About this Journal Submit a Manuscript Table of Contents
Journal of Allergy
Volume 2012 (2012), Article ID 156909, 5 pages
http://dx.doi.org/10.1155/2012/156909
Review Article

Accumulating Evidence for Increased Velocity of Airway Smooth Muscle Shortening in Asthmatic Airway Hyperresponsiveness

1Meakins-Christie Laboratories, McGill University, 3626 St. Urbain Street, Montreal, QC, Canada H2X 2P2
2Department of Medicine, McGill University, 687 Pine Avenue, Montreal, QC, Canada H3A 1A1
3Department of Biomedical Engineering, McGill University, 3775 University Street, Montreal, QC, Canada H3A 2B4
4Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, Canada H3G 1Y6

Received 31 August 2012; Accepted 6 December 2012

Academic Editor: Ynuk Bossé

Copyright © 2012 Gijs Ijpma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. C. Jackson, M. M. Murphy, J. Rassulo, B. R. Celli, and R. H. Ingram, “Deep breath reversal and exponential return of methacholine-induced obstruction in asthmatic and nonasthmatic subjects,” Journal of Applied Physiology, vol. 96, no. 1, pp. 137–142, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. C. M. Hai and R. A. Murphy, “Cross-bridge phosphorylation and regulation of latch state in smooth muscle,” American Journal of Physiology, vol. 254, no. 1, pp. C99–C106, 1988. View at Scopus
  3. J. Solway and J. J. Fredberg, “Perhaps airway smooth muscle dysfunction contributes to asthmatic bronchial hyperresponsiveness after all,” American Journal of Respiratory Cell and Molecular Biology, vol. 17, no. 2, pp. 144–146, 1997. View at Scopus
  4. S. R. Bullimore, S. Siddiqui, G. M. Donovan et al., “Could an increase in airway smooth muscle shortening velocity cause airway hyperresponsiveness?” American Journal of Physiology, vol. 300, no. 1, pp. L121–L131, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Y. M. Chin, Y. Bossé, C. Pascoe, T. L. Hackett, C. Y. Seow, and P. D. Paré, “Mechanical properties of asthmatic airway smooth muscle,” European Respiratory Journal, vol. 40, no. 1, pp. 45–54, 2012. View at Publisher · View at Google Scholar
  6. J. C. de Jongste, R. van Strik, I. L. Bonta, and K. F. Kerrebijn, “Measurement of human small airway smooth muscle function in vitro with the bronchiolar strip preparation,” Journal of Pharmacological Methods, vol. 14, no. 2, pp. 111–118, 1985. View at Publisher · View at Google Scholar · View at Scopus
  7. R. W. Mitchell, E. Ruhlmann, H. Magnussen, A. R. Leff, and K. F. Rabe, “Passive sensitization of human bronchi augments smooth muscle shortening velocity and capacity,” American Journal of Physiology, vol. 267, no. 2, pp. L218–L222, 1994. View at Scopus
  8. X. Ma, W. Li, and N. L. Stephens, “Detection of two clusters of mechanical properties of smooth muscle along the airway tree,” Journal of Applied Physiology, vol. 80, no. 3, pp. 857–861, 1996. View at Scopus
  9. P. Chitano, L. Wang, and T. M. Murphy, “Three paradigms of airway smooth muscle hyperresponsiveness in young guinea pigs,” Canadian Journal of Physiology and Pharmacology, vol. 85, no. 7, pp. 715–726, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Ma, Z. Cheng, H. Kong et al., “Changes in biophysical and biochemical properties of single bronchial smooth muscle cells from asthmatic subjects,” American Journal of Physiology, vol. 283, no. 6, pp. L1181–L1189, 2002. View at Scopus
  11. L. E. Ford and S. H. Gilbert, “Mechanism and significance of early, rapid shortening in sensitized airway smooth muscle,” Canadian Journal of Physiology and Pharmacology, vol. 85, no. 7, pp. 747–753, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. Khan, R. Ellis, M. D. Inman, J. H. T. Bates, M. J. Sanderson, and L. J. Janssen, “Influence of airway wall stiffness and parenchymal tethering on the dynamics of bronchoconstriction,” American Journal of Physiology, vol. 299, no. 1, pp. L98–L108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. E. R. Dirksen, J. A. Felix, and M. J. Sanderson, “Preparation of explant and organ cultures and single cells from airway epithelium,” Methods in Cell Biology, vol. 47, pp. 65–74, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. R. J. Dandurand, C. G. Wang, N. C. Phillips, and D. H. Eidelman, “Responsiveness of individual airways to methacholine in adult rat lung explants,” Journal of Applied Physiology, vol. 75, no. 1, pp. 364–372, 1993. View at Scopus
  15. M. E. Placke and G. L. Fisher, “Adult peripheral lung organ culture. A model for respiratory tract toxicology,” Toxicology and Applied Pharmacology, vol. 90, no. 2, pp. 284–298, 1987. View at Scopus
  16. C. G. Wang, J. J. Almirall, C. S. Dolman, R. J. Dandurand, and D. H. Eidelman, “In vitro bronchial responsiveness in two highly inbred rat strains,” Journal of Applied Physiology, vol. 82, no. 5, pp. 1445–1452, 1997. View at Scopus
  17. T. L. Lavoie, R. Krishnan, H. R. Siegel et al., “Dilatation of the constricted human airway by tidal expansion of lung parenchyma,” American Journal of Respiratory and Critical Care Medicine, vol. 186, no. 3, pp. 225–232, 2012. View at Publisher · View at Google Scholar
  18. A. Duguet, K. Biyah, E. Minshall et al., “Bronchial responsiveness among inbred mouse strains: role of airway smooth-muscle shortening velocity,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 3, pp. 839–848, 2000. View at Scopus
  19. T. Fan, M. Yang, A. Halayko, S. S. Mohapatra, and N. L. Stephens, “Airway responsiveness in two inbred strains of mouse disparate in IgE and IL-4 production,” American Journal of Respiratory Cell and Molecular Biology, vol. 17, no. 2, pp. 156–163, 1997. View at Scopus
  20. A. S. Rovner, Y. Freyzon, and K. M. Trybus, “An insert in the motor domain determines the functional properties of expressed smooth muscle myosin isoforms,” Journal of Muscle Research and Cell Motility, vol. 18, no. 1, pp. 103–110, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Léguillette, M. Laviolette, C. Bergeron et al., “Myosin, transgelin, and myosin light chain kinase expression and function in asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 179, no. 3, pp. 194–204, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. A. Tuck, K. Maghni, A. Poirier et al., “Time course of airway mechanics of the (+)insert myosin isoform knockout mouse,” American Journal of Respiratory Cell and Molecular Biology, vol. 30, no. 3, pp. 326–332, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. D. Kim, M. H. Cho, and S. C. Kwon, “Myoplasmic [Ca2+], crossbridge phosphorylation and latch in rabbit bladder smooth muscle,” Korean Journal of Physiology and Pharmacology, vol. 15, no. 3, pp. 171–177, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Flores, S. F. Ma, K. Maresso, C. Ober, and J. G. N. Garcia, “A variant of the myosin light chain kinase gene is associated with severe asthma in African Americans,” Genetic Epidemiology, vol. 31, no. 4, pp. 296–305, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Jiang, K. Rao, A. J. Halayko, X. Liu, and N. L. Stephens, “Ragweed sensitization-induced increase of myosin light chain kinase content in canine airway smooth muscle,” American Journal of Respiratory Cell and Molecular Biology, vol. 7, no. 6, pp. 567–573, 1992. View at Scopus
  26. G. Ijpma, A. M. Al-Jumaily, S. P. Cairns, and G. C. Sieck, “Myosin filament polymerization and depolymerization in a model of partial length adaptation in airway smooth muscle,” Journal of Applied Physiology, vol. 111, no. 3, pp. 735–742, 2011. View at Publisher · View at Google Scholar
  27. J. J. Fredberg and P. S. P. Silveira, “Smooth muscle length adaptation and actin filament length: a network model of the cytoskeletal dysregulation,” Canadian Journal of Physiology and Pharmacology, vol. 83, no. 10, pp. 923–931, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. R. K. Lambert, P. D. Paré, and C. Y. Seow, “Mathematical description of geometric and kinematic aspects of smooth muscle plasticity and some related morphometrics,” Journal of Applied Physiology, vol. 96, no. 2, pp. 469–476, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. C. M. Lloyd and E. M. Hessel, “Functions of T cells in asthma: more than just TH2 cells,” Nature Reviews Immunology, vol. 10, no. 12, pp. 838–848, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Begueret, P. Berger, J. M. Vernejoux, L. Dubuisson, R. Marthan, and J. M. Tunon-de-Lara, “Inflammation of bronchial smooth muscle in allergic asthma,” Thorax, vol. 62, no. 1, pp. 8–15, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Ramos-Barbón, J. F. Presley, Q. A. Hamid, E. D. Fixman, and J. G. Martin, “Antigen-specific CD4+ T cells drive airway smooth muscle remodeling in experimental asthma,” Journal of Clinical Investigation, vol. 115, no. 6, pp. 1580–1589, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. A. L. Lazaar, S. M. Albelda, J. M. Pilewski, B. Brennan, E. Puré, and R. A. Panettieri, “T lymphocytes adhere to airway smooth muscle cells via integrins and CD44 and induce smooth muscle cell DNA synthesis,” Journal of Experimental Medicine, vol. 180, no. 3, pp. 807–816, 1994. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Veler, A. Hu, S. Fatma et al., “Superantigen presentation by airway smooth muscle to CD4+ T lymphocytes elicits reciprocal proasthmatic changes in airway function,” Journal of Immunology, vol. 178, no. 6, pp. 3627–3636, 2007. View at Scopus
  34. M. Kudo, A. C. Melton, C. Chen et al., “IL-17A produced by αβ T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction,” Nature Medicine, vol. 18, no. 4, pp. 547–554, 2012. View at Publisher · View at Google Scholar
  35. A. Kalganov, R. Novinger, and D. E. Rassier, “A technique for simultaneous measurement of force and overlap between single muscle filaments of myosin and actin,” Biochemical and Biophysical Research Communications, vol. 403, no. 3-4, pp. 351–356, 2010. View at Publisher · View at Google Scholar · View at Scopus