About this Journal Submit a Manuscript Table of Contents
Journal of Allergy
Volume 2011 (2011), Article ID 736319, 12 pages
http://dx.doi.org/10.1155/2011/736319
Review Article

Arginase and Arginine Dysregulation in Asthma

1Bay Area Pediatric Pulmonary Medical Corporation, Children's Hospital & Research Center Oakland, Oakland, CA 94609, USA
2Department of Emergency Medicine, Children's Hospital & Research Center Oakland, Oakland, CA 94609, USA

Received 1 December 2010; Revised 7 February 2011; Accepted 10 February 2011

Academic Editor: Stephen P. Peters

Copyright © 2011 Renée C. Benson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Bousquet, P. K. Jeffery, W. W. Busse, M. Johnson, and A. M. Vignola, “Asthma: from bronchoconstriction to airways inflammation and remodeling,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 5, pp. 1720–1745, 2000. View at Scopus
  2. D. Y. M. Leung, “Molecular basis of allergic diseases,” Molecular Genetics and Metabolism, vol. 63, no. 3, pp. 157–167, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Cartier, N. C. Thomson, and P. A. Frith, “Allergen-induced increase in bronchial responsiveness to histamine: relationship to the late asthmatic response and change in airway caliber,” Journal of Allergy and Clinical Immunology, vol. 70, no. 3, pp. 170–177, 1982. View at Scopus
  4. D. W. Cockcroft and B. E. Davis, “Mechanisms of airway hyperresponsiveness,” Journal of Allergy and Clinical Immunology, vol. 118, no. 3, pp. 551–559, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. C. M. Kercsmar, “Wheezing in Older Children: Asthma,” in Kendig's Disorders of the Respiratory Tract in Children, V. Chernick, et al., Ed., Saunders Elsevier, Philadelphia, Pa, USA, 2006.
  6. P. K. Jeffery, “Remodeling in asthma and chronic obstructive lung disease,” American journal of respiratory and critical care medicine, vol. 164, no. 10, pp. S28–S38, 2001. View at Scopus
  7. D. S. Postma and W. Timens, “Remodeling in asthma and chronic obstructive pulmonary disease,” Proceedings of the American Thoracic Society, vol. 3, no. 5, pp. 434–439, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Moncada, R. M. J. Palmer, and E. A. Higgs, “Nitric oxide: physiology, pathophysiology, and pharmacology,” Pharmacological Reviews, vol. 43, no. 2, pp. 109–142, 1991. View at Scopus
  9. F. L. M. Ricciardolo, P. J. Sterk, B. Gaston, and G. Folkerts, “Nitric oxide in health and disease of the respiratory system,” Physiological Reviews, vol. 84, no. 3, pp. 731–765, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. T. J. Moraes, “Arginase and respiratory viral infections,” The Open Nitric Oxide Journal, vol. 2, pp. 64–68, 2010.
  11. A. E. Redington, “Modulation of nitric oxide pathways: therapeutic potential in asthma and chronic obstructive pulmonary disease,” European Journal of Pharmacology, vol. 533, no. 1–3, pp. 263–276, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Racke and M. Warnken, “L-arginine metabolic pathways,” The Open Nitric Oxide Journal, vol. 2, pp. 9–19, 2010.
  13. G. Folkerts, J. Kloek, R. B. R. Muijsers, and F. P. Nijkamp, “Reactive nitrogen and oxygen species in airway inflammation,” European Journal of Pharmacology, vol. 429, no. 1–3, pp. 251–262, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. Q. Hamid, D. R. Springall, V. Riveros-Moreno et al., “Induction of nitric oxide synthase in asthma,” Lancet, vol. 342, no. 8886-8887, pp. 1510–1513, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. S. A. Kharitonov, G. Lubec, B. Lubec, M. Hjelm, and P. J. Barnes, “L-Arginine increases exhaled nitric oxide in normal human subjects,” Clinical Science, vol. 88, no. 2, pp. 135–139, 1995. View at Scopus
  16. S. A. Kharitonov, D. Yates, R. A. Robbins, R. Logan-Sinclair, E. A. Shinebourne, and P. J. Barnes, “Increased nitric oxide in exhaled air of asthmatic patients,” Lancet, vol. 343, no. 8890, pp. 133–135, 1994. View at Publisher · View at Google Scholar
  17. M. A. Sapienza, S. A. Kharitonov, I. Horvath, K. F. Chung, and P. J. Barnes, “Effect of inhaled L-arginine on exhaled nitric oxide in normal and asthmatic subjects,” Thorax, vol. 53, no. 3, pp. 172–175, 1998. View at Scopus
  18. J. De Boer, M. Duyvendak, F. E. Schuurman, F. M.H. Pouw, J. Zaagsma, and H. Meurs, “Role of L-arginine in the deficiency of nitric oxide and airway hyperreactivity after the allergen-induced early asthmatic reaction in guinea-pigs,” British Journal of Pharmacology, vol. 128, no. 5, pp. 1114–1120, 1999. View at Publisher · View at Google Scholar
  19. H. Maarsingh, M. A. Tio, J. Zaagsma, and H. Meurs, “Arginase attenuates inhibitory nonadrenergic noncholinergic nerve-induced nitric oxide generation and airway smooth muscle relaxation,” Respiratory Research, vol. 6, article 23, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. C. M. Prado, E. A. Leick-Maldonado, L. Yano et al., “Effects of nitric oxide synthases in chronic allergic airway inflammation and remodeling,” American Journal of Respiratory Cell and Molecular Biology, vol. 35, no. 4, pp. 457–465, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. M. D. Messeri Dreißig, R. Hammermann, J. Mössner, M. Göthert, and K. Racké, “In rat alveolar macrophages lipopolysaccharides exert divergent effects on the transport of the cationic amino acids L-arginine and L-ornithine,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 361, no. 6, pp. 621–628, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. R. G. Bogle, A. R. Baydoun, J. D. Pearson, S. Moncada, and G. E. Mann, “L-Arginine transport is increased in macrophages generating nitric oxide,” Biochemical Journal, vol. 284, no. 1, pp. 15–18, 1992. View at Scopus
  23. H. Sato, M. Fujiwara, and S. Bannai, “Effect of lipopolysaccharide on transport and metabolism of arginine in mouse peritoneal macrophages,” Journal of Leukocyte Biology, vol. 52, no. 2, pp. 161–164, 1992. View at Scopus
  24. R. Hammermann, J. Hirschmann, C. Hey et al., “Cationic proteins inhibit L-arginine uptake in rat alveolar macrophages and tracheal epithelial cells: implications for nitric oxide synthesis,” American Journal of Respiratory Cell and Molecular Biology, vol. 21, no. 2, pp. 155–162, 1999. View at Scopus
  25. R. Hammermann, M. D. M. Dreißig, J. Mössner et al., “Nuclear factor-κB mediates simultaneous induction of inducible nitric-oxide synthase and up-regulation of the cationic amino acid transporter CAT-2B in rat alveolar macrophages,” Molecular Pharmacology, vol. 58, no. 6, pp. 1294–1302, 2000. View at Scopus
  26. R. Hammermann, C. Stichnote, E. I. Closs, H. Nawrath, and K. Racké, “Inhibition of nitric oxide synthase abrogates lipopolysaccharides-induced up-regulation of L-arginine uptake in rat alveolar macrophages,” British Journal of Pharmacology, vol. 133, no. 3, pp. 379–386, 2001. View at Scopus
  27. B. Nicholson, C. K. Manner, J. Kleeman, and C. L. MacLeod, “Sustained nitric oxide production in macrophages requires the arginine transporter CAT2,” Journal of Biological Chemistry, vol. 276, no. 19, pp. 15881–15885, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. C. K. Manner, B. Nicholson, and C. L. MacLeod, “CAT2 arginine transporter deficiency significantly reduces iNOS-mediated NO production in astrocytes,” Journal of Neurochemistry, vol. 85, no. 2, pp. 476–482, 2003. View at Scopus
  29. R. Devés and C. A. R. Boyd, “Transporters for cationic amino acids in animal cells: discovery, structure, and function,” Physiological Reviews, vol. 78, no. 2, pp. 487–545, 1998. View at Scopus
  30. R. M. Schapira, J. H. Wiessner, J. F. Morrisey, U. A. Almagro, and L. D. Nelin, “L-arginine uptake and metabolism by lung macrophages and neutrophils following intratracheal instillation of silica in vivo,” American Journal of Respiratory Cell and Molecular Biology, vol. 19, no. 2, pp. 308–315, 1998. View at Scopus
  31. D. A. Uchida, S. J. Ackerman, A. J. Coyle et al., “The effect of human eosinophil granule major basic protein on airway responsiveness in the rat in vivo: a comparison with polycations,” American Review of Respiratory Disease, vol. 147, no. 4, pp. 982–988, 1993. View at Scopus
  32. H. Meurs, F. E. Schuurman, M. Duyvendak, and J. Zaagsma, “Deficiency of nitric oxide in polycation-induced airway hyperreactivity,” British Journal of Pharmacology, vol. 126, no. 3, pp. 559–562, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Yahata, Y. Nishimura, H. Maeda, and M. Yokoyama, “Modulation of airway responsiveness by anionic and cationic polyelectrolyte substances,” European Journal of Pharmacology, vol. 434, no. 1-2, pp. 71–79, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. M. L. North, et al., “Arginase in asthma - recent developments in animal and human studies,” The Open Nitric Oxide Journal, vol. 2, pp. 20–36, 2010.
  35. G. Wu and S. M. Morris, “Arginine metabolism: nitric oxide and beyond,” Biochemical Journal, vol. 336, no. 1, pp. 1–17, 1998. View at Scopus
  36. O. W. Griffith and D. J. Stuehr, “Nitric oxide synthases: properties and catalytic mechanism,” Annual Review of Physiology, vol. 57, pp. 707–736, 1995. View at Scopus
  37. R. S. Reczkowski and D. E. Ash, “Rat liver arginase: Kinetic mechanism, alternate substrates, and inhibitors,” Archives of Biochemistry and Biophysics, vol. 312, no. 1, pp. 31–37, 1994. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Meurs, M. A. M. Hamer, S. Pethe, S. Vadon-Le Goff, J. L. Boucher, and J. Zaagsma, “Modulation of cholinergic airway reactivity and nitric oxide production by endogenous arginase activity,” British Journal of Pharmacology, vol. 130, no. 8, pp. 1793–1798, 2000. View at Scopus
  39. M. Hecker, H. Nematollahi, C. Hey, R. Busse, and K. Racke, “Inhibition of arginase by N(G)-hydroxy-L-arginine in alveolar macrophages: implications for the utilization of L-arginine for nitric oxide synthesis,” FEBS Letters, vol. 359, no. 2-3, pp. 251–254, 1995. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Maarsingh, et al., “L-ornithine causes NO deficiency and airway hyperresponsiveness in perfused guinea pig tracheal preparations in vitro,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 375, p. 151, 2007.
  41. J. D. Cox, E. Cama, D. M. Colleluori et al., “Mechanistic and metabolic inferences from the binding of substrate analogues and products to arginase,” Biochemistry, vol. 40, no. 9, pp. 2689–2701, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Meurs, S. McKay, H. Maarsingh et al., “Increased arginase activity underlies allergen-induced deficiency of cNos-derived nitric oxide and airway hyperresponsiveness,” British Journal of Pharmacology, vol. 136, no. 3, pp. 391–398, 2002. View at Scopus
  43. P. Angeli, C. M. Prado, D. G. Xisto et al., “Effects of chronic L-NAME treatment lung tissue mechanics, eosinophilic and extracellular matrix responses induced by chronic pulmonary inflammation,” American Journal of Physiology, vol. 294, no. 6, pp. L1197–L1205, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Abe, Y. Hayashi, A. Murai et al., “Effects of inducible nitric oxide synthase inhibitors on asthma depending on administration schedule,” Free Radical Biology and Medicine, vol. 40, no. 6, pp. 1083–1095, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Endo, S. Oyadomari, Y. Terasaki et al., “Induction of arginase I and II in bleomycin-induced fibrosis of mouse lung,” American Journal of Physiology, vol. 285, no. 2, pp. L313–L321, 2003. View at Scopus
  46. J. M. Bratt, L. M. Franzi, A. L. Linderholm, M. S. Last, N. J. Kenyon, and J. A. Last, “Arginase enzymes in isolated airways from normal and nitric oxide synthase 2-knockout mice exposed to ovalbumin,” Toxicology and Applied Pharmacology, vol. 234, no. 3, pp. 273–280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Maarsingh, J. Leusink, I. S. T. Bos, J. Zaagsma, and H. Meurs, “Arginase strongly impairs neuronal nitric oxide-mediated airway smooth muscle relaxation in allergic asthma,” Respiratory Research, vol. 7, article 6, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. F. L. M. Ricciardolo, G. U. Di Maria, A. Mistretta, M. A. Sapienza, and P. Geppetti, “Impairment of bronchoprotection by nitric oxide in severe asthma,” Lancet, vol. 350, no. 9087, pp. 1297–1298, 1997. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Maarsingh, A. B. Zuidhof, I. S. T. Bos et al., “Arginase inhibition protects against allergen-induced airway obstruction, hyperresponsiveness, and inflammation,” American Journal of Respiratory and Critical Care Medicine, vol. 178, no. 6, pp. 565–573, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Ckless, A. Lampert, J. Reiss et al., “Inhibition of arginase activity enhances inflammation in mice with allergic airway disease, in association with increases in protein S-nitrosylation and tyrosine nitration,” Journal of Immunology, vol. 181, no. 6, pp. 4255–4264, 2008. View at Scopus
  51. A. K. Abbas, K. M. Murphy, and A. Sher, “Functional diversity of helper T lymphocytes,” Nature, vol. 383, no. 6603, pp. 787–793, 1996. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Asano, C. B. E. Chee, B. Gaston et al., “Constitutive and inducible nitric oxide synthase gene expression, regulation, and activity in human lung epithelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 21, pp. 10089–10093, 1994. View at Publisher · View at Google Scholar · View at Scopus
  53. K. H. Yip, Y. Huang, M. M. Y. Waye, and H. Y. A. Lau, “Induction of nitric oxide synthases in primary human cultured mast cells by IgE and proinflammatory cytokines,” International Immunopharmacology, vol. 8, no. 5, pp. 764–768, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. I. M. Corraliza, G. Soler, K. Eichmann, and M. Modolell, “Arginase induction by suppressors of nitric oxide synthesis (IL-4, IL-10 and PGE) in murine bone-marrow-derived macrophages,” Biochemical and Biophysical Research Communications, vol. 206, no. 2, pp. 667–673, 1995. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Modolell, I. M. Corraliza, F. Link, G. Soler, and K. Eichmann, “Reciprocal regulation of the nitric oxide synthase-arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines,” European Journal of Immunology, vol. 25, no. 4, pp. 1101–1104, 1995. View at Scopus
  56. A. Erdely, D. Kepka-Lenhart, M. Clark et al., “Inhibition of phosphodiesterase 4 amplifies cytokine-dependent induction of arginase in macrophages,” American Journal of Physiology, vol. 290, no. 3, pp. L534–L539, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Maarsingh, B. E. Bossenga, I. S. T. Bos, H. H. Volders, J. Zaagsma, and H. Meurs, “L-Arginine deficiency causes airway hyperresponsiveness after the late asthmatic reaction,” European Respiratory Journal, vol. 34, no. 1, pp. 191–199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. M. L. North, N. Khanna, P. A. Marsden, H. Grasemann, and J. A. Scott, “Functionally important role for arginase 1 in the airway hyperresponsiveness of asthma,” American Journal of Physiology, vol. 296, no. 6, pp. L911–L920, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. N. Zimmermann, N. E. King, J. Laporte et al., “Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis,” Journal of Clinical Investigation, vol. 111, no. 12, pp. 1863–1874, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. A. L. Greene, M. S. Rutherford, R. R. Regal et al., “Arginase activity differs with allergen in the effector phase of ovalbumin- versus trimellitic anhydride-induced asthma,” Toxicological Sciences, vol. 88, no. 2, pp. 420–433, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. K. Takemoto, K. Ogino, M. Shibamori et al., “Transiently, paralleled upregulation of arginase and nitric oxide synthase and the effect of both enzymes on the pathology of asthma,” American Journal of Physiology, vol. 293, no. 6, pp. L1419–L1426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. N. G. Sandler, M. M. Mentink-Kane, A. W. Cheever, and T. A. Wynn, “Global gene expression profiles during acute pathogen-induced pulmonary inflammation reveal divergent roles for Th1 and Th2 responses in tissue repair,” Journal of Immunology, vol. 171, no. 7, pp. 3655–3667, 2003. View at Scopus
  63. M. Yang, D. Rangasamy, K. I. Matthaei et al., “Inhibition of arginase I activity by RNA interference attenuates IL-13-induced airways hyperresponsiveness,” Journal of Immunology, vol. 177, no. 8, pp. 5595–5603, 2006. View at Scopus
  64. T. Sharkhuu, K. I. Matthaei, E. Forbes et al., “Mechanism of interleukin-25 (IL-17E)-induced pulmonary inflammation and airways hyper-reactivity,” Clinical and Experimental Allergy, vol. 36, no. 12, pp. 1575–1583, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. C. C. Lewis, J. Y. H. Yang, X. Huang et al., “Disease-specific gene expression profiling in multiple models of lung disease,” American Journal of Respiratory and Critical Care Medicine, vol. 177, no. 4, pp. 376–387, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. S. A. Kharitonov, B. J. O'Connor, D. J. Evans, and P. J. Barnes, “Allergen-induced late asthmatic reactions are associated with elevation of exhaled nitric oxide,” American Journal of Respiratory and Critical Care Medicine, vol. 151, no. 6, pp. 1894–1899, 1995. View at Scopus
  67. Z. Q. Yan, G. K. Hansson, B. E. Skoogh, and J. O. Lotvall, “Induction of nitric oxide synthase in a model of allergic occupational asthma,” Allergy, vol. 50, no. 9, pp. 760–764, 1995. View at Scopus
  68. L. J. Dupont, F. Rochette, M. G. Demedts, and G. M. Verleden, “Exhaled nitric oxide correlates with airway hyperresponsiveness in steroid-naive patients with mild asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 157, no. 3, pp. 894–898, 1998. View at Scopus
  69. A. Jatakanon, S. Lim, S. A. Kharitonov, K. F. Chung, and P. J. Barnes, “Correlation between exhaled nitric oxide, sputum eosinophils, and methacholine responsiveness in patients with mild asthma,” Thorax, vol. 53, no. 2, pp. 91–95, 1998. View at Scopus
  70. S. A. Kharitonov and P. J. Barnes, “Clinical aspects of exhaled nitric oxide,” European Respiratory Journal, vol. 16, no. 4, pp. 781–792, 2000. View at Scopus
  71. A. Jatakanon, S. Kharitonov, S. Lim, and P. J. Barnes, “Effect of differing doses of inhaled budesonide on markers of airway inflammation in patients with mild asthma,” Thorax, vol. 54, no. 2, pp. 108–114, 1999. View at Scopus
  72. E. L. J. Van Rensen, K. C. M. Straathof, M. A. Veselic-Charvat, A. H. Zwinderman, E. H. Bel, and P. J. Sterk, “Effect of inhaled steroids on airway hyperresponsiveness, sputum eosinophils, and exhaled nitric oxide levels in patients with asthma,” Thorax, vol. 54, no. 5, pp. 403–408, 1999. View at Scopus
  73. J. Hjoberg, S. Shore, L. Kobzik et al., “Expression of nitric oxide synthase-2 in the lungs decreases airway resistance and responsiveness,” Journal of Applied Physiology, vol. 97, no. 1, pp. 249–259, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. G. Sadeghi-Hashjin, G. Folkerts, P. A. J. Henricks et al., “Peroxynitrite induces airway hyperresponsiveness in guinea pigs in vitro and in vivo,” American Journal of Respiratory and Critical Care Medicine, vol. 153, no. 5, pp. 1697–1701, 1996. View at Scopus
  75. H. Sugiura, M. Ichinose, T. Oyake et al., “Role of peroxynitrite in airway microvascular hyperpermeability during late allergic phase in guinea pigs,” American Journal of Respiratory and Critical Care Medicine, vol. 160, no. 2, pp. 663–671, 1999. View at Scopus
  76. B. M. Fischer and J. A. Voynow, “Neutrophil elastase induces MUC5AC gene expression in airway epithelium via a pathway involving reactive oxygen species,” American Journal of Respiratory Cell and Molecular Biology, vol. 26, no. 4, pp. 447–452, 2002. View at Scopus
  77. J. De Boer, H. Meurs, L. Flendrig, M. Koopal, and J. Zaagsma, “Role of nitric oxide and superoxide in allergen-induced airway hyperreactivity after the late asthmatic reaction in guinea-pigs,” British Journal of Pharmacology, vol. 133, no. 8, pp. 1235–1242, 2001. View at Scopus
  78. D. Saleh, P. Ernst, S. Lim, P. J. Barnes, and A. Giaid, “Increased formation of the potent oxidant peroxynitrite in the airways of asthmatic patients is associated with induction of nitric oxide synthase: effect of inhaled glucocorticoid,” FASEB Journal, vol. 12, no. 11, pp. 929–937, 1998. View at Scopus
  79. T. Hanazawa, S. A. Kharitonov, and P. J. Barnes, “Increased nitrotyrosine in exhaled breath condensate of patients with asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 162, no. 4, pp. 1273–1276, 2000. View at Scopus
  80. G. Sadeghi-Hashjin, G. Folkerts, P. A. J. Henricks, R. B. R. Muijsers, and F. P. Nijkamp, “Peroxynitrite in airway diseases,” Clinical and Experimental Allergy, vol. 28, no. 12, pp. 1464–1473, 1998. View at Publisher · View at Google Scholar · View at Scopus
  81. M. G. Persson and L. E. Gustafsson, “Allergen-induced airway obstruction in guinea-pigs is associated with changes in nitric oxide levels in exhaled air,” Acta Physiologica Scandinavica, vol. 149, no. 4, pp. 461–466, 1993. View at Scopus
  82. J. De Boer, H. Meurs, W. Coers et al., “Deficiency of nitric oxide in allergen-induced airway hyperreactivity to contractile agonists after the early asthmatic reaction: an ex vivo study,” British Journal of Pharmacology, vol. 119, no. 6, pp. 1109–1116, 1996.
  83. M. Schuiling, A. B. Zuidhof, M. A. A. Bonouvrie, N. Venema, J. Zaagsma, and H. Meurs, “Role of nitric oxide in the development and partial reversal of allergen-induced airway hyperreactivity in conscious, unrestrained guinea-pigs,” British Journal of Pharmacology, vol. 123, no. 7, pp. 1450–1456, 1998. View at Publisher · View at Google Scholar · View at Scopus
  84. Y. Xia, L. J. Roman, B. S. S. Masters, and J. L. Zweier, “Inducible nitric-oxide synthase generates superoxide from the reductase domain,” Journal of Biological Chemistry, vol. 273, no. 35, pp. 22635–22639, 1998. View at Publisher · View at Google Scholar · View at Scopus
  85. Y. Xia and J. L. Zweier, “Direct measurement of nitric oxide generation from nitric oxide synthase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 23, pp. 12705–12710, 1997. View at Publisher · View at Google Scholar · View at Scopus
  86. N. J. Kenyon, J. M. Bratt, A. L. Linderholm, M. S. Last, and J. A. Last, “Arginases I and II in lungs of ovalbumin-sensitized mice exposed to ovalbumin: sources and consequences,” Toxicology and Applied Pharmacology, vol. 230, no. 3, pp. 269–275, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. H. Maarsingh, et al., “Increased arginase activity underlies airway hyperresponsiveness in a guinea pig model of chronic allergic asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 175, p. A522, 2007.
  88. L. Kochański, S. Kossmann, E. Rogala, and J. Dwornicki, “Sputum arginase activity in bronchial asthma,” Pneumonologia Polska, vol. 48, no. 5, pp. 329–332, 1980. View at Scopus
  89. H. Li, I. Romieu, J. J. Sienra-Monge et al., “Genetic polymorphisms in arginase I and II and childhood asthma and atopy,” Journal of Allergy and Clinical Immunology, vol. 117, no. 1, pp. 119–126, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. C. R. Morris, M. Poljakovic, L. Lavrisha, L. Machado, F. A. Kuypers, and S. M. Morris, “Decreased arginine bioavailability and increased serum arginase activity in asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 170, no. 2, pp. 148–153, 2004. View at Scopus
  91. A. Lara, S. B. Khatri, Z. Wang et al., “Alterations of the arginine metabolome in asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 178, no. 7, pp. 673–681, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Munder, F. Mollinedo, J. Calafat et al., “Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity,” Blood, vol. 105, no. 6, pp. 2549–2556, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. S. Gordon, “Alternative activation of macrophages,” Nature Reviews Immunology, vol. 3, no. 1, pp. 23–35, 2003. View at Publisher · View at Google Scholar · View at Scopus
  94. F. O. Martinez, L. Helming, and S. Gordon, “Alternative activation of macrophages: an immunologic functional perspective,” Annual Review of Immunology, vol. 27, pp. 451–483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Hesse, M. Modolell, A. C. La Flamme et al., “Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism,” Journal of Immunology, vol. 167, no. 11, pp. 6533–6544, 2001. View at Scopus
  96. J. T. Pesce, T. R. Ramalingam, M. M. Mentink-Kane et al., “Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis,” PLoS Pathogens, vol. 5, no. 4, Article ID e1000371, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. K. A. Niese, A. R. Collier, A. R. Hajek et al., “Bone marrow cell derived arginase I is the major source of allergen-induced lung arginase but is not required for airway hyperresponsiveness, remodeling and lung inflammatory responses in mice,” BMC Immunology, vol. 10, article no. 33, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. S. Wenzel and S. T. Holgate, “The mouse trap: it still yields few answers in asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 174, no. 11, pp. 1173–1176, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. R. Fattouh and M. Jordana, “TGF-β, eosinophils and IL-13 in allergic airway remodeling: a critical appraisal with therapeutic considerations,” Inflammation and Allergy—Drug Targets, vol. 7, no. 4, pp. 224–236, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. A. L. Mora, E. Torres-González, M. Rojas et al., “Activation of alveolar macrophages via the alternative pathway in herpesvirus-induced lung fibrosis,” American Journal of Respiratory Cell and Molecular Biology, vol. 35, no. 4, pp. 466–473, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. H. Liu, P. Drew, A. C. Gaugler, Y. Cheng, and G. A. Visner, “Pirfenidone inhibits lung allograft fibrosis through L-arginine-arginase pathway,” American Journal of Transplantation, vol. 5, no. 6, pp. 1256–1263, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. A. M. Pulichino, I. M. Wang, A. Caron et al., “Identification of transforming growth factor β1-driven genetic programs of acute lung fibrosis,” American Journal of Respiratory Cell and Molecular Biology, vol. 39, no. 3, pp. 324–336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. C. R. Morris, “Mechanisms of vasculopathy in sickle cell disease and thalassemia,” Hematology. American Society of Hematology. Education Program, pp. 177–185, 2008. View at Scopus
  104. N. J. Kenyon, K. Gohil, and J. A. Last, “Susceptibility to ovalbumin-induced airway inflammation and fibrosis in inducible nitric oxide synthetase-deficient mice: mechanisms and consequences,” Toxicology and Applied Pharmacology, vol. 191, no. 1, pp. 2–11, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. A. M. Hamad, S. R. Johnson, and A. J. Knox, “Antiproliferative effects of NO and ANP in cultured human airway smooth muscle,” American Journal of Physiology, vol. 277, no. 5 21-5, pp. L910–L918, 1999.
  106. A. M. Hamad and A. J. Knox, “Mechanisms mediating the antiproliferative effects of nitric oxide in cultured human airway smooth muscle cells,” FEBS Letters, vol. 506, no. 2, pp. 91–96, 2001. View at Publisher · View at Google Scholar · View at Scopus
  107. H. J. Patel, M. G. Belvisi, L. E. Donnelly, M. H. Yacoub, K. F. Chung, and J. A. Mitchell, “Constitutive expressions of type I NOS in human airway smooth muscle cells: evidence for an antiproliferative role,” FASEB Journal, vol. 13, no. 13, pp. 1810–1816, 1999. View at Scopus
  108. Y. Kizawa, N. Ohuchi, K. Saito, T. Kusama, and H. Murakami, “Effects of endothelin-1 and nitric oxide on proliferation of cultured guinea pig bronchial smooth muscle cells,” Comparative Biochemistry and Physiology C, vol. 128, no. 4, pp. 495–501, 2001. View at Publisher · View at Google Scholar · View at Scopus
  109. J. Thyberg and B. B. Fredholm, “Modulation of arterial smooth muscle cells from contractile to synthetic phenotype requires induction of ornithine decarboxylase activity and polyamine synthesis,” Experimental Cell Research, vol. 170, no. 1, pp. 153–159, 1987. View at Scopus
  110. J. Thyberg and B. B. Fredholm, “Induction of ornithine decarboxylase activity and putrescine synthesis in arterial smooth muscle cells stimulated with platelet-derived growth factor,” Experimental Cell Research, vol. 170, no. 1, pp. 160–169, 1987. View at Scopus
  111. W. Durante, L. Liao, K. J. Peyton, and A. I. Schafer, “Thrombin stimulates vascular smooth muscle cell polyamine synthesis by inducing cationic amino acid transporter and ornithine decarboxylase gene expression,” Circulation Research, vol. 83, no. 2, pp. 217–223, 1998.
  112. W. Durante, L. Liao, S. V. Reyna, K. J. Peyton, and A. I. Schafer, “Transforming growth factor-β stimulates L-arginine transport and metabolism in vascular smooth muscle cells: role in polyamine and collagen synthesis,” Circulation, vol. 103, no. 8, pp. 1121–1127, 2001. View at Scopus
  113. G. Wu, “Intestinal mucosal amino acid catabolism,” Journal of Nutrition, vol. 128, no. 8, pp. 1249–1252, 1998. View at Scopus
  114. W. H. Waugh, C. W. Daeschner, B. A. Files, M. E. McConnell, and S. E. Strandjord, “Oral citrulline as arginine precursor may be beneficial in sickle cell disease: early phase two results,” Journal of the National Medical Association, vol. 93, no. 10, pp. 363–371, 2001. View at Scopus
  115. C. Morris, et al., “Metabolic fate of oral glutamine supplementation within plasma and erythrocytes of patients with sickle cell disease: preliminary pharmacokinetics results,” Blood, vol. 116, abstract 1636, 2010.
  116. A. C. Koumbourlis, H. J. Zar, A. Hurlet-Jensen, and M. R. Goldberg, “Prevalence and reversibility of lower airway obstruction in children with sickle cell disease,” Journal of Pediatrics, vol. 138, no. 2, pp. 188–192, 2001. View at Publisher · View at Google Scholar · View at Scopus
  117. J. H. Boyd, A. Moinuddin, R. C. Strunk, and M. R. DeBaun, “Asthma and acute chest in sickle-cell disease,” Pediatric Pulmonology, vol. 38, no. 3, pp. 229–232, 2004. View at Publisher · View at Google Scholar · View at Scopus
  118. R. Bryant, “Asthma in the pediatric sickle cell patient with acute chest syndrome,” Journal of Pediatric Health Care, vol. 19, no. 3, pp. 157–162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  119. J. M. Knight-Madden, T. S. Forrester, N. A. Lewis, and A. Greenough, “Asthma in children with sickle cell disease and its association with acute chest syndrome,” Thorax, vol. 60, no. 3, pp. 206–210, 2005. View at Publisher · View at Google Scholar · View at Scopus
  120. M. E. Nordness, J. Lynn, M. C. Zacharisen, P. J. Scott, and K. J. Kelly, “Asthma is a risk factor for acute chest syndrome and cerebral vascular accidents in children with sickle cell disease,” Clinical and Molecular Allergy, vol. 3, article 2, 2005. View at Publisher · View at Google Scholar · View at Scopus
  121. J. H. Boyd, E. A. Macklin, R. C. Strunk, and M. R. DeBaun, “Asthma is associated with acute chest syndrome and pain in children with sickle cell anemia,” Blood, vol. 108, no. 9, pp. 2923–2927, 2006. View at Publisher · View at Google Scholar · View at Scopus
  122. K. P. Sylvester, R. A. Patey, S. Broughton et al., “Temporal relationship of asthma to acute chest syndrome in sickle cell disease,” Pediatric Pulmonology, vol. 42, no. 2, pp. 103–106, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. J. H. Boyd, E. A. Macklin, R. C. Strunk, and M. R. DeBaun, “Asthma is associated with increased mortality in individuals with sickle cell anemia,” Haematologica, vol. 92, no. 8, pp. 1115–1118, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. R. W. Hagar, J. G. Michlitsch, J. Gardner, E. P. Vichinsky, and C. R. Morris, “Clinical differences between children and adults with pulmonary hypertension and sickle cell disease,” British Journal of Haematology, vol. 140, no. 1, pp. 104–112, 2008. View at Publisher · View at Google Scholar · View at Scopus
  125. C. R. Morris, “Asthma management: reinventing the wheel in sickle cell disease,” American Journal of Hematology, vol. 84, no. 4, pp. 234–241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. C. R. Morris, “Role of arginase in sickle cell lung disease and hemolytic anemias,” The Open Nitric Oxide Journal, vol. 2, pp. 41–54, 2010.
  127. C. R. Morris, G. J. Kato, M. Poljakovic et al., “Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease,” Journal of the American Medical Association, vol. 294, no. 1, pp. 81–90, 2005. View at Publisher · View at Google Scholar · View at Scopus
  128. C. R. Morris, “Hemolysis-associated pulmonary hypertension in sickle cell disease: global disruption of the arginine-nitric oxide pathway,” Current Hypertension Reviews, vol. 3, no. 3, pp. 223–230, 2007. View at Publisher · View at Google Scholar · View at Scopus
  129. C. R. Morris, M. T. Gladwin, and G. J. Kato, “Nitric oxide and arginine dysregulation: a novel pathway to pulmonary hypertension in hemolytic disorders,” Current Molecular Medicine, vol. 8, no. 7, pp. 620–632, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. C. R. Morris, F. A. Kuypers, G. J. Kato et al., “Hemolysis-associated pulmonary hypertension in thalassemia,” Annals of the New York Academy of Sciences, vol. 1054, pp. 481–485, 2005. View at Publisher · View at Google Scholar · View at Scopus
  131. C. R. Morris, E. Vichinsky, and S. T. Singer, “Pulmonary hypertension in thalassemia: association with hemolysis, arginine metabolism dysregulation and a hypercoaguable state,” Advances in Pulmonary Hypertension, vol. 5, pp. 31–38, 2007.
  132. C. R. Morris and E. P. Vichinsky, “Pulmonary hypertension in thalassemia,” Annals of the New York Academy of Sciences, vol. 1202, pp. 205–213, 2010. View at Publisher · View at Google Scholar
  133. H. Maarsingh, T. Pera, and H. Meurs, “Arginase and pulmonary diseases,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 378, no. 2, pp. 171–184, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. H. Maarsingh, J. Zaagsma, and H. Meurs, “Arginase: a key enzyme in the pathophysiology of allergic asthma opening novel therapeutic perspectives,” British Journal of Pharmacology, vol. 158, no. 3, pp. 652–664, 2009. View at Publisher · View at Google Scholar · View at Scopus
  135. C. R. Morris, S. M. Morris, W. Hagar et al., “Arginine therapy: a new treatment for pulmonary hypertension in sickle cell disease?” American Journal of Respiratory and Critical Care Medicine, vol. 168, no. 1, pp. 63–69, 2003. View at Publisher · View at Google Scholar · View at Scopus
  136. C. R. Morris, “New strategies for the treatment of pulmonary hypertension in sickle cell disease: the rationale for arginine therapy,” Treatments in Respiratory Medicine, vol. 5, no. 1, pp. 31–45, 2006. View at Publisher · View at Google Scholar · View at Scopus
  137. R. F. Machado and M. T. Gladwin, “Pulmonary hypertension in hemolytic disorders: pulmonary vascular disease: the global perspective,” Chest, vol. 137, no. 6, pp. 30S–38S, 2010. View at Publisher · View at Google Scholar · View at Scopus
  138. C. R. Morris, “Decreased arginine bioavailability contributes to the pathogenesis of pulmonary artery hypertension,” in Proceedings of the American College of Cardiology Annual Meeting, Orlando, Fla, USA, 2005.
  139. W. Xu, F. T. Kaneko, S. Zheng et al., “Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension,” FASEB Journal, vol. 18, no. 14, pp. 1746–1748, 2004. View at Publisher · View at Google Scholar · View at Scopus
  140. J. J. Field and M. R. DeBaun, “Asthma and sickle cell disease: two distinct diseases or part of the same process?” Hematology. American Society of Hematology. Education Program, pp. 45–53, 2009. View at Scopus
  141. O. Y. Ozbek, B. Malbora, N. Sen, A. C. Yazici, E. Ozyurek, and N. Ozbek, “Airway hyperreactivity detected by methacholine challenge in children with sickle cell disease,” Pediatric Pulmonology, vol. 42, no. 12, pp. 1187–1192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  142. M. A. Leong, C. Dampier, L. Varlotta, and J. L. Allen, “Airway hyperreactivity in children with sickle cell disease,” Journal of Pediatrics, vol. 131, no. 2, pp. 278–285, 1997. View at Publisher · View at Google Scholar · View at Scopus
  143. J. J. Field, et al., “Airway hyper-responsiveness in children with sickle cell anemia,” Chest, vol. 139, no. 3, pp. 563–568, 2011.
  144. G. J. Kato, V. McGowan, R. F. Machado et al., “Lactate dehydrogenase as a biomarker of hemolysis-associated nitric oxide resistance, priapism, leg ulceration, pulmonary hypertension, and death in patients with sickle cell disease,” Blood, vol. 107, no. 6, pp. 2279–2285, 2006. View at Publisher · View at Google Scholar
  145. N. Sen, I. Kozanoglu, M. Karatasli, H. Ermis, C. Boga, and F. O. Eyuboglu, “Pulmonary function and airway hyperresponsiveness in adults with sickle cell disease,” Lung, vol. 187, no. 3, pp. 195–200, 2009. View at Publisher · View at Google Scholar · View at Scopus