Kim, R. Waadt, Y. H. Cheong et al., “The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis,” The Plant Journal, vol. 52, no. 3, pp. 473–484, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. S. C. Lee, W. Z. Lan, B. G. Kim et al., “A protein phosphorylation/dephosphorylation network regulates a plant potassium channel,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 40, pp. 15959–15964, 2007. View at Publisher · View at Google Scholar · View at Scopus
  119. G. K. Pandey, J. J. Grant, Y. H. Cheong, B. G. Kim, L. G. Li, and S. Luan, “Calcineurin-B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA response in seed germination,” Molecular Plant, vol. 1, no. 2, pp. 238–248, 2008. View at Scopus
  120. H. C. Hu, Y. Y. Wang, and Y. F. Tsay, “AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response,” The Plant Journal, vol. 57, no. 2, pp. 264–278, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. S. Luan, W. Lan, and S. Chul Lee, “Potassium nutrition, sodium toxicity, and calcium signaling: connections through the CBL-CIPK network,” Current Opinion in Plant Biology, vol. 12, no. 3, pp. 339–346, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. K. N. Kim, J. S. Lee, H. Han, S. A. Choi, S. J. Go, and I. S. Yoon, “Isolation and characterization of a novel rice Ca2+-regulated protein kinase gene involved in responses to diverse signals including cold, light, cytokinins, sugars and salts,” Plant Molecular Biology, vol. 52, no. 6, pp. 1191–1202, 2003. View at Publisher · View at Google Scholar · View at Scopus
  123. P. J. White, M. R. Broadley, J. A. Thompson, et al., “Testing the distinctness of shoot ionomes of angiosperm families using the Rothamsted Park Grass Continuous Hay Experiment,” New Phytologist, vol. 196, pp. 101–109, 2012.
  124. D. Geiger, D. Becker, D. Vosloh et al., “Heteromeric AtKC1·AKT1 channels in Arabidopsis roots facilitate growth under K+-limiting conditions,” Journal of Biological Chemistry, vol. 284, no. 32, pp. 21288–21295, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. N. Tuteja and S. Mahajan, “Further characterization of calcineurin B-like protein and its interacting partner CBL-interacting protein kinase from Pisum sativum,” Plant Signaling and Behavior, vol. 2, no. 5, pp. 358–361, 2007. View at Scopus
  126. V. Tripathi, N. Syed, A. Laxmi, and D. Chattopadhyay, “Role of CIPK6 in root growth and auxin transport,” Plant Signaling and Behavior, vol. 4, no. 7, pp. 663–665, 2009. View at Publisher · View at Google Scholar · View at Scopus
  127. E. Peiter, “The plant vacuole: emitter and receiver of calcium signals,” Cell Calcium, vol. 50, no. 2, pp. 120–128, 2011. View at Publisher · View at Google Scholar · View at Scopus
  128. R. Hedrich and I. Marten, “TPC1—SV channels gain shape,” Molecular Plant, vol. 4, no. 3, pp. 428–441, 2011. View at Publisher · View at Google Scholar · View at Scopus
  129. Y. Boursiac, S. M. Lee, S. Romanowsky et al., “Disruption of the vacuolar calcium-ATPases in Arabidopsis results in the activation of a salicylic acid-dependent programmed cell death pathway,” Plant Physiologyogy, vol. 154, no. 3, pp. 1158–1171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  130. M. Iwano, T. Entani, H. Shiba et al., “Fine-Tuning of the cytoplasmic Ca2+ concentration is essential for pollen tube growth,” Plant Physiologyogy, vol. 150, no. 3, pp. 1322–1334, 2009. View at Publisher · View at Google Scholar · View at Scopus
  131. M. Michalak, J. Groenendyk, E. Szabo, L. I. Gold, and M. Opas, “Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum,” Biochemical Journal, vol. 417, no. 3, pp. 651–666, 2009. View at Publisher · View at Google Scholar · View at Scopus
  132. D. E. Clapham, “Calcium Signaling,” Cell, vol. 131, no. 6, pp. 1047–1058, 2007. View at Publisher · View at Google Scholar · View at Scopus
  133. L. E. V. Del Bem, “The evolutionary history of calreticulin and calnexin genes in green plants,” Genetica, vol. 139, no. 2, pp. 255–259, 2011. View at Publisher · View at Google Scholar · View at Scopus
  134. J. P. Lièvremont, R. Rizzuto, L. Hendershot, and J. Meldolesi, “BiP, a major chaperone protein of the endoplasmic reticulum lumen, plays a direct and important role in the storage of the rapidly exchanging pool of Ca2+,” Journal of Biological Chemistry, vol. 272, no. 49, pp. 30873–30879, 1997. View at Publisher · View at Google Scholar · View at Scopus
  135. S. Persson, M. Rosenquist, K. Svensson, R. Galvão, W. F. Boss, and M. Sommarin, “Phylogenetic analyses and expression studies reveal two distinct groups of calreticulin isoforms in higher plants,” Plant Physiologyogy, vol. 133, no. 3, pp. 1385–1396, 2003. View at Publisher · View at Google Scholar · View at Scopus
  136. A. Christensen, K. Svensson, L. Thelin et al., “Higher plant calreticulins have acquired specialized functions in Arabidopsis,” PLoS ONE, vol. 5, no. 6, p. e11342, 2010. View at Publisher · View at Google Scholar · View at Scopus
  137. M. H. Chen, G. W. Tian, Y. Gafni, and V. Citovsky, “Effects of calreticulin on viral cell-to-cell movement,” Plant Physiologyogy, vol. 138, no. 4, pp. 1866–1876, 2005. View at Publisher · View at Google Scholar · View at Scopus
  138. Y. Saito, Y. Ihara, M. R. Leach, M. F. Cohen-Doyle, and D. B. Williams, “Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins,” The EMBO Journal, vol. 18, no. 23, pp. 6718–6729, 1999. View at Scopus
  139. X. Y. Jia, L. H. He, R. L. Jing, and R. Z. Li, “Calreticulin: conserved protein and diverse functions in plants,” Physiologia Plantarum, vol. 136, no. 2, pp. 127–138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  140. I. L. Conte, N. Keith, C. Gutiérrez-González, A. J. Parodi, and J. J. Caramelo, “The interplay between calcium and the in vitro lectin and chaperone activities of calreticulin,” Biochemistry, vol. 46, no. 15, pp. 4671–4680, 2007. View at Publisher · View at Google Scholar · View at Scopus
  141. A. Christensen, K. Svensson, S. Persson et al., “Functional characterization of Arabidopsis calreticulin1a: a key alleviator of endoplasmic reticulum stress,” Plant and Cell Physiology, vol. 49, no. 6, pp. 912–924, 2008. View at Publisher · View at Google Scholar · View at Scopus
  142. H. Jin, Z. Hong, W. Su, and J. Li, “A plant-specific calreticulin is a key retention factor for a defective brassinosteroid receptor in the endoplasmic reticulum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 32, pp. 13612–13617, 2009. View at Publisher · View at Google Scholar · View at Scopus
  143. Y. Saijo, N. Tintor, X. Lu et al., “Receptor quality control in the endoplasmic reticulum for plant innate immunity,” The EMBO Journal, vol. 28, no. 21, pp. 3439–3449, 2009. View at Publisher · View at Google Scholar · View at Scopus
  144. Y. Qiu, J. Xi, L. Du, and B. W. Poovaiah, “The function of calreticulin in plant immunity: new discoveries for an old protein,” Plant Signaling & Behaviorv, vol. 7, no. 8, pp. 907–910, 2012. View at Publisher · View at Google Scholar
  145. Y. Qiu, J. Xi, L. Du, S. Roje, and B. W. Poovaiah, “A dual regulatory role ofArabidopsiscalreticulin-2 in plant innate immunity,” The Plant Journal, vol. 69, pp. 489–500, 2011.
  146. J. Li, Z. H. Chu, M. Batoux et al., “Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 37, pp. 15973–15978, 2009. View at Publisher · View at Google Scholar · View at Scopus
  147. Y. Q. An, R. M. Lin, F. T. Wang, J. Feng, Y. F. Xu, and S. C. Xu, “Molecular cloning of a new wheat calreticulin gene TaCRT1 and expression analysis in plant defense responses and abiotic stress resistance,” Genetics and Molecular Research, vol. 10, pp. 3576–3585, 2011.
  148. J. L. Caplan, X. Zhu, P. Mamillapalli, R. Marathe, R. Anandalakshmi, and S. P. Dinesh-Kumar, “Induced ER chaperones regulate a receptor-like kinase to mediate antiviral innate immune response in plants,” Cell Host and Microbe, vol. 6, no. 5, pp. 457–469, 2009. View at Publisher · View at Google Scholar · View at Scopus
  149. H. G. Kang, C. S. Oh, M. Sato et al., “Endosome-associated CRT1 functions early in Resistance gene-mediated defense signaling in Arabidopsis and tobacco,” Plant Cell, vol. 22, no. 3, pp. 918–936, 2010. View at Publisher · View at Google Scholar · View at Scopus
  150. X. Y. Jia, C. Y. Xu, R. L. Jing et al., “Molecular cloning and characterization of wheat calreticulin (CRT) gene involved in drought-stressed responses,” Journal of Experimental Botany, vol. 59, no. 4, pp. 739–751, 2008. View at Publisher · View at Google Scholar · View at Scopus
  151. I. Hwang, J. F. Harper, F. Liang, and H. Sze, “Calmodulin activation of an endoplasmic reticulum-located calcium pump involves an interaction with the N-terminal autoinhibitory domain,” Plant Physiologyogy, vol. 122, no. 1, pp. 157–167, 2000. View at Scopus
  152. I. Hwang, H. Sze, and J. F. Harper, “A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 11, pp. 6224–6229, 2000. View at Scopus
  153. Z. Wu, F. Liang, B. Hong et al., “An endoplasmic reticulum-bound Ca2+/Mn2+ pump, ECA1, supports plant growth and confers tolerance to Mn2+ stress,” Plant Physiologyogy, vol. 130, no. 1, pp. 128–137, 2002. View at Publisher · View at Google Scholar · View at Scopus
  154. J. W. Putney, “Recent breakthroughs in the molecular mechanism of capacitative calcium entry (with thoughts on how we got here),” Cell Calcium, vol. 42, no. 2, pp. 103–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  155. V. S. Reddy and A. S. N. Reddy, “Proteomics of calcium-signaling components in plants,” Phytochemistry, vol. 65, no. 12, pp. 1745–1776, 2004. View at Publisher · View at Google Scholar · View at Scopus
  156. H. J. Whalley, A. W. Sargeant, J. F. Steele et al., “Transcriptomic analysis reveals calcium regulation of specific promoter motifs in Arabidopsis,” Plant Cell, vol. 23, pp. 4079–4095, 2011.
  157. C. H. Johnson, M. R. Knight, T. Kondo et al., “Circadian oscillations of cytosolic and chloroplastic free calcium in plants,” Science, vol. 269, no. 5232, pp. 1863–1865, 1995. View at Scopus
  158. P. L. Tsou, S. Y. Lee, N. S. Allen, H. Winter-Sederoff, and D. Robertson, “An ER-targeted calcium-binding peptide confers salt and drought tolerance mediated by CIPK6 inArabidopsis,” Planta, vol. 235, pp. 539–552, 2011.
  159. D. Winter, B. Vinegar, H. Nahal, R. Ammar, G. V. Wilson, and N. J. Provart, “An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets,” PloS ONE, vol. 2, no. 1, p. e718, 2007. View at Scopus
  160. M. R. Broadley and P. J. White, “Eats roots and leaves. Can edible horticultural crops address dietary calcium, magnesium and potassium deficiencies?” Proceedings of the Nutrition Society, vol. 69, no. 4, pp. 601–612, 2010. View at Publisher · View at Google Scholar · View at Scopus
  161. S. Conn and M. Gilliham, “Comparative physiology of elemental distributions in plants,” Annals of Botany, vol. 105, no. 7, pp. 1081–1102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  162. S. J. Conn, M. Gilliham, A. Athman et al., “Cell-specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis,” Plant Cell, vol. 23, no. 1, pp. 240–257, 2011. View at Publisher · View at Google Scholar · View at Scopus
  163. M. Gilliham, M. Dayod, B. J. Hocking et al., “Calcium delivery and storage in plant leaves: exploring the link with water flow,” Journal of Experimental Botany, vol. 62, no. 7, pp. 2233–2250, 2011. View at Publisher · View at Google Scholar · View at Scopus
  164. M. Kerton, H. J. Newbury, D. Hand, and J. Pritchard, “Accumulation of calcium in the centre of leaves of coriander (Coriandrum sativum L.) is due to an uncoupling of water and ion transport,” Journal of Experimental Botany, vol. 60, no. 1, pp. 227–235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  165. V. Demidchik, H. C. Bowen, F. J. M. Maathuis et al., “Arabidopsis thaliana root non-selective cation channels mediate calcium uptake and are involved in growth,” The Plant Journal, vol. 32, no. 5, pp. 799–808, 2002. View at Publisher · View at Google Scholar · View at Scopus
  166. W. Y. Song, K. S. Choi, A. Alexis de, E. Martinoia, and Y. Lee, “Brassica juncea plant cadmium resistance 1 protein (BjPCR1) facilitates the radial transport of calcium in the root,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, pp. 19808–19813, 2011.
  167. I. Baxter, P. S. Hosmani, A. Rus et al., “Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis,” PLoS Genetics, vol. 5, no. 5, Article ID e1000492, 2009. View at Publisher · View at Google Scholar · View at Scopus
  168. P. J. White, “The pathways of calcium movement to the xylem,” Journal of Experimental Botany, vol. 52, no. 358, pp. 891–899, 2001. View at Scopus
  169. H. Q. Yang and Y. L. Jie, “Uptake and transport of calcium in plants,” Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao, vol. 31, no. 3, pp. 227–234, 2005. View at Scopus
  170. W. Y. Song, Z. B. Zhang, H. B. Shao et al., “Relationship between calcium decoding elements and plant abiotic-stress resistance,” International Journal of Biological Sciences, vol. 4, no. 2, pp. 116–125, 2008. View at Scopus
  171. I. Baxter, C. Hermans, B. Lahner et al., “Biodiversity of mineral nutrient and trace element accumulation inArabidopsis thaliana,” PLoS ONE, vol. 7, Article ID e35121, 2012.
  172. Z. Gao, X. He, B. Zhao et al., “Overexpressing a putative aquaporin gene from wheat, TaNIP, enhances salt tolerance in transgenic Arabidopsis,” Plant and Cell Physiology, vol. 51, no. 5, pp. 767–775, 2010. View at Publisher · View at Google Scholar · View at Scopus
  173. R. Aroca, R. Porcel, and J. M. Ruiz-Lozano, “Regulation of root water uptake under abiotic stress conditions,” Journal of Experimental Botany, vol. 63, pp. 43–57, 2012.
  174. S. Han, R. Tang, L. K. Anderson, T. E. Woerner, and Z. M. Pei, “A cell surface receptor mediates extracellular Ca2+ sensing in guard cells,” Nature, vol. 425, no. 6954, pp. 196–200, 2003. View at Publisher · View at Google Scholar · View at Scopus
  175. M. Heinlein, “Plasmodesmata: dynamic regulation and role in macromolecular cell-to-cell signaling,” Current Opinion in Plant Biology, vol. 5, no. 6, pp. 543–552, 2002. View at Publisher · View at Google Scholar · View at Scopus
  176. E. Bayer, C. L. Thomas, and A. J. Maule, “Plasmodesmata in Arabidopsis thaliana suspension cells,” Protoplasma, vol. 223, no. 2–4, pp. 93–102, 2004. View at Scopus
  177. F. Baluška, J. Šamaj, R. Napier, and D. Volkmann, “Maize calreticulin localizes preferentially to plasmodesmata in root apex,” The Plant Journal, vol. 19, no. 4, pp. 481–488, 1999. View at Publisher · View at Google Scholar · View at Scopus
  178. E. B. Tucker and W. F. Boss, “Mastoparan-induced intracellular Ca2+ fluxes may regulate cell-to-cell communication in plants,” Plant Physiologyogy, vol. 111, no. 2, pp. 459–467, 1996. View at Scopus
  179. L. C. Cantrill, R. L. Overall, and P. B. Goodwin, “Cell-to-cell communication via plant endomembranes,” Cell Biology International, vol. 23, no. 10, pp. 653–661, 1999. View at Publisher · View at Google Scholar · View at Scopus
  180. H. J. Martens, A. G. Roberts, K. J. Oparka, and A. Schulz, “Quantification of plasmodesmatal endoplasmic reticulum coupling between sieve elements and companion cells using fluorescence redistribution after photobleaching,” Plant Physiologyogy, vol. 142, no. 2, pp. 471–480, 2006. View at Publisher · View at Google Scholar · View at Scopus
  181. D. Guenoune-Gelbart, M. Elbaum, G. Sagi, A. Levy, and B. L. Epel, “Tobacco mosaic virus (TMV) replicase and movement protein function synergistically in facilitating TMV spread by lateral diffusion in the plasmodesmal desmotubule of Nicotiana benthamiana,” Molecular Plant-Microbe Interactions, vol. 21, no. 3, pp. 335–345, 2008. View at Publisher · View at Google Scholar · View at Scopus
  182. T. L. Holdaway-Clarke, N. A. Walker, P. K. Hepler, and R. L. Overall, “Physiological elevations in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plasmodesmata,” Planta, vol. 210, no. 2, pp. 329–335, 2000. View at Scopus
  183. P. K. Hepler, “Calcium: a central regulator of plant growth and development,” Plant Cell, vol. 17, no. 8, pp. 2142–2155, 2005. View at Publisher · View at Google Scholar · View at Scopus
  184. T. Suzuki, S. Nakajima, A. Morikami, and K. Nakamura, “An Arabidopsis protein with a novel calcium-binding repeat sequence interacts with TONSOKU/MGOUN3/BRUSHY1 involved in meristem maintenance,” Plant and Cell Physiology, vol. 46, no. 9, pp. 1452–1461, 2005. View at Publisher · View at Google Scholar · View at Scopus
  185. L. Wordeman, “How kinesin motor proteins drive mitotic spindle function: lessons from molecular assays,” Seminars in Cell and Developmental Biology, vol. 21, no. 3, pp. 260–268, 2010. View at Publisher · View at Google Scholar · View at Scopus
  186. Z. Li and S. Komatsu, “Molecular cloning and characterization of calreticulin, a calcium- binding protein involved in the regeneration of rice cultured suspension cells,” European Journal of Biochemistry, vol. 267, no. 3, pp. 737–745, 2000. View at Publisher · View at Google Scholar · View at Scopus
  187. A. J. Karley and P. J. White, “Moving cationic minerals to edible tissues: potassium, magnesium, calcium,” Current Opinion in Plant Biology, vol. 12, no. 3, pp. 291–298, 2009. View at Publisher · View at Google Scholar · View at Scopus
  188. K. D. Hirschi, “Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity,” Plant Cell, vol. 11, no. 11, pp. 2113–2122, 1999. View at Publisher · View at Google Scholar · View at Scopus
  189. T. Punshon, K. Hirschi, J. Yang, A. Lanzirotti, B. Lai, and M. L. Guerinot, “The role of CAX1 and CAX3 in elemental distribution and abundance inArabidopsisseed,” Plant Physiology, vol. 158, pp. 352–362, 2011.
  190. J. K. Pittman and K. D. Hirschi, “Regulation of CAX1, an Arabidopsis Ca2+/H+ antiporter. Identification of an N-terminal autoinhibitory domain,” Plant Physiologyogy, vol. 127, no. 3, pp. 1020–1029, 2001. View at Publisher · View at Google Scholar · View at Scopus
  191. S. Park, T. S. Kang, C. K. Kim et al., “Genetic manipulation for enhancing calcium content in potato tuber,” Journal of Agricultural and Food Chemistry, vol. 53, no. 14, pp. 5598–5603, 2005. View at Publisher · View at Google Scholar · View at Scopus
  192. C. K. Kim, J. S. Han, H. S. Lee et al., “Expression of an Arabidopsis CAX2 variant in potato tubers increases calcium levels with no accumulation of manganese,” Plant Cell Reports, vol. 25, no. 11, pp. 1226–1232, 2006. View at Publisher · View at Google Scholar · View at Scopus
  193. S. Park, N. H. Cheng, J. K. Pittman et al., “Increased calcium levels and prolonged shelf life in tomatoes expressing Arabidopsis H+/Ca2+ transporters,” Plant Physiologyogy, vol. 139, no. 3, pp. 1194–1206, 2005. View at Publisher · View at Google Scholar · View at Scopus
  194. H. Mei, N. H. Cheng, J. Zhao et al., “Root development under metal stress in Arabidopsis thaliana requires the H+/cation antiporter CAX4,” New Phytologistogist, vol. 183, no. 1, pp. 95–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  195. N. H. Cheng, J. K. Pittman, B. J. Barkla, T. Shigaki, and K. D. Hirschi, “The Arabidopsis cax1 mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters,” Plant Cell, vol. 15, no. 2, pp. 347–364, 2003. View at Publisher · View at Google Scholar · View at Scopus
  196. N. H. Cheng, J. K. Pittman, J. K. Zhu, and K. D. Hirschi, “The protein kinase SOS2 activates the Arabidopsis H+/Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance,” Journal of Biological Chemistry, vol. 279, no. 4, pp. 2922–2926, 2004. View at Publisher · View at Google Scholar · View at Scopus
  197. J. Zhao, B. J. Barkla, J. Marshall, J. K. Pittman, and K. D. Hirschi, “The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity,” Planta, vol. 227, no. 3, pp. 659–669, 2008. View at Publisher · View at Google Scholar · View at Scopus
  198. Q. Wu, T. Shigaki, K. A. Williams et al., “Expression of an Arabidopsis Ca2+/H+ antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation,” Journal of Plant Physiologyogy, vol. 168, no. 2, pp. 167–173, 2011. View at Publisher · View at Google Scholar · View at Scopus
  199. T. Shigaki, H. Mei, J. Marshall, X. Li, M. Manohar, and K. D. Hirschi, “The expression of the open reading frame of Arabidopsis CAX1, but not its cDNA, confers metal tolerance in yeast,” Plant Biology, vol. 12, no. 6, pp. 935–939, 2010. View at Scopus
  200. V. Koren'kov, S. Park, N. H. Cheng et al., “Enhanced Cd2+-selective root-tonoplast-transport in tobaccos expressing Arabidopsis cation exchangers,” Planta, vol. 225, no. 2, pp. 403–411, 2007. View at Publisher · View at Google Scholar · View at Scopus
  201. V. Korenkov, B. King, K. Hirschi, and G. J. Wagner, “Root-selective expression of AtCAX4 and AtCAX2 results in reduced lamina cadmium in field-grown Nicotiana tabacum L.,” Plant Biotechnology Journal, vol. 7, no. 3, pp. 219–226, 2009. View at Publisher · View at Google Scholar · View at Scopus
  202. T. Y. Liu, K. Aung, C. Y. Tseng, T. Y. Chang, Y. S. Chen, and T. J. Chiou, “Vacuolar Ca2+/H+ transport activity is required for systemic phosphate homeostasis involving shoot-to-root signaling in Arabidopsis,” Plant Physiologyogy, vol. 156, no. 3, pp. 1176–1189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  203. P. C. Dekock, D. Vaughan, a. Hall, and C. Ord, “Biochemical studies on blossom end rot [caused mainly by calcium deficiency] of tomatoes,” Plant Physiology, vol. 48, pp. 312–316, 1980.
  204. H. E. Johnson, D. Broadhurst, R. Goodacre, and A. R. Smith, “Metabolic fingerprinting of salt-stressed tomatoes,” Phytochemistry, vol. 62, no. 6, pp. 919–928, 2003. View at Publisher · View at Google Scholar · View at Scopus
  205. M. D. Taylor and S. J. Locascio, “Blossom-end rot: a calcium deficiency,” Journal of Plant Nutrition, vol. 27, no. 1, pp. 123–139, 2004. View at Publisher · View at Google Scholar · View at Scopus
  206. S. T. de Freitas, M. Padda, Q. Wu, S. Park, and E. J. Mitcham, “Dynamic alternations in cellular and molecular components during blossom-end rot development in tomatoes expressing sCAX1, a constitutively active Ca2+/H+ antiporter from Arabidopsis,” Plant Physiologyogy, vol. 156, no. 2, pp. 844–855, 2011. View at Publisher · View at Google Scholar · View at Scopus
  207. G. Z. Luo, H. W. Wang, J. Huang et al., “A putative plasma membrane cation/proton antiporter from soybean confers salt tolerance in Arabidopsis,” Plant Molecular Biology, vol. 59, no. 5, pp. 809–820, 2005. View at Publisher · View at Google Scholar · View at Scopus
  208. K. H. Krause and M. Michalak, “Calreticulin,” Cell, vol. 88, no. 4, pp. 439–443, 1997. View at Publisher · View at Google Scholar · View at Scopus
  209. P. D. Nash, M. Opas, and M. Michalak, “Calreticulin: not just another calcium-binding protein,” Molecular and Cellular Biochemistry, vol. 135, no. 1, pp. 71–78, 1994. View at Scopus
  210. J. Meldolesi, K. H. Krause, and M. Michalak, “Calreticulin: how many functions in how many cellular compartments?” Cell Calcium, vol. 20, no. 1, pp. 83–86, 1996. View at Publisher · View at Google Scholar · View at Scopus
  211. M. Michalak, P. Mariani, and M. Opas, “Calreticulin, a multifunctional Ca2+ binding chaperone of the endoplasmic reticulum,” Biochemistry and Cell Biology, vol. 76, no. 5, pp. 779–785, 1998. View at Publisher · View at Google Scholar · View at Scopus
  212. M. S. Kwon, C. S. Park, K. R. Choi et al., “Calreticulin couples calcium release and calcium influx in integrin- mediated calcium signaling,” Molecular Biology of the Cell, vol. 11, no. 4, pp. 1433–1443, 2000. View at Scopus
  213. P. B. Simpson, S. Mehotra, D. Langley, C. A. Sheppard, and J. T. Russell, “Specialized distributions of mitochondria and endoplasmic reticulum proteins define Ca2+ wave amplification sites in cultured astrocytes,” Journal of Neuroscience Research, vol. 52, pp. 672–683, 1998.
  214. M. Opas, M. Szewczenko-Pawlikowski, G. K. Jass, N. Mesaeli, and M. Michalak, “Calreticulin modulates cell adhesiveness via regulation of vinculin expression,” Journal of Cell Biology, vol. 135, no. 6, pp. 1913–1923, 1996. View at Publisher · View at Google Scholar · View at Scopus
  215. L. Perrone, G. Tell, and R. Di Lauro, “Calreticulin enhances the transcriptional activity of thyroid transcription factor-1 by binding to its homeodomain,” Journal of Biological Chemistry, vol. 274, no. 8, pp. 4640–4645, 1999. View at Publisher · View at Google Scholar · View at Scopus
  216. H. Liu, R. C. Bowes, B. Van De Water, C. Sillence, J. F. Nagelkerke, and J. L. Stevens, “Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+ disturbances, and cell death in renal epithelial cells,” Journal of Biological Chemistry, vol. 272, no. 35, pp. 21751–21759, 1997. View at Publisher · View at Google Scholar · View at Scopus
  217. L. Mery, N. Mesaeli, M. Michalak, M. Opas, D. P. Lew, and K. H. Krause, “Overexpression of calreticulin increases intracellular Ca2+ storage and decreases store-operated Ca2+ influx,” Journal of Biological Chemistry, vol. 271, no. 16, pp. 9332–9339, 1996. View at Scopus
  218. H. L. Roderick, D. H. Llewellyn, A. K. Campbell, and J. M. Kendall, “Role of calreticulin regulating intracellular Ca2+ storage and capacitative Ca2+ entry in HeLa cells,” Cell Calcium, vol. 24, no. 4, pp. 253–262, 1998. View at Scopus
  219. C. Fasolato, P. Pizzo, and T. Pozzan, “Delayed activation of the store-operated calcium current induced by calreticulin overexpression in RBL-1 cells,” Molecular Biology of the Cell, vol. 9, no. 6, pp. 1513–1522, 1998. View at Scopus
  220. J. Denecke, L. E. Carisson, S. Vidal, et al., “The tobacco homolog of mammalia calreticulin is present in protein complexes in vivo,” Plant Cell, vol. 7, pp. 391–406, 1995.
  221. C. Bastianutto, E. Clementi, F. Codazzi et al., “Overexpression of calreticulin increases the Ca2+ capacity of rapidly exchanging Ca2+ stores and reveals aspects of their lumenal microenvironment and function,” Journal of Cell Biology, vol. 130, no. 4, pp. 847–855, 1995. View at Publisher · View at Google Scholar · View at Scopus
  222. S. Persson, S. E. Wyatt, J. Love, W. F. Thompson, D. Robertson, and W. F. Boss, “The Ca2+ status of the endoplasmic reticulum is altered by induction of calreticulin expression in transgenic plants,” Plant Physiologyogy, vol. 126, no. 3, pp. 1092–1104, 2001. View at Publisher · View at Google Scholar · View at Scopus
  223. S. E. Wyatt, P. L. Tsou, and D. Robertson, “Expression of the high capacity calcium-binding domain of calreticulin increases bioavailable calcium stores in plants,” Transgenic Research, vol. 11, no. 1, pp. 1–10, 2002. View at Publisher · View at Google Scholar · View at Scopus
  224. F. Brandizzi, S. Hanton, L. L. Pinto DaSilva et al., “ER quality control can lead to retrograde transport from the ER lumen to the cytosol and the nucleoplasm in plants,” The Plant Journal, vol. 34, no. 3, pp. 269–281, 2003. View at Publisher · View at Google Scholar · View at Scopus
  225. Z. L. Jin, K. H. Joon, A. Y. Kyung et al., “Over-expression of Chinese cabbage calreticulin 1, BrCRT1, enhances shoot and root regeneration, but retards plant growth in transgenic tobacco,” Transgenic Research, vol. 14, no. 5, pp. 619–626, 2005. View at Publisher · View at Google Scholar · View at Scopus
  226. S. Y. Lee, The involvement of ER calcium in abiotic stress tolerance [Ph.D. thesis], 2010.
  227. U. Halfter, M. Ishitani, and J. K. Zhu, “The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 7, pp. 3735–3740, 2000. View at Publisher · View at Google Scholar · View at Scopus
  228. M. Ishitani, J. Liu, U. Halfter, C. S. Kim, W. Shi, and J. K. Zhu, “SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding,” Plant Cell, vol. 12, no. 9, pp. 1667–1677, 2000. View at Publisher · View at Google Scholar · View at Scopus
  229. D. Gong, Y. Guo, K. S. Schumaker, and J. K. Zhu, “The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis,” Plant Physiologyogy, vol. 134, no. 3, pp. 919–926, 2004. View at Publisher · View at Google Scholar · View at Scopus
  230. M. Nieves-Cordones, F. Caballero, V. Martinez, and F. Rubio, “Disruption of theArabidopsis thalianainward-rectifier K+ channel AKT1 improves plant responses to water stress,” Plant and Cell Physiology, vol. 53, pp. 423–432, 2012.
  231. P. H. McCord, Genetic, genomic, and transgenic approaches to understand internal heat necrosis in potato [Ph.D. thesis], 2009.
  232. G. C. Yencho, P. H. McCord, K. G. Haynes, and S. B. R. Sterrett, “Internal heat necrosis of potato—a review,” American Journal of Potato Research, vol. 85, no. 1, pp. 69–76, 2008. View at Publisher · View at Google Scholar · View at Scopus
  233. W. S. Blair, H. P. Bogerd, S. J. Madore, and B. R. Cullen, “Mutational analysis of the transcription activation domain of RelA: identification of a highly synergistic minimal acidic activation module,” Molecular and Cellular Biology, vol. 14, no. 11, pp. 7226–7234, 1994. View at Scopus
  234. S. T. de Freitas, A. K. Handa, Q. Wu, S. Park, and E. J. Mitcham, “Role of pectin methylesterases in cellular calcium distribution and blossom-end rot development in tomato fruit,” The Plant Journal, vol. 71, pp. 824–835, 2012.
  235. Q. Wu, T. Shigaki, J. S. Han, C. K. Kim, K. D. Hirschi, and S. Park, “Ectopic expression of a maize calreticulin mitigates calcium deficiency-like disorders in sCAX1-expressing tobacco and tomato,” Plant Molecular Biology, vol. 80, pp. 609–619, 2012.
  236. R. Reid and J. Hayes, “Mechanisms and control of nutrient uptake in plants,” International Review of Cytology, vol. 229, pp. 73–114, 2003. View at Publisher · View at Google Scholar · View at Scopus
  237. S. J. Conn, P. Berninger, M. R. Broadley, and M. Gilliham, “Exploiting natural variation to uncover candidate genes that control element accumulation inArabidopsis thaliana,” New Phytologistogist, vol. 193, pp. 859–866, 2012.
  238. B. J. Heyen, M. K. Alsheikh, E. A. Smith, C. F. Torvik, D. F. Seals, and S. K. Randall, “The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation,” Plant Physiologyogy, vol. 130, no. 2, pp. 675–687, 2002. View at Publisher · View at Google Scholar · View at Scopus
  239. K. Yuasa and M. Maeshima, “Purification, properties, and molecular cloning of a novel Ca2+-binding protein in radish vacuoles,” Plant Physiologyogy, vol. 124, no. 3, pp. 1069–1078, 2000. View at Scopus
  240. B. Dadacz-Narloch, D. Beyhl, C. Larisch, et al., “A novel calcium binding site in the slow vacuolar cation channel TPC1 senses luminal calcium levels,” Plant Cell, vol. 23, pp. 2696–2707, 2011.
  241. J. J. Rios, S. O. Lochlainn, J. Devonshire, et al., “Distribution of calcium (Ca) and magnesium (Mg) in the leaves of Brassica rapa under varying exogenous Ca and Mg supply,” Annals of Botany, vol. 109, pp. 1081–1089, 2012.
  242. E. L. Connolly, “Raising the bar for biofortification: enhanced levels of bioavailable calcium in carrots,” Trends in Biotechnology, vol. 26, no. 8, pp. 401–403, 2008. View at Publisher · View at Google Scholar · View at Scopus
  243. S. Park, M. P. Elless, J. Park et al., “Sensory analysis of calcium-biofortified lettuce,” Plant Biotechnology Journal, vol. 7, no. 1, pp. 106–117, 2009. View at Publisher · View at Google Scholar · View at Scopus