About this Journal Submit a Manuscript Table of Contents
ISRN Oncology
Volume 2014 (2014), Article ID 596483, 9 pages
http://dx.doi.org/10.1155/2014/596483
Review Article

Therapy of Chronic Myeloid Leukemia: Twilight of the Imatinib Era?

Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland

Received 22 September 2013; Accepted 18 December 2013; Published 30 January 2014

Academic Editors: D. Canuti, B. Comin-Anduix, and D. Niino

Copyright © 2014 Ewelina Trela et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. T. Rudkin, D. A. Hungerford, and P. C. Nowell, “DNA contents of chromosome Ph1 and chromosome 21 in human chronic granulocytic leukemia,” Science, vol. 144, no. 3623, pp. 1229–1232, 1964. View at Scopus
  2. N. Thielen, G. J. Ossenkoppele, G.-J. Schuurhuis, and J. J. W. M. Janssen, “New insights into the pathogenesis of chronic myeloid leukaemia: towards a path to cure,” Netherlands Journal of Medicine, vol. 69, no. 10, pp. 430–440, 2011. View at Scopus
  3. S. D. Horne, J. B. Stevens, B. Y. Abdallah, et al., “Why imatinib remains an exception of cancer research,” Journal of Cellular Physiology, vol. 228, no. 4, pp. 665–670, 2013.
  4. B. J. Druker, “Translation of the Philadelphia chromosome into therapy for CML,” Blood, vol. 112, no. 13, pp. 4808–4817, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. E. Constance, D. W. Woessner, K. J. Matissek, M. Mossalam, and C. S. Lim, “Enhanced and selective killing of chronic myelogenous leukemia cells with an engineered BCR-ABL binding protein and imatinib,” Molecular Pharmacology, vol. 9, no. 11, pp. 3318–3329, 2012.
  6. A. Quintás-Cardama and J. Cortes, “Molecular biology of bcr-abl1-positive chronic myeloid leukemia,” Blood, vol. 113, no. 8, pp. 1619–1630, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Kantarjian, J. V. Melo, S. Tura, S. Giralt, and M. Talpaz, “Chronic myelogenous leukemia: disease biology and current and future therapeutic strategies,” Hematology. American Society of Hematology. Education Program, pp. 90–109, 2000.
  8. F. A. Asimakopoulos, P. J. Shteper, S. Krichevsky et al., “ABL1 methylation is a distinct molecular event associated with clonal evolution of chronic myeloid leukemia,” Blood, vol. 94, no. 7, pp. 2452–2460, 1999. View at Scopus
  9. M. Mancini, N. Veljkovic, E. Leo, et al., “Cytoplasmatic compartmentalization by Bcr-Abl promotes TET2 loss-of-function in chronic myeloid leukemia,” Journal of Cellular Biochemistry, vol. 113, no. 8, pp. 2765–2774, 2012.
  10. Q. Huang, Y. Yang, X. Li, and S. Huang, “Transcription suppression of SARI (suppressor of AP-1, regulated by IFN) by BCR-ABL in human leukemia cells,” Tumour Biology, vol. 32, no. 6, pp. 1191–1197, 2011. View at Scopus
  11. N. Von Bubnoff and J. Duyster, “Chronic myelogenous leukemia—treatment and monitoring,” Deutsches Arzteblatt, vol. 107, no. 7, pp. 114–121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Perrotti, C. Jamieson, J. Goldman, and T. Skorski, “Chronic myeloid leukemia: mechanisms of blastic transformation,” Journal of Clinical Investigation, vol. 120, no. 7, pp. 2254–2264, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Florean, M. Schnekenburger, C. Grandjenette, M. Dicato, and M. Diederich, “Epigenomics of leukemia: from mechanisms to therapeutic applications,” Epigenomics, vol. 3, no. 5, pp. 581–609, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Gugliotta, F. Castagnetti, F. Palandri, M. Baccarani, and G. Rosti, “Imatinib in chronic myeloid leukemia elderly patients,” Aging, vol. 3, no. 12, pp. 1125–1126, 2011. View at Scopus
  15. B. Calabretta and D. Perrotti, “The biology of CML blast crisis,” Blood, vol. 103, no. 11, pp. 4010–4022, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. B. J. Druker, S. G. O'Brien, J. Cortes, and J. Radich, “Chronic myelogenous leukemia,” Hematology. American Society of Hematology. Education Program, pp. 111–135, 2002. View at Scopus
  17. M. J. Mauro and B. J. Druker, “STI571: targeting BCR-ABL as therapy for CML,” Oncologist, vol. 6, no. 3, pp. 233–238, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. M. E. Kalaycio, “Chronic myelogenous leukemia: the news you have and haven't heard,” Cleveland Clinic Journal of Medicine, vol. 68, no. 11, pp. 913–926, 2001. View at Scopus
  19. G. Wei, S. Rafiyath, and D. Liu, “First-line treatment for chronic myeloid leukemia: dasatinib, nilotinib, or imatinib,” Journal of Hematology and Oncology, vol. 3, article 47, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. J. F. Apperley, “Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia,” The Lancet Oncology, vol. 8, no. 11, pp. 1018–1029, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. D.-W. Kim, “Recent advances in the path toward the cure for chronic myeloid leukemia,” Korean Journal of Hematology, vol. 46, no. 3, pp. 169–174, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. J. M. Goldman and J. V. Melo, “Mechanisms of disease: chronic myeloid leukemia—advances in biology and new approaches to treatment,” The New England Journal of Medicine, vol. 349, no. 15, pp. 1451–1464, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Milojkovic and J. F. Apperley, “Mechanisms of resistance to imatinib and second-generation tyrosine inhibitors in chronic myeloid leukemia,” Clinical Cancer Research, vol. 15, no. 24, pp. 7519–7527, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Tauchi and K. Ohyashiki, “Molecular mechanisms of resistance of leukemia to imatinib mesylate,” Leukemia Research, vol. 28, no. 1, pp. S39–S45, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. B. J. Druker, F. Guilhot, S. G. O'Brien et al., “Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia,” The New England Journal of Medicine, vol. 355, no. 23, pp. 2408–2417, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Valent, “Emerging stem cell concepts for imatinib-resistant chronic myeloid leukaemia: implications for the biology, management, and therapy of the disease,” British Journal of Haematology, vol. 142, no. 3, pp. 361–378, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. F. Apperley, “Part II: management of resistance to imatinib in chronic myeloid leukaemia,” The Lancet Oncology, vol. 8, no. 12, pp. 1116–1128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. W. W. Zhang, J. E. Cortes, H. Yao et al., “Predictors of primary imatinib resistance in chronic myelogenous leukemia are distinct from those in secondary imatinib resistance,” Journal of Clinical Oncology, vol. 27, no. 22, pp. 3642–3649, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Hochhaus and P. La Rosée, “Imatinib therapy in chronic myelogenous leukemia: strategies to avoid and overcome resistance,” Leukemia, vol. 18, no. 8, pp. 1321–1331, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. M. J. Mauro, “Defining and managing imatinib resistance,” Hematology. American Society of Hematology. Education Program, pp. 219–225, 2006. View at Scopus
  31. L. C. Crossman, M. Mori, Y.-C. Hsieh et al., “In chronic myeloid leukemia white cells from cytogenetic responders and non-responders to imatinib have very similar gene expression signatures,” Haematologica, vol. 90, no. 4, pp. 459–464, 2005. View at Scopus
  32. A. M. Eiring, J. S. Khorashad, K. Morley, and M. W. Deininger, “Advances in the treatment of chronic myeloid leukemia,” BMC Medicine, vol. 9, article 99, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Tanaka, S. Kimura, E. Ashihara et al., “Rapid automated detection of ABL kinase domain mutations in imatinib-resistant patients,” Cancer Letters, vol. 312, no. 2, pp. 228–234, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Barthe, P. Cony-Makhoul, J. V. Melo, and J. R. Mahon, “Roots of clinical resistance to STI-571 cancer therapy,” Science, vol. 293, no. 5538, p. 2163, 2001. View at Scopus
  35. E. Jabbour, H. Kantarjian, D. Jones et al., “Frequency and clinical significance of BCR-ABL mutations in patients with chronic myeloid leukemia treated with imatinib mesylate,” Leukemia, vol. 20, no. 10, pp. 1767–1773, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. O. Frank, B. Brors, A. Fabarius et al., “Gene expression signature of primary imatinib-resistant chronic myeloid leukemia patients,” Leukemia, vol. 20, no. 8, pp. 1400–1407, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. S. M. Graham, H. G. Jørgensen, E. Allan et al., “Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro,” Blood, vol. 99, no. 1, pp. 319–325, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. X. Jiang, Y. Zhao, C. Smith et al., “Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies,” Leukemia, vol. 21, no. 5, pp. 926–935, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Boultwood and J. S. Wainscoat, “Gene silencing by DNA methylation in haematological malignancies,” British Journal of Haematology, vol. 138, no. 1, pp. 3–11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Jelinek, V. Gharibyan, M. R. H. Estecio et al., “Aberrant DNA methylation is associated with disease progression, resistance to imatinib and shortened survival in chronic myelogenous leukemia,” PLoS ONE, vol. 6, no. 7, Article ID e22110, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Esteller, “Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg,” Clinical Immunology, vol. 109, no. 1, pp. 80–88, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. S.-I. Mizuno, T. Chijiwa, T. Okamura et al., “Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia,” Blood, vol. 97, no. 5, pp. 1172–1179, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. L. A. McLean, I. Gathmann, R. Capdeville, M. H. Polymeropoulos, and M. Dressman, “Pharmacogenomic analysis of cytogenetic response in chronic myeloid leukemia patients treated with imatinib,” Clinical Cancer Research, vol. 10, no. 1 I, pp. 155–165, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Villuendas, J. L. Steegmann, M. Pollán et al., “Identification of genes involved in imatinib resistance in CML: a gene-expression profiling approach,” Leukemia, vol. 20, no. 6, pp. 1047–1054, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Thomas, L. Wang, R. E. Clark, and M. Pirmohamed, “Active transport of imatinib into and out of cells: implications for drug resistance,” Blood, vol. 104, no. 12, pp. 3739–3745, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. L. C. Crossman, B. J. Druker, M. W. N. Deininger, M. Pirmohamed, L. Wang, and R. E. Clark, “hOCT 1 and resistance to imatinib,” Blood, vol. 106, no. 3, pp. 1133–1134, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Dunwell, L. Hesson, T. A. Rauch et al., “A Genome-wide screen identifies frequently methylated genes in haematological and epithelial cancers,” Molecular Cancer, vol. 9, article 44, p. 44, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Grosso, A. Puissant, M. Dufies et al., “Gene expression profiling of imatinib and PD166326-resistant CML cell lines identifies Fyn as a gene associated withresistance to BCR-ABL inhibitors,” Molecular Cancer Therapeutics, vol. 8, no. 7, pp. 1924–1933, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. E. San José-Eneriz, X. Agirre, A. Jiménez-Velasco et al., “Epigenetic down-regulation of BIM expression is associated with reduced optimal responses to imatinib treatment in chronic myeloid leukaemia,” European Journal of Cancer, vol. 45, no. 10, pp. 1877–1889, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. E. Weisberg and J. D. Griffin, “Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines,” Blood, vol. 95, no. 11, pp. 3498–3505, 2000. View at Scopus
  51. G. Jiang, F. Yang, M. Li et al., “Imatinib (ST1571) provides only limited selectivity for CML cells and treatment might be complicated by silent BCR-ABL genes,” Cancer Biology and Therapy, vol. 2, no. 1, pp. 103–108, 2003. View at Scopus
  52. A. Jacquel, M. Herrant, L. Legros et al., “Imatinib induces mitochondria-dependent apoptosis of the Bcr-Abl-positive K562 cell line and its differentiation toward the erythroid lineage,” The FASEB Journal, vol. 17, no. 14, pp. 2160–2162, 2003. View at Scopus
  53. J. Kuroda, H. Puthalakath, M. S. Cragg et al., “Bim and Bad mediated imatinib-induced killing of Bcr/Abl+ leukemic cells, and resistance due to their loss is overcome by a BH3 mimetic,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 40, pp. 14907–14912, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. I. R. Indran, G. Tufo, S. Pervaiz, and C. Brenner, “Recent advances in apoptosis, mitochondria and drug resistance in cancer cells,” Biochimica et Biophysica Acta, vol. 1807, no. 6, pp. 735–745, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Kuribara, H. Honda, H. Matsui et al., “Roles of Bim in apoptosis of normal and Bcr-Abl-expressing hematopoietic progenitors,” Molecular and Cellular Biology, vol. 24, no. 14, pp. 6172–6183, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. K. J. Aichberger, M. Mayerhofer, M.-T. Krauth et al., “Low-level expression of proapoptotic Bcl-2-interacting mediator in leukemic cells in patients with chronic myeloid leukemia: role of BCR/ABL, characterization of underlying signaling pathways, and reexpression by novel pharmacologic compounds,” Cancer Research, vol. 65, no. 20, pp. 9436–9444, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. B. Leber, “CML biology for the clinician in 2011: six impossible things to believe before breakfast on the way to cure,” Current Oncology, vol. 18, no. 4, pp. e185–e190, 2011. View at Scopus
  58. T. Kurosu, N. Wu, G. Oshikawa, H. Kagechika, and O. Miura, “Enhancement of imatinib-induced apoptosis of BCR/ABL-expressing cells by nutlin-3 through synergistic activation of the mitochondrial apoptotic pathway,” Apoptosis, vol. 15, no. 5, pp. 608–620, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Bellodi, M. R. Lidonnici, A. Hamilton et al., “Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells,” Journal of Clinical Investigation, vol. 119, no. 5, pp. 1109–1123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Henkes, H. van der Kuip, and W. E. Aulitzky, “Therapeutic options for chronic myeloid leukemia: focus on imatinib (Glivec, Gleevec),” Therapeutics and Clinical Risk Management, vol. 4, no. 1, pp. 163–187, 2008. View at Scopus
  61. P. Le Coutre, M. Schwarz, and T. D. Kim, “New developments in tyrosine kinase inhibitor therapy for newly diagnosed chronic myeloid leukemia,” Clinical Cancer Research, vol. 16, no. 6, pp. 1771–1780, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. H. M. Kantarjian, F. Giles, N. Gattermann et al., “Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance,” Blood, vol. 110, no. 10, pp. 3540–3546, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Bumbea, A.-M. Vladareanu, I. Voican, D. Cisleanu, L. Barsan, and M. Onisai, “Chronic myeloid leukemia therapy in the era of tyrosine kinase inhibitors—the first molecular targeted treatment,” Journal of Medicine and Life, vol. 3, no. 2, pp. 162–166, 2010. View at Scopus
  64. P. Ramirez and J. F. DiPersio, “Therapy options in imatinib failures,” Oncologist, vol. 13, no. 4, pp. 424–434, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Soverini, A. Hochhaus, F. E. Nicolini et al., “BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet,” Blood, vol. 118, no. 5, pp. 1208–1215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. J. V. Melo and C. Chuah, “Novel agents in CML therapy: tyrosine kinase inhibitors and beyond,” Hematology. American Society of Hematology. Education Program, pp. 427–435, 2008. View at Scopus
  67. N. P. Shah, C. Tran, F. Y. Lee, P. Chen, D. Norris, and C. L. Sawyers, “Overriding imatinib resistance with a novel ABL kinase inhibitor,” Science, vol. 305, no. 5682, pp. 399–401, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Talpaz, N. P. Shah, H. Kantarjian et al., “Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias,” The New England Journal of Medicine, vol. 354, no. 24, pp. 2531–2541, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. E. Jabbour, D. Jones, H. M. Kantarjian et al., “Long-term outcome of patients with chronic myeloid leukemia treated with second-generation tyrosine kinase inhibitors after imatinib failure is predicted by the in vitro sensitivity of BCR-ABL kinase domain mutations,” Blood, vol. 114, no. 10, pp. 2037–2043, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. R. Ramchandren and C. A. Schiffer, “Dasatinib in the treatment of imatinib refractory chronic myeloid leukemia,” Biologics, vol. 3, pp. 205–214, 2009.
  71. S. Redaelli, R. Piazza, R. Rostagno et al., “Activity of bosutinib, dasatinib, and nilotinib against 18 imatinib-resistant BCR/ABL mutants,” Journal of Clinical Oncology, vol. 27, no. 3, pp. 469–471, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. T. O'Hare, D. K. Walters, E. P. Stoffregen et al., “Combined Abl inhibitor therapy for minimizing drug resistance in chronic myeloid leukemia: Src/Abl inhibitors are compatible with imatinib,” Clinical Cancer Research, vol. 11, no. 19 I, pp. 6987–6993, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. T. O'Hare, C. A. Eide, J. W. Tyner et al., “SGX393 inhibits the CML mutant Bcr-AblT315I and preempts in vitro resistance when combined with nilotinib or dasatinib,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 14, pp. 5507–5512, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. W. Fiskus, M. Pranpat, M. Balasis et al., “Cotreatment with vorinostat (suberoylanilide hydroxamic acid) enhances activity of dasatinib (BMS-354825) against imatinib mesylate-sensitive or imatinib mesylate-resistant chronic myelogenous leukemia cells,” Clinical Cancer Research, vol. 12, no. 19, pp. 5869–5878, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. O. Cassuto, M. Dufies, A. Jacquel, et al., “All tyrosine kinase inhibitor-resistant chronic myelogenous cells are highly sensitive to ponatinib,” Oncotarget, vol. 3, no. 12, pp. 1557–1565, 2012.
  76. V. De Falco, P. Buonocore, M. Muthu, et al., “Ponatinib (AP24534) is a novel potent inhibitor of oncogenic RET mutants associated with thyroid cancer,” The Journal of Clinical Endocrinology and Metabolism, vol. 98, no. 5, pp. E811–E819, 2013.
  77. E. Lierman, S. Smits, J. Cools, B. Dewaele, M. Debiec-Rychter, and P. Vandenberghe, “Ponatinib is active against imatinib-resistant mutants of FIP1L1-PDGFRA and KIT, and against FGFR1-derived fusion kinases,” Leukemia, vol. 26, no. 7, pp. 1693–1695, 2012. View at Publisher · View at Google Scholar · View at Scopus
  78. P. Jain, H. Kantarjian, and J. Cortes, “Chronic myeloid leukemia: overview of new agents and comparative analysis,” Current Treatment Options in Oncology, vol. 14, no. 2, pp. 127–143, 2013.
  79. S. Redaelli, L. Mologni, R. Rostagno, et al., “Three novel patient-derived BCR/ABL mutants show different sensitivity to second and third generation tyrosine kinase inhibitors,” American Journal of Hematology, vol. 87, no. 11, pp. E125–E128, 2012.
  80. J. E. Cortes, M. Talpaz, H. M. Kantarjian, et al., “A phase 1 study of DCC-2036, a novel oral inhibitor of BCR-ABL kinase, in patients with Philadelphia chromosome positive (Ph+) leukemias including patients with T315I mutation,” Blood, vol. 118, pp. 1–2, 2011.
  81. F. Fei, S. Stoddart, J. Groffen, and N. Heisterkamp, “Activity of the Aurora kinase inhibitor VX-680 against Bcr/Abl-positive acute lymphoblastic leukemias,” Molecular Cancer Therapeutics, vol. 9, no. 5, pp. 1318–1327, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. “A trial of hydroxychloroquine with imatinib for chronic myeloid leukaemia (CHOICES),” http://www.cancerresearchuk.org/cancer-help/trials/a-trial-hydroxychloroquine-with-imatinib-for-cml-choices.