About this Journal Submit a Manuscript Table of Contents
ISRN Materials Science
Volume 2014 (2014), Article ID 454691, 11 pages
http://dx.doi.org/10.1155/2014/454691
Research Article

Gas Bubbles Expansion and Physical Dependences in Aluminum Electrolysis Cell: From Micro- to Macroscales Using Lattice Boltzmann Method

NSERC/Alcoa Industrial Research Chair MACE3 and Aluminium Research Centre (REGAL), Laval University, Quebec, QC, Canada G1V 0A6

Received 29 October 2013; Accepted 5 January 2014; Published 23 February 2014

Academic Editors: C. Carbonaro and A. O. Neto

Copyright © 2014 Mouhamadou Diop et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Keunings, “Advances in the computer modeling of the flow of polymeric liquids,” Computational Fluid Dynamics Journal, vol. 9, pp. 449–458, 2001.
  2. L. Lefebvre and R. Keunings, “Numerical simulation of chemically-reacting polymer flows,” in Proceedings of the 1st European Computational Fluid Dynamics Conference, vol. 2, pp. 1133–1138, Brussels, Belgium, September 1992.
  3. A. Arefmanesh and S. G. Advani, “Diffusion-induced growth of a gas bubble in a viscoelastic fluid,” Rheologica Acta, vol. 30, no. 3, pp. 274–283, 1991. View at Publisher · View at Google Scholar · View at Scopus
  4. D. F. Baldwin, C. B. Park, and N. P. Suh, “Microcellular sheet extrusion system process design models for shaping and cell growth control,” Polymer Engineering & Science, vol. 38, no. 4, pp. 674–688, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Benzi, S. Succi, and M. Vergassola, “The lattice Boltzmann equation: theory and applications,” Physics Report, vol. 222, no. 3, pp. 145–197, 1992. View at Publisher · View at Google Scholar · View at Scopus
  6. P. L. Bhatnagar, E. P. Gross, and M. Krook, “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems,” Physical Review, vol. 94, no. 3, pp. 511–525, 1954. View at Publisher · View at Google Scholar · View at Scopus
  7. J. H. Han and C. D. Han, “Bubble nucleation in polymeric liquids. I. Bubble nucleation in concentrated polymer solutions,” Journal of Polymer Science B, vol. 28, no. 5, pp. 711–741, 1990. View at Publisher · View at Google Scholar · View at Scopus
  8. J. H. Han and C. D. Han, “Bubble nucleation in polymeric liquids. II. Theoretical considerations,” Journal of Polymer Science B, vol. 28, no. 5, pp. 743–761, 1990. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Hutzler, D. Weaire, and F. Bolton, “The effects of Plateau borders in the two-dimensional soap froth. III. Further results,” Philosophical Magazine B, vol. 71, no. 3, pp. 277–289, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Isenberg, The Science of Films and Soap Bubbles, Dover, New York, NY, USA, 1992.
  11. D. Weaire and R. Phelan, “A counter-example to Kelvin's conjecture on minimal surfaces,” Philosophical Magazine Letters, vol. 69, no. 2, pp. 107–110, 1994. View at Publisher · View at Google Scholar
  12. J. U. Brackbill, D. B. Kothe, and C. Zemach, “A continuum method for modeling surface tension,” Journal of Computational Physics, vol. 100, no. 2, pp. 335–354, 1992. View at Publisher · View at Google Scholar · View at Scopus
  13. N. S. Ramesh, D. H. Rasmussen, and G. A. Campbell, “Numerical and experimental studies of bubble growth during the microcellular foaming process,” Polymer Engineering & Science, vol. 31, no. 23, pp. 1657–1664, 1991. View at Publisher · View at Google Scholar
  14. L. E. Scriven, “On the dynamics of phase growth,” Chemical Engineering Science, vol. 10, no. 1-2, pp. 1–13, 1959. View at Publisher · View at Google Scholar · View at Scopus
  15. D. L. Weaire and S. Hutzler, The Physics of Foams, Oxford University Press, New York, NY, USA, 1999.
  16. R. Clift, J. R. Grace, and M. Weber, Bubbles, Drops and Particles, Academic Press, New York, NY, USA, 2002.
  17. F. Bolton and D. Weaire, “The effects of Plateau borders in the two-dimensional soap froth I. Decoration lemma and diffusion theorem,” Philosophical Magazine B, vol. 63, no. 4, pp. 795–809, 1991. View at Publisher · View at Google Scholar · View at Scopus
  18. J. M. Buick, Lattice Boltzmann methods in interfacial wave modelling [Ph.D. thesis], University of Edinburgh, Edinburgh, Scotland, 1997.
  19. J. W. Bullard, E. J. Garboczi, W. C. Carter, and E. R. Fuller Jr., “Numerical methods for computing interfacial mean curvature,” Computational Materials Science, vol. 4, no. 2, pp. 103–116, 1995. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Cao, S. Chen, S. Jin, and D. Martinez, “Physical symmetry and lattice symmetry in the lattice Boltzmann method,” Physical Review E, vol. 55, no. 1, pp. R21–R28, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. X. He and L.-S. Luo, “A priori derivation of the lattice Boltzmann equation,” Physical Review E, vol. 55, no. 6, pp. R6333–R6336, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. X. He and L.-S. Luo, “Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation,” Physical Review E, vol. 56, no. 6, pp. 6811–6817, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Guo, C. Zheng, and B. Shi, “Discrete lattice effects on the forcing term in the lattice Boltzmann method,” Physical Review E, vol. 65, no. 4, Article ID 046308, 6 pages, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. J. M. Buick and C. A. Created, “Gravity in a lattice Boltzmann model,” Physical Review E, vol. 61, no. 5, pp. 5307–5320, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Chen, D. Martínez, and R. Mei, “On boundary conditions in lattice Boltzmann methods,” Physics of Fluids, vol. 8, no. 9, pp. 2527–2536, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. M. R. Swift, E. Orlandini, W. R. Osborn, and J. M. Yeomans, “Lattice Boltzmann simulations of liquid-gas and binary fluid systems,” Physical Review E, vol. 54, no. 5, pp. 5041–5052, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. A. K. Gunstensen, D. H. Rothman, S. Zaleski, and G. Zanetti, “Lattice Boltzmann model of immiscible fluids,” Physical Review A, vol. 43, no. 8, pp. 4320–4327, 1991. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Grunau, S. Chen, and K. Eggert, “A lattice Boltzmann model for multiphase fluid flows,” Physics of Fluids A, vol. 5, no. 10, pp. 2557–2562, 1993. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Do-Quang, E. Aurell, and M. Vergassola, “An inventory of lattice Boltzmann models of multiphase flows,” Tech. Rep., Parallel and Scientific Computing Institute, Department of Scientific Computing, Uppsala University, Uppsala, Sweden, 2000.