About this Journal Submit a Manuscript Table of Contents
Journal of Allergy
Volume 2012 (2012), Article ID 245909, 10 pages
Research Article

Neutrophil Inhibitory Factor Selectively Inhibits the Endothelium-Driven Transmigration of Eosinophils In Vitro and Airway Eosinophilia in OVA-Induced Allergic Lung Inflammation

1UMR7355, CNRS, Orleans, France
2Experimental and Molecular Immunology and Neurogenetics, University of Orleans, Orleans, France
3Institute for Clinical and Biomedical Research Thurgau, 9548 Matzingen, Switzerland
4Institute of Infectious Disease and Molecular Medicine (IIDMM), University of Cape Town, Cape Town, South Africa
5UAS, HES-SO, Route de Rawyl 47, 1950 Sion, Switzerland
6IBR Inc., Institute for Biopharmaceutical Research, Lauchefeld, 9548 Matzingen, Switzerland

Received 9 June 2012; Accepted 30 August 2012

Academic Editor: Maria Leite-de-Moraes

Copyright © 2012 Silvia Schnyder-Candrian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Wills-Karp, “Immunologic basis of antigen-induced airway hyperresponsiveness,” Annual Review of Immunology, vol. 17, pp. 255–281, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Cohn, J. A. Elias, and G. L. Chupp, “Asthma: mechanisms of disease persistence and progression,” Annual Review of Immunology, vol. 22, pp. 789–815, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Liu, S. K. Shaw, S. Ma, L. Yang, F. W. Luscinskas, and C. A. Parkos, “Regulation of leukocyte transmigration: cell surface interactions and signaling events,” Journal of Immunology, vol. 172, no. 1, pp. 7–13, 2004. View at Scopus
  4. F. W. Luscinskas and M. A. Gimbrone Jr, “Endothelial-dependent mechanisms in chronic inflammatory leukocyte recruitment,” Annual Review of Medicine, vol. 47, pp. 413–421, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. R. M. Rao, L. Yang, G. Garcia-Cardena, and F. W. Luscinskas, “Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall,” Circulation Research, vol. 101, no. 3, pp. 234–247, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Vestweber, “Regulation of endothelial cell contacts during leukocyte extravasation,” Current Opinion in Cell Biology, vol. 14, no. 5, pp. 587–593, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. M. J. Elices, L. Osborn, Y. Takada et al., “VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site,” Cell, vol. 60, no. 4, pp. 577–584, 1990. View at Publisher · View at Google Scholar · View at Scopus
  8. S. R. Barthel, D. S. Annis, D. F. Mosher, and M. W. Johansson, “Differential engagement of modules 1 and 4 of vascular cell adhesion molecule-1 (CD106) by integrins α4β1 (CD49d/29) and αMβ2 (CD11b/18) of eosinophils,” Journal of Biological Chemistry, vol. 281, no. 43, pp. 32175–32187, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Moser, J. Fehr, and P. L. B. Bruijnzeel, “IL-4 controls the selective endothelium-driven transmigration of eosinophils from allergic individuals,” Journal of Immunology, vol. 149, no. 4, pp. 1432–1438, 1992. View at Scopus
  10. R. Moser, P. Groscurth, J. M. Carballido et al., “Interleukin-4 induces tissue eosinophilia in mice: correlation with its in vitro capacity to stimulate the endothelial cell-dependent selective transmigration of human eosinophils,” Journal of Laboratory and Clinical Medicine, vol. 122, no. 5, pp. 567–575, 1993. View at Scopus
  11. M. H. Thornhill and D. O. Haskard, “IL-4 regulates endothelial cell activation by IL-1, tumor necrosis factor, or IFN-γ,” Journal of Immunology, vol. 145, no. 3, pp. 865–872, 1990. View at Scopus
  12. M. C. Seminario and G. J. Gleich, “The role of eosinophils in the pathogenesis of asthma,” Current Opinion in Immunology, vol. 6, no. 6, pp. 860–864, 1994. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Pabst, T. Peters, N. Czeloth, G. Bernhardt, K. Scharffetter-Kochanek, and R. Förster, “Cutting edge: egress of newly generated plasma cells from peripheral lymph nodes depends on β2 integrin,” Journal of Immunology, vol. 174, no. 12, pp. 7492–7495, 2005. View at Scopus
  14. M. Moyle, D. L. Foster, D. E. McGrath et al., “A hookworm glycoprotein that inhibits neutrophil function is a ligand of the integrin CD11b/CD18,” Journal of Biological Chemistry, vol. 269, no. 13, pp. 10008–10015, 1994. View at Scopus
  15. P. J. Muchowski, L. Zhang, E. R. Chang, H. R. Soule, E. F. Plow, and M. Moyle, “Functional interaction between the integrin antagonist neutrophil inhibitory factor and the I domain of CD11b/CD18,” Journal of Biological Chemistry, vol. 269, no. 42, pp. 26419–26423, 1994. View at Scopus
  16. P. Rieu, T. Ueda, I. Haruta, C. P. Sharma, and M. A. Arnaout, “The A-domain of β2 integrin CR3 (CD11b/CD18) is a receptor for the hookworm-derived neutrophil adhesion inhibitor NIF,” Journal of Cell Biology, vol. 127, no. 6, pp. 2081–2091, 1994. View at Publisher · View at Google Scholar · View at Scopus
  17. M. S. Diamond, J. Garcia-Aguilar, J. K. Bickford, A. L. Corbi, and T. A. Springer, “The I domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands,” Journal of Cell Biology, vol. 120, no. 4, pp. 1031–1043, 1993. View at Publisher · View at Google Scholar · View at Scopus
  18. H. G. Folkesson and M. A. Matthay, “Inhibition of CD18 or CD11b attenuates acute lung injury after acid instillation in rabbits,” Journal of Applied Physiology, vol. 82, no. 6, pp. 1743–1750, 1997. View at Scopus
  19. W. E. Rote, E. Dempsey, S. Maki, G. P. Vlasuk, and M. Moyle, “The role of CD11/CD18 integrins in the reverse passive Arthus reaction in rat dermal tissue,” Journal of Leukocyte Biology, vol. 59, no. 2, pp. 254–261, 1996. View at Scopus
  20. R. Moser, J. Fehr, L. Olgiati, and P. L. B. Bruijnzeel, “Migration of primed human eosinophils across cytokine-activated endothelial cell monolayers,” Blood, vol. 79, no. 11, pp. 2937–2945, 1992. View at Scopus
  21. G. A. Taylor, E. Carballo, D. M. Lee et al., “A pathogenetic role for TNFα in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency,” Immunity, vol. 4, no. 5, pp. 445–454, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Moser, B. Schleiffenbaum, P. Groscurth, and J. Fehr, “Interleukin 1 and tumor necrosis factor stimulate human vascular endothelial cells to promote transendothelial neutrophil passage,” Journal of Clinical Investigation, vol. 83, no. 2, pp. 444–455, 1989. View at Scopus
  23. J. Fehr, R. Moser, D. Leppert, and P. Groscurth, “Antiadhesive properties of biological surfaces are protective against stimulated granulocytes,” Journal of Clinical Investigation, vol. 76, no. 2, pp. 535–542, 1985. View at Scopus
  24. T. T. Hansel, J. D. Pound, D. Pilling et al., “Purification of human blood eosinophils by negative selection using immunomagnetic beads,” Journal of Immunological Methods, vol. 122, no. 1, pp. 97–103, 1989. View at Scopus
  25. P. F. Weller, “The immunobiology of eosinophils,” New England Journal of Medicine, vol. 324, no. 16, pp. 1110–1118, 1991. View at Scopus
  26. G. J. Gleich, “Mechanisms of eosinophil-associated inflammation,” Journal of Allergy and Clinical Immunology, vol. 105, no. 4, pp. 651–663, 2000. View at Scopus
  27. J. W. Barnard, M. G. Biro, S. K. Lo et al., “Neutrophil inhibitory factor prevents neutrophil-dependent lung injury,” Journal of Immunology, vol. 155, no. 10, pp. 4876–4881, 1995. View at Scopus
  28. N. Jiang, M. Chopp, and S. Chahwala, “Neutrophil inhibitory factor treatment of focal cerebral ischemia in the rat,” Brain Research, vol. 788, no. 1-2, pp. 25–34, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. K. B. Mackay, S. J. Bailey, P. D. King, S. Patel, T. C. Hamilton, and C. A. Campbell, “Neuroprotective effect of recombinant neutrophil inhibitory factor in transient focal cerebral ischaemia in the rat,” Neurodegeneration, vol. 5, no. 4, pp. 319–323, 1996. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Jiang, M. Moyle, H. R. Soule, W. E. Rote, and M. Chopp, “Neutrophil inhibitory factor is neuroprotective after focal ischemia in rats,” Annals of Neurology, vol. 38, no. 6, pp. 935–942, 1995. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Schnyder, S. Lugli, N. Feng et al., “Interleukin-4 (IL-4) and IL-13 bind to a shared heterodimeric complex on endothelial cells mediating vascular cell adhesion molecule-1 induction in the absence of the common γ chain,” Blood, vol. 87, no. 10, pp. 4286–4295, 1996. View at Scopus
  32. R. P. Schleimer, S. A. Sterbinsky, J. Kaiser et al., “IL-4 induces adherence of human eosinophils and basophils but not neutrophils to endothelium: association with expression of VCAM-1,” Journal of Immunology, vol. 148, no. 4, pp. 1086–1092, 1992. View at Scopus
  33. T. H. Pohlman, K. A. Stanness, and P. G. Beatty, “An endothelial cell surface factor(s) induced in vitro by lipopolysaccharide, interleukin 1, and tumor necrosis factor-α increases neutrophil adherence by a CDw18-dependent mechanism,” Journal of Immunology, vol. 136, no. 12, pp. 4548–4553, 1986. View at Scopus
  34. J. L. Salyer, J. F. Bohnsack, W. A. Knape, A. O. Shigeoka, E. R. Ashwood, and H. R. Hill, “Mechanisms of tumor necrosis factor-α alteration of PMN adhesion and migration,” American Journal of Pathology, vol. 136, no. 4, pp. 831–841, 1990. View at Scopus
  35. R. Li, I. Haruta, P. Rieu, T. Sugimori, J. P. Xiong, and M. A. Arnaout, “Characterization of a conformationally sensitive murine monoclonal antibody directed to the metal ion-dependent adhension site face of integrin CD11b,” Journal of Immunology, vol. 168, no. 3, pp. 1219–1225, 2002. View at Scopus
  36. J. E. Beesley, J. D. Pearson, and J. S. Carleton, “Interaction of leukocytes with vascular cells in culture,” Journal of Cell Science, vol. 33, pp. 85–101, 1978. View at Scopus
  37. G. Kimani, M. G. Tonnesen, and P. M. Henson, “Stimulation of eosinophil adherence to human vascular endothelial cells in vitro by platelet-activating factor,” Journal of Immunology, vol. 140, no. 9, pp. 3161–3166, 1988. View at Scopus
  38. M. G. Tonnesen, “Neurotrophil-endothelial cell interactions: mechanisms of neutrophil adherence to vascular endothelium,” Journal of Investigative Dermatology, vol. 93, no. 2, pp. 53–58, 1989. View at Scopus
  39. M. G. Tonneson, L. A. Smedly, and P. M. Henson, “Neutrophil-endothelial cell interactions. Modulation of neutrophil adhesiveness induced by complement fragments C5a and C5a des arg and formyl-methionyl-leucyl-phenylalanine in vitro,” Journal of Clinical Investigation, vol. 74, no. 5, pp. 1581–1592, 1984. View at Scopus
  40. J. M. Harlan, “Leukocyte adhesion deficiency syndrome: insights into the molecular basis of leukocyte emigration,” Clinical Immunology and Immunopathology, vol. 67, no. 3, pp. S16–S24, 1993. View at Publisher · View at Google Scholar · View at Scopus
  41. M. A. Arnaout, “Integrin structure: new twists and turns in dynamic cell adhesion,” Immunological Reviews, vol. 186, pp. 125–140, 2002. View at Publisher · View at Google Scholar · View at Scopus