About this Journal Submit a Manuscript Table of Contents
ISRN Analytical Chemistry
Volume 2014 (2014), Article ID 391836, 8 pages
http://dx.doi.org/10.1155/2014/391836
Research Article

Altered Metabolic Profile in Congenital Lung Lesions Revealed by 1H Nuclear Magnetic Resonance Spectroscopy

1Department of Medical and Biological Sciences, University of Udine, Piazzale M. Kolbe 4, 33100 Udine, Italy
2Department of the Mother and Child Health, Pediatric Surgery Unit, IRCCS Policlinico San Matteo Foundation Pavia and University of Pavia, 27100 Pavia, Italy
3Department of the Mother and Child Health, Pediatric Unit, IRCCS Policlinico San Matteo Foundation Pavia and Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
4Pediatric Surgery, Orthopaedics and Bioengineering Laboratory, Research Institute, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
5Pediatric Surgery, Fetal Program, Vall d'Hebron University Hospital, 08035 Barcelona, Spain

Received 11 November 2013; Accepted 17 December 2013; Published 29 January 2014

Academic Editors: T. Fossen and I. Zhukov

Copyright © 2014 Maria Chiara Mimmi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Congenital lung lesions are highly complex with respect to pathogenesis and treatment. Large-scale analytical methods, like metabolomics, are now available to identify biomarkers of pathological phenotypes and to facilitate clinical management. Nuclear magnetic resonance (NMR) is a unique tool for translational research, as in vitro results can be potentially translated into in vivo magnetic resonance protocols. Three surgical biopsies, from congenital lung malformations, were analyzed in comparison with one control sample. Extracted hydrophilic metabolites were submitted to high resolution 1H NMR spectroscopy and the relative concentration of 12 metabolites was estimated. In addition, two-dimensional NMR measurements were performed to complement the results obtained from standard monodimensional experiments. This is one of the first reports of in vitro metabolic profiling of congenital lung malformation. Preliminary data on a small set of samples highlights some altered metabolic ratios, dealing with the glucose conversion to lactate, to the relative concentration of phosphatidylcholine precursors, and to the presence of myoinositol. Interestingly some relations between congenital lung lesions and cancer metabolic alterations are found.