About this Journal Submit a Manuscript Table of Contents
ISRN Electrochemistry
Volume 2014 (2014), Article ID 816789, 12 pages
http://dx.doi.org/10.1155/2014/816789
Research Article

Theoretical Analysis of an Amperometric Biosensor Based on Parallel Substrates Conversion

Department of Mathematics, The Madura College, Madurai, Tamil Nadu 625 011, India

Received 5 February 2014; Accepted 12 March 2014; Published 10 April 2014

Academic Editors: S. Arya, R. Kizek, and A. Walcarius

Copyright © 2014 T. Praveen and L. Rajendran. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Turner, G. Wilson, and I. Kaube, Biosensors: Fundamentals and Applications, Oxford University Press, Oxford, UK, 1987.
  2. F. W. Scheller, F. Schubert, and J. Fedrowitz, Frontiers in Biosensorics, Birkhauser, Basel, Switzerland, 1997.
  3. A. Sadana and N. Sadana, Handbook of Biosensors and Biosensor Kinetics, Elsevier, Amsterdam, The Netherlands, 2010.
  4. D. M. Fraser, Biosensors in the Body, Continuous in Vivo Monitoring, John Wiley and Sons, New York, NY, USA, 1997.
  5. L. S. Ferreira, M. B. De Souza Jr., J. O. Trierweiler, O. Broxtermann, R. O. M. Folly, and B. Hitzmann, “Aspects concerning the use of biosensors for process control: experimental and simulation investigations,” Computers and Chemical Engineering, vol. 27, no. 8-9, pp. 1165–1173, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. J. R. D. Corcuera, R. Cavalieri, J. Powers, and J. Tang, “Amperometric enzyme biosensor optimization using mathematical modeling,” in Proceeding of the/Case 18th Annual International Meeting (ASAE '04), page papers No. 047030, American Society of Agricultural Engineers, Ottawa, Canada, August 2004.
  7. C. Amatore, A. I. Oleinick, and I. Svir, “Construction of optimal quasi-conformal mappings for the 2D-numerical simulation of diffusion at microelectrodes. Part 1: principle of the method and its application to the inlaid disk microelectrode,” Journal of Electroanalytical Chemistry, vol. 597, no. 1, pp. 69–76, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Stamatin, C. Berlic, and A. Vaseashta, “On the computer-aided modelling of analyte-receptor interactions for an efficient sensor design,” Thin Solid Films, vol. 495, no. 1-2, pp. 312–315, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. L. D. Mell and J. T. Maloy, “A model for the amperometric enzyme electrode obtained through digital simulation and applied to the immobilized glucose oxidase system,” Analytical Chemistry, vol. 47, no. 2, pp. 299–307, 1975. View at Scopus
  10. J. P. Kernevez, Enzyme Mathematics. Studies in Mathematics and Its Applications, Elsevier Science, Amsterdam, The Netherlands, 1980.
  11. J. Kulys, “The development of new analytical systems based on biocatalysts,” Analytical Letters, vol. 14, article 377, 1981.
  12. P. N. Bartlett and K. F. E. Pratt, “Modelling of processes in enzyme electrodes,” Biosensors and Bioelectronics, vol. 8, no. 9-10, pp. 451–462, 1993. View at Publisher · View at Google Scholar · View at Scopus
  13. M. E. G. Lyons, J. C. Greer, C. A. Fitzgerald, T. Bannon, and P. N. Barlett, “Reaction/diffusion with Michaelis-Menten kinetics in electroactive polymer films. Part 1. The steady-state amperometric response,” Analyst, vol. 121, no. 6, pp. 715–731, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Pérusse and D. Leech, “Dual electrode cyclic voltammetry under computer control using graphical programming of a bipotentiostat,” Instrumentation Science and Technology, vol. 28, no. 1, pp. 59–70, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. J. J. Kulys, V. V. Sorochinskii, and R. A. Vidziunaite, “Transient response of bienzyme electrodes,” Biosensors, vol. 2, no. 3, pp. 135–146, 1986. View at Scopus
  16. V. V. Sorochinskii and B. I. Kurganov, “Steady-state kinetics of cyclic conversions of substrate in amperometric bienzyme sensors,” Biosensors and Bioelectronics, vol. 11, no. 3, pp. 225–238, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Schulmeister, J. Rose, and F. Scheller, “Mathematical modelling of exponential amplification in membrane-based enzyme sensors,” Biosensors and Bioelectronics, vol. 12, no. 9-10, pp. 1021–1030, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Neykov and V. Rangelova, “Mathematical modeling of the biosensor systems,” Biotechnology and Biotechnological Equipment, vol. 1998, no. 2, pp. 100–109, 1998. View at Scopus
  19. R. Baronas, F. Ivanauskas, and J. Kulys, “Modelling a biosensor based on the heterogeneous microreactor,” Journal of Mathematical Chemistry, vol. 25, no. 2-3, pp. 245–252, 1999. View at Scopus
  20. W. F. Ames, Numerical Methods for Partial Differential Equations, Academic Press, New York, NY, USA, 2nd edition, 1977.
  21. A. Eswari and L. Rajendran, “Analytical solution of steady state current at a microdisk biosensor,” Journal of Electroanalytical Chemistry, vol. 641, no. 1-2, pp. 35–44, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Manimozhi, A. Subbiah, and L. Rajendran, “Solution of steady-state substrate concentration in the action of biosensor response at mixed enzyme kinetics,” Sensors and Actuators, B: Chemical, vol. 147, no. 1, pp. 290–297, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Meena and L. Rajendran, “Mathematical modeling of amperometric and potentiometric biosensors and system of non-linear equations—homotopy perturbation approach,” Journal of Electroanalytical Chemistry, vol. 644, no. 1, pp. 50–59, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Eswari and L. Rajendran, “Analytical solution of steady-state current an enzyme-modified microcylinder electrodes,” Journal of Electroanalytical Chemistry, vol. 648, no. 1, pp. 36–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Loghambal and L. Rajendran, “Mathematical modeling in amperometric oxidase enzyme-membrane electrodes,” Journal of Membrane Science, vol. 373, no. 1-2, pp. 20–28, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Eswari and L. Rajendran, “Analytical expressions pertaining to the concentration of catechol, o-quinone and current at PPO-modified microcylinder biosensor for diffusion-kinetic model,” Journal of Electroanalytical Chemistry, vol. 660, no. 1, pp. 200–208, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Venugopal, A. Eswari, and L. Rajendran, “Mathematical model for steady state current at PPO-modified micro-cylinder biosensors,” Journal of Biomedical Science and Engineering, vol. 4, pp. 631–641, 2011.
  28. L. Rajendran and S. Anitha, “Reply to ‘ Comments on analytical solution of amperometric enzymatic reactions based on HPM ’,” Electrochimica Acta, vol. 102, pp. 474–476, 2013.
  29. V. Aseris, R. Baronas, and J. Kulys, “Modeling the biosensor utilizing parallel substrate conversion,” Journal of Electroanalytical Chemistry, vol. 685, pp. 63–71, 2012.
  30. J.-H. He, “Application of homotopy perturbation method to nonlinear wave equations,” Chaos, Solitons and Fractals, vol. 26, no. 3, pp. 695–700, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. Q. K. Ghori, M. Ahmed, and A. M. Siddiqui, “Application of homotopy perturbation method to squeezing flow of a newtonian fluid,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 2, pp. 179–184, 2007. View at Scopus
  32. T. Öziş and A. Yildirim, “A comparative study of He's homotopy perturbation method for determining frequency-amplitude relation of a nonlinear oscillator with discontinuities,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 2, pp. 243–248, 2007. View at Scopus
  33. S.-J. Li and Y.-X. Liu, “An improved approach to nonlinear dynamical system identification using PID neural networks,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 7, no. 2, pp. 177–182, 2006. View at Scopus
  34. M. M. Mousa and S. F. Ragab, “Application of the homotopy perturbation method to linear and nonlinear schrödinger equations,” Zeitschrift fur Naturforschung— A Journal of Physical Sciences, vol. 63, no. 3-4, pp. 140–144, 2008. View at Scopus
  35. J. H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, pp. 257–262, 1999.
  36. R. D. Skeel and M. Berzins, “A method for the spatial discretization of parabolic equations in one space variable,” SIAM Journal on Scientific & Statistical Computing, vol. 11, pp. 1–32, 1990.
  37. “MATLAB 6. 1, The Math Works Inc., Natick, MA,” 2000, http://www.scilabenterprises.com.