About this Journal Submit a Manuscript Table of Contents
ISRN Electrochemistry
Volume 2014 (2014), Article ID 826832, 7 pages
http://dx.doi.org/10.1155/2014/826832
Research Article

Reduced Graphene Oxide Supported Antimony Species for High-Performance Supercapacitor Electrodes

1Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland
2Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland

Received 15 January 2014; Accepted 11 February 2014; Published 5 March 2014

Academic Editors: D. Pavlov and E. Vallès

Copyright © 2014 Mateusz Ciszewski et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Antimony species was chemically anchored on graphene oxide using antimony (III) chloride precursor and then converted to the reduced graphene oxide-antimony species composite by a well-established polyol method. The resultant composite was successfully used as supercapacitor electrodes in a two-electrode symmetric system with aqueous electrolyte. The specific capacitance calculated from the galvanostatic charge/discharge curves obtained for this composite was 289 F/g. The enhanced capacitance results were confirmed by the electrochemical impedance spectroscopy and cyclic voltammetry. The high capacitance of the reduced graphene oxide-antimony species composite arises from the combination of double-layer charging and pseudocapacitance caused by the Faradaic reactions of the intercalated antimony species and residual surface-bonded functional groups.