About this Journal Submit a Manuscript Table of Contents
ISRN Electrochemistry
Volume 2014 (2014), Article ID 826832, 7 pages
http://dx.doi.org/10.1155/2014/826832
Research Article

Reduced Graphene Oxide Supported Antimony Species for High-Performance Supercapacitor Electrodes

1Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland
2Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland

Received 15 January 2014; Accepted 11 February 2014; Published 5 March 2014

Academic Editors: D. Pavlov and E. Vallès

Copyright © 2014 Mateusz Ciszewski et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Filella, N. Belzile, and Y.-W. Chen, “Antimony in the environment: a review focused on natural waters I. Occurence,” Earth-Science Reviews, vol. 57, no. 1-2, pp. 125–176, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Kentner, M. Leinemann, K.-H. Schaller, D. Weltle, and G. Lehnert, “External and internal antimony exposure in starter battery production,” International Archives of Occupational and Environmental Health, vol. 67, no. 2, pp. 119–123, 1995. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. B. Kamenev, A. V. Kiselevich, E. I. Ostapenko, and Y. V. Skachkov, “Antimony-free alloys for unattended (sealed) lead batteries,” Russian Journal of Applied Chemistry, vol. 75, no. 4, pp. 548–551, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Pavlov, A. Dakhouche, and T. Rogachev, “Influence of antimony ions and PbSO4 content in the corrosion layer on the properties of the grid/active mass interface in positive lead-acid battery plates,” Journal of Applied Electrochemistry, vol. 27, no. 6, pp. 720–730, 1997. View at Scopus
  5. M. Kosai, S. Yasukawa, S. Osumi, and M. Tsubota, “Effect of antimony on premature capacity loss of lead/acid batteries,” Journal of Power Sources, vol. 67, no. 1-2, pp. 43–48, 1997. View at Scopus
  6. J. Yang, M. Winter, and J. O. Besenhard, “Small particle size multiphase Li-alloy anodes for lithium-ion-batteries,” Solid State Ionics, vol. 90, no. 1–4, pp. 281–287, 1996. View at Scopus
  7. A. Trifonova, M. Wachtler, M. Winter, and J. O. Besenhard, “Sn-Sb and Sn-Bi alloys as anode materials for lithium-ion batteries,” Ionics, vol. 8, no. 5-6, pp. 321–328, 2002. View at Scopus
  8. A. Dailly, P. Willmann, and D. Billaud, “Synthesis, characterization and electrochemical performances of new antimony-containing graphite compounds used as anodes for lithium-ion batteries,” Electrochimica Acta, vol. 48, no. 3, pp. 271–278, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Dailly, R. Schneider, D. Billaud, Y. Fort, and P. Willmann, “New graphite-antimony composites as anodic materials for lithium-ion batteries. Preparation, characterisation and electrochemical performance,” Electrochimica Acta, vol. 47, no. 26, pp. 4207–4212, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Dailly, R. Schneider, D. Billaud, Y. Fort, and J. Ghanbaja, “Nanometric antimony powder synthesis by activated alkaline hydride reduction of antimony pentachloride,” Journal of Nanoparticle Research, vol. 5, no. 3-4, pp. 389–393, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Saadat, Y. Y. Tay, J. Zhu et al., “Template-free electrochemical deposition of interconnected ZnSb nanoflakes for Li-Ion battery anodes,” Chemistry of Materials, vol. 23, no. 4, pp. 1032–1038, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. M. Mosby and A. L. Prieto, “Direct electrodeposition of Cu2Sb for lithium-ion battery anodes,” Journal of the American Chemical Society, vol. 130, no. 32, pp. 10656–10661, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. F. D. Wu, M. Wu, and Y. Wang, “Antimony-doped tin oxide nanotubes for high capacity lithium storage,” Electrochemistry Communications, vol. 13, no. 5, pp. 433–436, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Montilla, E. Morallón, A. de Battisti, A. Benedetti, H. Yamashita, and J. L. Vázquez, “Preparation and characterization of antimony-doped tin dioxide electrodes. Part 2. XRD and EXAFS characterization,” Journal of Physical Chemistry B, vol. 108, no. 16, pp. 5044–5050, 2004. View at Scopus
  15. Y. Wang, I. Djerdj, B. Smarsly, and M. Antonietti, “Antimony-doped SnO2 nanopowders with high crystallinity for lithium-ion battery electrode,” Chemistry of Materials, vol. 21, no. 14, pp. 3202–3209, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Sladkevich, J. Gun, P. V. Prikhodchenko et al., “The formation of a peroxoantimonate thin film coating on graphene oxide (GO) and the influence of the GO on its transformation to antimony oxides and elemental antimony,” Carbon, vol. 50, no. 15, pp. 5463–5471, 2012.
  17. R. A. Nistor, D. M. Newns, and G. J. Martyna, “The role of chemistry in graphene doping for carbon-based electronics,” ACS Nano, vol. 5, no. 4, pp. 3096–3103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Leng, W. Guo, S. Su, C. Yi, and L. Xing, “Removal of antimony(III) from aqueous solution by graphene as an adsorbent,” Chemical Engineering Journal, vol. 211-212, pp. 406–411, 2012.
  19. M. Zhu, C. J. Weber, Y. Yang et al., “Chemical and electrochemical ageing of carbon materials used in supercapacitor electrodes,” Carbon, vol. 46, no. 14, pp. 1829–1840, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol. 321, no. 5887, pp. 385–388, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. A. A. Balandin, S. Ghosh, W. Bao et al., “Superior thermal conductivity of single-layer graphene,” Nano Letters, vol. 8, no. 3, pp. 902–907, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Zhu, H. Dai, J. Hu, L. Ding, and L. Jiang, “Reduced graphene oxide-nickel oxide composite as high performance electrode materials for supercapacitors,” Journal of Power Sources, vol. 203, pp. 243–249, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Wang, D. Wang, J. Zhu, and X. Liang, “Preparation of Co3O4 nanoplate/graphene sheet composites and their synergistic electrochemical performance,” Ionics, vol. 19, no. 2, pp. 215–220, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Wang, T. Brezesinski, M. Antonietti, and B. Smarsly, “Ordered mesoporous Sb-, Nb-, and Ta-doped SnO2 thin films with adjustable doping levels and high electrical conductivity,” ACS Nano, vol. 3, no. 6, pp. 1373–1378, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Staudenmaier, “Verfahren zur Darstellung der Graphitsaure,” Berichte der Deutschen Chemischen Gesellschaft, vol. 31, no. 2, pp. 1481–1487, 1898.
  26. Z. Liu, J. Y. Lee, W. Chen, M. Han, and L. M. Gan, “Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles,” Langmuir, vol. 20, no. 1, pp. 181–187, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. H.-W. Ha, I. Y. Kim, S.-J. Hwang, and R. S. Ruoff, “One-pot synthesis of platinum nanoparticles embedded on reduced graphene oxide for oxygen reduction in methanol fuel cells,” Electrochemical and Solid-State Letters, vol. 14, no. 7, pp. B70–B73, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. L. A. Zemnukhova and A. E. Panasenko, “A novel composite material based on antimony(III) oxide,” Journal of Solid State Chemistry, vol. 201, pp. 9–12, 2013.
  29. K. Oorts, E. Smolders, F. Degryse et al., “Solubility and toxicity of antimony trioxide (Sb2O3) in soil,” Environmental Science & Technology, vol. 42, no. 12, pp. 4378–4383, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Filella, N. Belzile, and Y.-W. Chen, “Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry,” Earth-Science Reviews, vol. 59, no. 1–4, pp. 265–285, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Pei and H. M. Cheng, “The reduction of graphene oxide,” Carbon, vol. 50, no. 9, pp. 3210–3228, 2012.
  32. M. D. Stoller and R. S. Ruoff, “Best practice methods for determining an electrode material's performance for ultracapacitors,” Energy & Environmental Science, vol. 3, no. 9, pp. 1294–1301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Xu, S. Yue, Z. Sui et al., “What is the choice for supercapacitors: graphene or graphene oxide?” Energy & Environmental Science, vol. 4, no. 8, pp. 2826–2830, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Chen, X. Zhang, D. Zhang, P. Yu, and Y. Ma, “High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes,” Carbon, vol. 49, no. 2, pp. 573–580, 2011. View at Publisher · View at Google Scholar · View at Scopus