About this Journal Submit a Manuscript Table of Contents
Journal of Allergy
Volume 2012 (2012), Article ID 130937, 13 pages
http://dx.doi.org/10.1155/2012/130937
Review Article

Type 2 Innate Lymphoid Cells: Friends or Foes—Role in Airway Allergic Inflammation and Asthma

1Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
2Immuno-Biochemistry Lab, Allergy Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Received 15 June 2012; Accepted 24 September 2012

Academic Editor: Georgia Hardavella

Copyright © 2012 Abbas Pishdadian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Spits and J. P. di Santo, “The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling,” Nature Immunology, vol. 12, no. 1, pp. 21–27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Spits and T. Cupedo, “Innate lymphoid cells: emerging insights in development, lineage relationships, and function,” Annual Review of Immunology, vol. 30, pp. 647–675, 2012. View at Publisher · View at Google Scholar
  3. S. Porcelli, C. E. Yockey, M. B. Brenner, and S. P. Balk, “Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8- α/β T cells demonstrates preferential use of several Vβ genes and an invariant TCR α chain,” The Journal of Experimental Medicine, vol. 178, no. 1, pp. 1–16, 1993. View at Scopus
  4. F. Tilloy, E. Treiner, S. H. Park et al., “An invariant T cell receptor α chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted α/β T cell subpopulation in mammals,” The Journal of Experimental Medicine, vol. 189, no. 12, pp. 1907–1921, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Treiner and O. Lantz, “CD1d- and MR1-restricted invariant T cells: of mice and men,” Current Opinion in Immunology, vol. 18, no. 5, pp. 519–526, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. L. L. Bourhis, L. Guerri, M. Dusseaux, E. Martin, C. Soudais, and O. Lantz, “Mucosal-associated invariant T cells: unconventional development and function,” Trends in Immunology, vol. 32, no. 5, pp. 212–218, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Koseki, K. Imai, F. Nakayama, T. Sado, K. Moriwaki, and M. Taniguchi, “Homogenous junctional sequence of the V14+ T-cell antigen receptor α chain expanded in unprimed mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 14, pp. 5248–5252, 1990. View at Publisher · View at Google Scholar · View at Scopus
  8. D. I. Godfrey and S. P. Berzins, “Control points in NKT-cell development,” Nature Reviews Immunology, vol. 7, no. 7, pp. 505–518, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. D. I. Godfrey, S. Stankovic, and A. G. Baxter, “Raising the NKT cell family,” Nature Immunology, vol. 11, no. 3, pp. 197–206, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. A. Sharma, L. Chew, M. Ladd, R. Jen, and P. M. Lavoie, “Ex vivo purification and characterization of human invariant Natural Killer T cells,” Journal of Immunological Methods, vol. 373, pp. 1–7, 2011. View at Publisher · View at Google Scholar
  11. H. Saito, D. M. Kranz, and Y. Takagaki, “Complete primary structure of a heterodimeric T-cell receptor deduced from cDNA sequences,” Nature, vol. 309, pp. 757–762, 1984. View at Scopus
  12. L. E. Samelson, J. B. Harford, and R. D. Klausner, “Identification of the components of the murine T cell antigen receptor complex,” Cell, vol. 43, no. 1, pp. 223–231, 1985. View at Scopus
  13. Y. Konigshofer and Y. H. Chien, “γδ T cells—innate immune lymphocytes?” Current Opinion in Immunology, vol. 18, no. 5, pp. 527–533, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Casetti and A. Martino, “The plasticity of γδ T cells: Innate immunity, antigen presentation and new immunotherapy,” Cellular and Molecular Immunology, vol. 5, no. 3, pp. 161–170, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Narayan and J. Kang, “Disorderly conduct in γδ versus αβ T cell lineage commitment,” Seminars in Immunology, vol. 22, no. 4, pp. 222–227, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Champagne, “γδ T cell receptor ligands and modes of antigen recognition,” Archivum Immunologiae et Therapiae Experimentalis, vol. 59, no. 2, pp. 117–137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. I. C. M. MacLennan, D. Gray, D. S. Kumararatne, and H. Bazin, “The lymphocytes of splenic marginal zones: a distinct B-cell lineage,” Immunology Today, vol. 3, no. 11, pp. 305–307, 1982. View at Scopus
  18. T. L. Carvalho and J. F. Kearney, “Development and selection of marginal zone B cells,” Immunological Reviews, vol. 197, pp. 192–205, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. J. C. Weill, S. Weller, and C. A. Reynaud, “Human marginal zone B cells,” Annual Review of Immunology, vol. 27, pp. 267–285, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Bialecki, C. Paget, J. Fontaine, M. Capron, F. Trottein, and C. Faveeuw, “Role of marginal zone B lymphocytes in invariant NKT cell activation,” Journal of Immunology, vol. 182, no. 10, pp. 6105–6113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Gronowicz and A. Coutinho, “Functional analysis of B cell heterogeneity,” Transplantation Reviews, vol. 24, pp. 3–40, 1975. View at Scopus
  22. K. Hayakawa, R. R. Hardy, D. R. Parks, and L. A. Herzenberg, “The 'Ly-1 B' cell subpopulation in normal, immunodefective, and autoimmune mice,” The Journal of Experimental Medicine, vol. 157, no. 1, pp. 202–218, 1983. View at Scopus
  23. A. Ahmed, I. Scher, and S. O. Sharrow, “B lymphocyte heterogeneity: development and characterization of an alloantiserum which distinguishes B lymphocyte differentiation alloantigens,” The Journal of Experimental Medicine, vol. 145, no. 1, pp. 101–110, 1977. View at Scopus
  24. A. O'Garra and M. Howard, “Cytokines and Ly-1 (B1) B cells,” International Reviews of Immunology, vol. 8, no. 2-3, pp. 219–234, 1992. View at Scopus
  25. F. Martin and J. F. Kearney, “B1 cells: similarities and differences with other B cell subsets,” Current Opinion in Immunology, vol. 13, no. 2, pp. 195–201, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Jellusova, S. Düber, E. Gückel et al., “Siglec-G regulates B1 cell survival and selection,” Journal of Immunology, vol. 185, no. 6, pp. 3277–3284, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. D. O. Griffin, N. E. Holodick, and T. L. Rothstein, “Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+CD27+CD43+CD70,” The Journal of Experimental Medicine, vol. 208, no. 1, pp. 67–80, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Baumgarth, “The double life of a B-1 cell: self-reactivity selects for protective effector functions,” Nature Reviews Immunology, vol. 11, no. 1, pp. 34–46, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Kiessling, E. Klein, and H. Wigzell, “‘Natural’ killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype,” European Journal of Immunology, vol. 5, no. 2, pp. 112–117, 1975. View at Scopus
  30. R. B. Herberman, M. E. Nunn, and D. H. Lavrin, “Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. I. Distribution of reactivity and specificity,” International Journal of Cancer, vol. 16, no. 2, pp. 216–229, 1975. View at Scopus
  31. T. Strowig, F. Brilot, and C. Münz, “Noncytotoxic functions of NK cells: direct pathogen restriction and assistance to adaptive immunity,” Journal of Immunology, vol. 180, no. 12, pp. 7785–7791, 2008. View at Scopus
  32. W. Held, M. Kijima, G. Angelov, and S. Bessoles, “The function of natural killer cells: education, reminders and some good memories,” Current Opinion in Immunology, vol. 23, no. 2, pp. 228–233, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Vivier, D. H. Raulet, A. Moretta et al., “Innate or adaptive immunity? The example of natural killer cells,” Science, vol. 331, no. 6013, pp. 44–49, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Martín-Fontecha, G. M. Lord, and H. J. Brady, “Transcriptional control of natural killer cell differentiation and function,” Cellular and Molecular Life Sciences, vol. 68, no. 21, pp. 3495–3503, 2011. View at Publisher · View at Google Scholar
  35. S. M. Gordon, J. Chaix, L. I. Rupp, et al., “The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation,” Immunity, vol. 36, no. 1, pp. 55–67, 2012. View at Publisher · View at Google Scholar
  36. R. E. Mebius, P. Rennert, and I. L. Weissman, “Developing lymph nodes collect CD4+CD3 LTβ+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells,” Immunity, vol. 7, no. 4, pp. 493–504, 1997. View at Scopus
  37. S. L. Sanos, C. Vonarbourg, A. Mortha, and A. Diefenbach, “Control of epithelial cell function by interleukin-22-producing RORγt+ innate lymphoid cells,” Immunology, vol. 132, no. 4, pp. 453–465, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Vonarbourga and A. Diefenbach, “Multifaceted roles of interleukin-7 signaling for the development and function of innate lymphoid cells,” Seminars in Immunology, vol. 24, no. 3, pp. 165–174, 2012. View at Publisher · View at Google Scholar
  39. C. Possot, S. Schmutz, S. Chea, et al., “Notch signaling is necessary for adult, but not fetal, development of RORγt+ innate lymphoid cells,” Nature Immunology, vol. 12, no. 10, pp. 949–958, 2011. View at Publisher · View at Google Scholar
  40. M. M. Fort, J. Cheung, D. Yen et al., “IL-25 Induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo,” Immunity, vol. 15, no. 6, pp. 985–995, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. S. D. Hurst, T. Muchamuel, D. M. Gorman et al., “New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25,” Journal of Immunology, vol. 169, no. 1, pp. 443–453, 2002. View at Scopus
  42. K. Moro, T. Yamada, M. Tanabe et al., “Innate production of TH2 cytokines by adipose tissue-associated c-Kit+ Sca-1+ lymphoid cells,” Nature, vol. 463, no. 7280, pp. 540–544, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. S. A. Saenz, M. Noti, and D. Artis, “Innate immune cell populations function as initiators and effectors in Th2 cytokine responses,” Trends in Immunology, vol. 31, no. 11, pp. 407–413, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. D. R. Neill and A. N. J. McKenzie, “Nuocytes and beyond: new insights into helminth expulsion,” Trends in Parasitology, vol. 27, no. 5, pp. 214–221, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Koyasu and K. Moro, “Type 2 innate immune responses and the natural helper cell,” Immunology, vol. 132, no. 4, pp. 475–481, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. Q. Yang, S. A. Saenz, D. A. Zlotoff, D. Artis, and A. Bhandoola, “Cutting edge: natural helper cells derive from lymphoid progenitors,” The Journal of Immunology, vol. 187, no. 11, pp. 5505–5509, 2011. View at Publisher · View at Google Scholar
  47. T. A. Doherty, N. Khorram, J. E. Chang, et al., “STAT6 regulates natural helper cell proliferation during lung inflammation initiated by alternaria,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 303, no. 7, pp. L577–L588, 2012.
  48. L. A. Monticelli, G. F. Sonnenberg, M. C. Abt, et al., “Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus,” Nature Immunology, vol. 12, pp. 1045–1054, 2011. View at Publisher · View at Google Scholar
  49. F. Chen, Z. Liu, W. Wu, et al., “An essential role for TH2-type responses in limiting acute tissue damage during experimental helminth infection,” Nature Medicine, vol. 18, pp. 260–266, 2012. View at Publisher · View at Google Scholar
  50. D. R. Neill, S. H. Wong, A. Bellosi et al., “Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity,” Nature, vol. 464, no. 7293, pp. 1367–1370, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. J. L. Barlow and A. N. J. McKenzie, “Nuocytes: expanding the innate cell repertoire in type 2 immunity,” Journal of Leukocyte Biology, vol. 90, pp. 1–8, 2011. View at Publisher · View at Google Scholar
  52. S. H. Wong, J. A. Walker, H. E. Jolin, et al., “Transcription factor ROR α is critical for nuocyte development,” Nature Immunology, vol. 13, no. 3, pp. 229–236, 2012. View at Publisher · View at Google Scholar
  53. A. E. Price, H. E. Liang, B. M. Sullivan et al., “Systemically dispersed innate IL-13-expressing cells in type 2 immunity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 25, pp. 11489–11494, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Y. Kim, Y. J. Chang, S. Subramanian, et al., “Innate lymphoid cells responding to IL-33 mediate airway hyperreactivity independently of adaptive immunity,” Journal of Allergy and Clinical Immunology, vol. 129, pp. 216–227, 2012. View at Publisher · View at Google Scholar
  55. J. M. Mjösberg, S. Trifari, N. K. Crellin, et al., “CRTH2 and CD161 define a human IL-25- and IL-33-responsive type 2 innate lymphoid cell type,” Nature Immunology, vol. 12, pp. 1055–1062, 2011. View at Publisher · View at Google Scholar
  56. S. A. Saenz, M. C. Siracusa, J. G. Perrigoue et al., “IL25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses,” Nature, vol. 464, no. 7293, pp. 1362–1366, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Mjösberg, J. Bernink, C. Peters, and H. Spits, “Transcriptional control of innate lymphoid cells,” European Journal of Immunology, vol. 42, pp. 1916–1923, 2012. View at Publisher · View at Google Scholar
  58. M. Kurowska-Stolarska, P. Kewin, G. Murphy et al., “IL-33 induces antigen-specific IL-5+ T cells and promotes allergic-induced airway inflammation independent of IL-4,” Journal of Immunology, vol. 181, no. 7, pp. 4780–4790, 2008. View at Scopus
  59. K. Yasudaa, T. Mutoa, T. Kawagoeb, et al., “Contribution of IL-33-activated type II innate lymphoid cells to pulmonary eosinophilia in intestinal nematode-infected mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 9, pp. 3451–3456, 2012. View at Publisher · View at Google Scholar
  60. W. Strober, “Immunology: the expanding TH2 universe,” Nature, vol. 463, no. 7280, pp. 434–435, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Foo, N. I. L. Pitman, and I. B. McInnes, “Disease-associated functions of IL-33: the new kid in the IL-1 family,” Nature Reviews Immunology, vol. 10, no. 2, pp. 103–110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. A. S. Mirchandani, R. J. Salmond, and F. Y. Liew, “Interleukin-33 and the function of innate lymphoid cells,” Trends in Immunology, vol. 33, no. 8, pp. 389–396, 2012. View at Publisher · View at Google Scholar
  63. K. Oboki, S. Nakae, K. Matsumoto, and H. Saito, “IL-33 and airway inflammation,” Allergy, Asthma and Immunology Research, vol. 3, no. 2, pp. 81–88, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Pichery, E. Mirey, P. Mercier, et al., “Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues: in situ analysis using a novel IL-33-LacZ gene trap reporter strain,” The Journal of Immunology, vol. 188, no. 7, pp. 3488–3495, 2012. View at Publisher · View at Google Scholar
  65. M. Hvid, C. Vestergaard, K. Kemp, G. B. Christensen, B. Deleuran, and M. Deleuran, “IL-25 in atopic dermatitis: a possible link between inflammation and skin barrier dysfunction,” Journal of Investigative Dermatology, vol. 131, no. 1, pp. 150–157, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. T. Halim, R. Krauß, A. Sun, and F. Takei, “Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation,” Immunity, vol. 36, no. 3, pp. 451–463, 2012. View at Publisher · View at Google Scholar
  67. Y. J. Chang, H. Y. Kim, L. A. Albacker et al., “Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity,” Nature Immunology, vol. 12, no. 7, pp. 631–638, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. R. G. J. K. Wolterink, A. KleinJan, M. van Nimwegen, et al., “Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma,” European Journal of Immunology, vol. 42, pp. 1106–1116, 2012. View at Publisher · View at Google Scholar
  69. M. Ikutani, T. Yanagibashi, M. Ogasawara, et al., “Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity,” The Journal of Immunology, vol. 188, no. 2, pp. 703–713, 2012. View at Publisher · View at Google Scholar
  70. J. L. Barlow, A. Bellosi, C. S. Hardman, et al., “Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity,” Journal of Allergy and Clinical Immunology, vol. 129, pp. 191–198, 2012. View at Publisher · View at Google Scholar
  71. J. Schmitz, A. Owyang, E. Oldham et al., “IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines,” Immunity, vol. 23, no. 5, pp. 479–490, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. K. Oboki, T. Ohno, N. Kajiwara et al., “IL-33 is a crucial amplifier of innate rather than acquired immunity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 43, pp. 18581–18586, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. H. Hammad, M. Chieppa, F. Perros, M. A. Willart, R. N. Germain, and B. N. Lambrecht, “House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells,” Nature Medicine, vol. 15, no. 4, pp. 410–416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. C. Wilhelm, K. Hirota, B. Stieglitz, et al., “An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation,” Nature Immunology, vol. 12, pp. 1071–1077, 2011. View at Publisher · View at Google Scholar