About this Journal Submit a Manuscript Table of Contents
Journal of Allergy
Volume 2012 (2012), Article ID 157047, 8 pages
http://dx.doi.org/10.1155/2012/157047
Review Article

Airway Smooth Muscle Dynamics and Hyperresponsiveness: In and outside the Clinic

1Centre for Neonatal Research and Education, School of Women’s and Infants’ Health, The University of Western Australia, Crawley 6009, Australia
2School of Anatomy, Physiology, and Human Biology, The University of Western Australia, Crawley 6009, Australia
3Department of Pulmonary Physiology, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands 6009, Australia
4School of Medicine and Pharmacology, The University of Western Australia, Crawley 6009, Australia

Received 27 July 2012; Accepted 5 September 2012

Academic Editor: Michael M. Grunstein

Copyright © 2012 Peter B. Noble et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Woolcock, C. M. Salome, and K. Yan, “The shape of the dose-response curve to histamine in asthmatic and normal subjects,” American Review of Respiratory Disease, vol. 130, no. 1, pp. 71–75, 1984. View at Scopus
  2. M. H. Brutsche, S. H. Downs, C. Schindler et al., “Bronchial hyperresponsiveness and the development of asthma and COPD in asymptomatic individuals: SAPALDIA Cohort Study,” Thorax, vol. 61, no. 8, pp. 671–677, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. J. D. Leuppi, C. M. Salome, C. R. Jenkins et al., “Predictive markers of asthma exacerbation during stepwise dose reduction of inhaled corticosteroids,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 2, pp. 406–412, 2001. View at Scopus
  4. J. K. Sont, L. N. A. Willems, E. H. Bel et al., “Clinical control and histopathologic outcome of asthma when using airway hyperresponsiveness as an additional guide to long-term treatment,” American Journal of Respiratory and Critical Care Medicine, vol. 159, no. 4, pp. 1043–1051, 1999. View at Scopus
  5. R. K. Lambert, B. R. Wiggs, K. Kuwano, J. C. Hogg, and P. D. Pare, “Functional significance of increased airway smooth muscle in asthma and COPD,” Journal of Applied Physiology, vol. 74, no. 6, pp. 2771–2781, 1993. View at Scopus
  6. R. H. Moreno, J. C. Hogg, and P. D. Pare, “Mechanics of airway narrowing,” American Review of Respiratory Disease, vol. 133, no. 6, pp. 1171–1180, 1986. View at Scopus
  7. M. N. Oliver, B. Fabry, A. Marinkovic, S. M. Mijailovich, J. P. Butler, and J. J. Fredberg, “Airway hyperresponsiveness, remodeling, and smooth muscle mass: right answer, wrong reason?” American Journal of Respiratory Cell and Molecular Biology, vol. 37, no. 3, pp. 264–272, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. J. J. Fredberg, D. Inouye, B. Miller et al., “Airway smooth muscle, tidal stretches, and dynamically determined contractile states,” American Journal of Respiratory and Critical Care Medicine, vol. 156, no. 6, pp. 1752–1759, 1997. View at Scopus
  9. S. S. An, T. R. Bai, J. H. T. Bates et al., “Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma,” European Respiratory Journal, vol. 29, no. 5, pp. 834–860, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Skloot and A. Togias, “Bronchodilation and bronchoprotection by deep inspiration and their relationship to bronchial hyperresponsiveness,” Clinical Reviews in Allergy and Immunology, vol. 24, no. 1, pp. 55–71, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. D. J. Ding, J. G. Martin, and P. T. Macklem, “Effects of lung volume on maximal methacholine-induced bronchoconstriction in normal humans,” Journal of Applied Physiology, vol. 62, no. 3, pp. 1324–1330, 1987. View at Scopus
  12. J. H. T. Bates, A. Cojocaru, and L. K. A. Lundblad, “Bronchodilatory effect of deep inspiration on the dynamics of bronchoconstriction in mice,” Journal of Applied Physiology, vol. 103, no. 5, pp. 1696–1705, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. H. T. Bates and A. M. Lauzon, “Parenchymal tethering, airway wall stiffness, and the dynamics of bronchoconstriction,” Journal of Applied Physiology, vol. 102, no. 5, pp. 1912–1920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Cojocaru, C. G. Irvin, H. C. Haverkamp, and J. H. T. Bates, “Computational assessment of airway wall stiffness in vivo in allergically inflamed mouse models of asthma,” Journal of Applied Physiology, vol. 104, no. 6, pp. 1601–1610, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Skloot, S. Permutt, and A. Togias, “Airway hyperresponsiveness in asthma: a problem of limited smooth muscle relaxation with inspiration,” The Journal of Clinical Investigation, vol. 96, no. 5, pp. 2393–2403, 1995. View at Scopus
  16. J. E. Fish, M. G. Ankin, J. F. Kelly, and V. I. Peterman, “Regulation of bronchomotor tone by lung inflation in asthmatic and nonasthmatic subjects,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 50, no. 5, pp. 1079–1086, 1981. View at Scopus
  17. A. Jensen, H. Atileh, B. Suki, E. P. Ingenito, and K. R. Lutchen, “Selected contribution: airway caliber in healthy and asthmatic subjects: effects of bronchial challenge and deep inspirations,” Journal of Applied Physiology, vol. 91, no. 1, pp. 506–515, 2001. View at Scopus
  18. R. H. Brown, N. Scichilone, B. Mudge, F. B. Diemer, S. Permutt, and A. Togias, “High-resolution computed tomographic evaluation of airway distensibility and the effects of lung inflation on airway caliber in healthy subjects and individuals with asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 4, pp. 994–1001, 2001. View at Scopus
  19. R. Marthan and A. J. Woolcock, “Is a myogenic response involved in deep inspiration-induced bronchoconstriction in asthmatics?” American Review of Respiratory Disease, vol. 140, no. 5, pp. 1354–1358, 1989. View at Scopus
  20. V. Brusasco, E. Crimi, G. Barisione, A. Spanevello, J. R. Rodarte, and R. Pellegrino, “Airway responsiveness to methacholine: effects of deep inhalations and airway inflammation,” Journal of Applied Physiology, vol. 87, no. 2, pp. 567–573, 1999. View at Scopus
  21. D. G. Chapman, G. G. King, N. Berend, C. Diba, and C. M. Salome, “Avoiding deep inspirations increases the maximal response to methacholine without altering sensitivity in non-asthmatics,” Respiratory Physiology and Neurobiology, vol. 173, no. 2, pp. 157–163, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. J. A. NADEL and D. F. TIERNEY, “Effect of a previous deep inspiration on airway resistance in man,” Journal of Applied Physiology, vol. 16, pp. 717–719, 1961. View at Scopus
  23. F. G. Salerno, R. Pellegrino, G. Trocchio, A. Spanevello, V. Brusasco, and E. Crimi, “Attenuation of induced bronchoconstriction in healthy subjects: effects of breathing depth,” Journal of Applied Physiology, vol. 98, no. 3, pp. 817–821, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Scichilone, T. Kapsali, S. Permutt, and A. Togias, “Deep inspiration-induced bronchoprotection is stronger than bronchodilation,” American Journal of Respiratory and Critical Care Medicine, vol. 162, no. 3, pp. 910–916, 2000. View at Scopus
  25. N. Scichilone, S. Permutt, and A. Togias, “The lack of the bronchoprotective and not the bronchodilatory ability of deep inspiration is associated with airway hyperresponsiveness,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 2, pp. 413–419, 2001. View at Scopus
  26. T. Kapsali, S. Permutt, B. Laube, N. Scichilone, and A. Togias, “Potent bronchoprotective effect of deep inspiration and its absence in asthma,” Journal of Applied Physiology, vol. 89, no. 2, pp. 711–720, 2000. View at Scopus
  27. E. Crimi, R. Pellegrino, M. Milanese, and V. Brusasco, “Deep breaths, methacholine, and airway narrowing in healthy and mild asthmatic subjects,” Journal of Applied Physiology, vol. 93, no. 4, pp. 1384–1390, 2002. View at Scopus
  28. E. Crimi, R. Saporiti, S. Bartolini, M. Baroffio, R. Pellegrino, and V. Brusasco, “Airway responsiveness to methacholine and deep inhalations in subjects with rhinitis without asthma,” Journal of Allergy and Clinical Immunology, vol. 121, no. 2, pp. 403–407, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. R. S. Wong, A. N. Larcombe, L. B. Fernandes, G. R. Zosky, and P. B. Noble, “The mechanism of deep inspiration induced bronchoprotection: evidence from a mouse model,” European Respiratory Journal, vol. 40, no. 4, pp. 982–989, 2012.
  30. X. Shen, S. J. Gunst, and R. S. Tepper, “Effect of tidal volume and frequency on airway responsiveness in mechanically ventilated rabbits,” Journal of Applied Physiology, vol. 83, no. 4, pp. 1202–1208, 1997. View at Scopus
  31. F. G. Salerno, N. Shinozuka, J. J. Fredberg, and M. S. Ludwig, “Tidal volume amplitude affects the degree of induced bronchoconstriction in dogs,” Journal of Applied Physiology, vol. 87, no. 5, pp. 1674–1677, 1999. View at Scopus
  32. R. Brown and W. Mitzner, “Effects of tidal volume stretch on airway constriction in vivo,” Journal of Applied Physiology, vol. 91, no. 5, pp. 1995–1998, 2001. View at Scopus
  33. A. Gump, L. Haughney, and J. Fredberg, “Relaxation of activated airway smooth muscle: relative potency of isoproterenol vs. tidal stretch,” Journal of Applied Physiology, vol. 90, no. 6, pp. 2306–2310, 2001. View at Scopus
  34. J. J. Fredberg, D. S. Inouye, S. M. Mijailovich, and J. P. Butler, “Perturbed equilibrium of myosin binding in airway smooth muscle and its implications in bronchospasm,” American Journal of Respiratory and Critical Care Medicine, vol. 159, no. 3, pp. 959–967, 1999. View at Scopus
  35. L. Wang, P. D. Paré, and C. Y. Seow, “Effects of length oscillation on the subsequent force development in swine tracheal smooth muscle,” Journal of Applied Physiology, vol. 88, no. 6, pp. 2246–2250, 2000. View at Scopus
  36. L. Wang, P. D. Paré, and C. Y. Seow, “Changes in force-velocity properties of trachealis due to oscillatory strains,” Journal of Applied Physiology, vol. 92, no. 5, pp. 1865–1872, 2002. View at Scopus
  37. A. Raqeeb, D. Solomon, P. D. Paré, and C. Y. Seow, “Length oscillation mimicking periodic individual deep inspirations during tidal breathing attenuates force recovery and adaptation in airway smooth muscle,” Journal of Applied Physiology, vol. 109, no. 5, pp. 1476–1482, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. X. Shen, M. F. Wu, R. S. Tepper, and S. J. Gunst, “Mechanisms for the mechanical response of airway smooth muscle to length oscillation,” Journal of Applied Physiology, vol. 83, no. 3, pp. 731–738, 1997. View at Scopus
  39. J. J. Fredberg, “Airway smooth muscle in asthma: flirting with disaster,” European Respiratory Journal, vol. 12, no. 6, pp. 1252–1256, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. K. H. Kuo, L. Wang, P. D. Paré, L. E. Ford, and C. Y. Seow, “Myosin thick filament lability induced by mechanical strain in airway smooth muscle,” Journal of Applied Physiology, vol. 90, no. 5, pp. 1811–1816, 2001. View at Scopus
  41. S. J. Gunst, R. A. Meiss, M. F. Wu, and M. Rowe, “Mechanisms for the mechanical plasticity of tracheal smooth muscle,” American Journal of Physiology, vol. 268, no. 5, pp. C1267–C1276, 1995. View at Scopus
  42. V. R. Pratusevich, C. Y. Seow, and L. E. Ford, “Plasticity in canine airway smooth muscle,” Journal of General Physiology, vol. 105, no. 1, pp. 73–94, 1995. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Wang, P. D. Paré, and C. Y. Seow, “Selected contribution: effect of chronic passive length change on airway smooth muscle length-tension relationship,” Journal of Applied Physiology, vol. 90, no. 2, pp. 734–740, 2001. View at Scopus
  44. L. Wang and P. D. Paré, “Deep inspiration and airway smooth muscle adaptation to length change,” Respiratory Physiology and Neurobiology, vol. 137, no. 2-3, pp. 169–178, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. S. J. Gunst, J. Q. Stropp, and J. Service, “Mechanical modulation of pressure-volume characteristics of contracted canine airways in vitro,” Journal of Applied Physiology, vol. 68, no. 5, pp. 2223–2229, 1990. View at Scopus
  46. T. K. Ansell, P. K. McFawn, P. B. Noble, A. R. West, L. Fernandes, and H. W. Mitchell, “Potent bronchodilation and reduced stiffness by relaxant stimuli under dynamic conditions,” European Respiratory Journal, vol. 33, no. 4, pp. 844–851, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. T. K. Ansell, P. B. Noble, H. W. Mitchell, A. R. West, L. B. Fernandes, and P. K. McFawn, “Effects of simulated tidal and deep breathing on immature airway contraction to acetylcholine and nerve stimulation,” Respirology, vol. 14, no. 7, pp. 991–998, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. P. B. Noble, P. K. McFawn, and H. W. Mitchell, “Responsiveness of the isolated airway during simulated deep inspirations: effect of airway smooth muscle stiffness and strain,” Journal of Applied Physiology, vol. 103, no. 3, pp. 787–795, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. S. S. An, R. E. Laudadio, J. Lai, R. A. Rogers, and J. J. Fredberg, “Stiffness changes in cultured airway smooth muscle cells,” American Journal of Physiology, vol. 283, no. 3, pp. C792–C801, 2002. View at Scopus
  50. A. S. LaPrad, T. L. Szabo, B. Suki, and K. R. Lutchen, “Tidal stretches do not modulate responsiveness of intact airways in vitro,” Journal of Applied Physiology, vol. 109, no. 2, pp. 295–304, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. A. S. LaPrad and K. R. Lutchen, “The dissolution of intact airway responsiveness from breathing fluctuations: what went wrong?” Journal of Applied Physiology, vol. 110, no. 6, pp. 1506–1507, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. S. J. Lai-Fook and R. E. Hyatt, “Effects of age on elastic moduli of human lungs,” Journal of Applied Physiology, vol. 89, no. 1, pp. 163–168, 2000. View at Scopus
  53. A. S. LaPrad, A. R. West, P. B. Noble, K. R. Lutchen, and H. W. Mitchell, “Maintenance of airway caliber in isolated airways by deep inspiration and tidal strains,” Journal of Applied Physiology, vol. 105, no. 2, pp. 479–485, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. A. R. West, E. T. Needi, H. W. Mitchell, P. K. McFawn, and P. B. Noble, “Airways dilate to simulated inspiratory but not expiratory manoeuvres,” European Respiratory Journal, vol. 40, no. 2, pp. 455–461, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. P. B. Noble, J. M. Hernandez, H. W. Mitchell, and L. J. Janssen, “Deep inspiration and airway physiology: human, canine, porcine, or bovine?” Journal of Applied Physiology, vol. 109, no. 3, pp. 938–939, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. P. B. Noble, D. J. Turner, and H. W. Mitchell, “Relationship of airway narrowing, compliance, and cartilage in isolated bronchial segments,” Journal of Applied Physiology, vol. 92, no. 3, pp. 1119–1124, 2002. View at Scopus
  57. J. M. Hernandez, G. Cox, and L. J. Janssen, “Involvement of the neurokinin-2 receptor in airway smooth muscle stretch-activated contractions assessed in perfused intact bovine bronchial segments,” Journal of Pharmacology and Experimental Therapeutics, vol. 327, no. 2, pp. 503–510, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Y. M. Chin, Y. Bosse, Y. Jiao et al., “Human airway smooth muscle is structurally and mechanically similar to that of other species,” European Respiratory Journal, vol. 36, no. 1, pp. 170–177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. L. Y. M. Chin, Y. Bosse, C. Pascoe, T. L. Hackett, C. Y. Seow, and P. D. Paré, “Mechanical properties of asthmatic airway smooth muscle,” European Respiratory Journal, vol. 40, no. 1, pp. 45–54, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. P. B. Noble, R. L. Jones, E. T. Needi et al., “Responsiveness of the human airway in vitro during deep inspiration and tidal oscillation,” Journal of Applied Physiology, vol. 110, no. 6, pp. 1510–1518, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. T. L. Lavoie, R. Krishnan, H. R. Siegel et al., “Dilatation of the constricted human airway by tidal expansion of lung parenchyma,” American Journal of Respiratory and Critical Care Medicine, vol. 186, no. 3, pp. 225–232, 2012. View at Publisher · View at Google Scholar · View at Scopus
  62. M. A. McClean, C. Htun, G. G. King, N. Berend, and C. M. Salome, “Cut-points for response to mannitol challenges using the forced oscillation technique,” Respiratory Medicine, vol. 105, no. 4, pp. 533–540, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. H. H. Bendixen, G. M. Smith, and J. Mead, “Pattern of ventilation in young adults,” Journal of Applied Physiology, vol. 19, pp. 195–198, 1964. View at Scopus
  64. S. Freedman, R. Lane, M. K. Gillett, and A. Guz, “Abolition of methacholine induced bronchoconstriction by the hyperventilation of exercise or volition,” Thorax, vol. 43, no. 8, pp. 631–636, 1988. View at Scopus
  65. P. B. Noble, P. K. McFawn, and H. W. Mitchell, “Intraluminal pressure oscillation enhances subsequent airway contraction in isolated bronchial segments,” Journal of Applied Physiology, vol. 96, no. 3, pp. 1161–1165, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. D. G. Chapman, N. Berend, G. G. King, B. E. McParland, and C. M. Salome, “Deep inspirations protect against airway closure in nonasthmatic subjects,” Journal of Applied Physiology, vol. 107, no. 2, pp. 564–569, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. A. M. Slats, K. Janssen, A. Van Schadewijk et al., “Bronchial inflammation and airway responses to deep inspiration in asthma and chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 176, no. 2, pp. 121–128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. N. Carroll, J. Elliot, A. Morton, and A. James, “The structure of large and small airways in nonfatal and fatal asthma,” American Review of Respiratory Disease, vol. 147, no. 2, pp. 405–410, 1993. View at Scopus
  69. E. L. Kramer, E. M. Mushaben, P. A. Pastura et al., “Early growth response-1 suppresses epidermal growth factor receptor-mediated airway hyperresponsiveness and lung remodeling in mice,” American Journal of Respiratory Cell and Molecular Biology, vol. 41, no. 4, pp. 415–425, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. A. L. James, J. G. Elliot, R. L. Jones et al., “Airway smooth muscle hypertrophy and hyperplasia in asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 185, no. 10, pp. 1058–1064, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. M. P. Sparrow and H. W. Mitchell, “Modulation by the epithelium of the extent of bronchial narrowing produced by substances perfused through the lumen,” British Journal of Pharmacology, vol. 103, no. 1, pp. 1160–1164, 1991. View at Scopus
  72. T. I. Omari, M. P. Sparrow, and H. W. Mitchell, “Responsiveness of human isolated bronchial segments and its relationship to epithelial loss,” British Journal of Clinical Pharmacology, vol. 35, no. 4, pp. 357–365, 1993. View at Scopus
  73. J. H. T. Bates, C. A. Stevenson, M. Aliyeva, and L. K. A. Lundblad, “Airway responsiveness depends on the diffusion rate of methacholine across the airway wall,” Journal of Applied Physiology, vol. 112, no. 10, pp. 1670–1677, 2012. View at Publisher · View at Google Scholar · View at Scopus