About this Journal Submit a Manuscript Table of Contents
Journal of Allergy
Volume 2012 (2012), Article ID 258145, 9 pages
http://dx.doi.org/10.1155/2012/258145
Clinical Study

IgE-Mediated Anaphylaxis to Foods, Venom, and Drugs: Influence of Serum Angiotensin Converting Enzyme Levels and Genotype

1Department of Medicine, St Helier Hospital, Wrythe Lane, Carshalton, Surrey SM5 1AA, UK
2Department of Immunology, St Helier Hospital, Wrythe Lane, Carshalton, Surrey SM5 1AA, UK

Received 6 August 2012; Revised 21 October 2012; Accepted 22 October 2012

Academic Editor: K. Blaser

Copyright © 2012 V. A. Varney et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. I. Terr, “Anaphylaxis,” Clinical Reviews in Allergy, vol. 3, no. 1, pp. 3–23, 1985. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Sheikh and B. Alves, “Age, sex, geographical and socio-economic variations in admissions for anaphylaxis: analysis of four years of English hospital data,” Clinical and Experimental Allergy, vol. 31, no. 10, pp. 1571–1576, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. J. K. Lee and P. Vadas, “Anaphylaxis: mechanisms and management,” Clinical and Experimental Allergy, vol. 41, no. 7, pp. 923–938, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Del Duca, S. S. Sheth, A. E. Clarke, K. J. Lachapelle, and P. L. Ergina, “Use of methylene blue for catecholamine-refractory vasoplegia from protamine and aprotinin,” Annals of Thoracic Surgery, vol. 87, no. 2, pp. 640–642, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Kajiwara, T. Sasaki, P. Bradding et al., “Activation of human mast cells through the platelet-activating factor receptor,” Journal of Allergy and Clinical Immunology, vol. 125, no. 5, pp. 1137–e6, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. F. D. Finkelman, M. E. Rothenberg, E. B. Brandt, S. C. Morris, and R. T. Strait, “Molecular mechanisms of anaphylaxis: lessons from studies with murine models,” Journal of Allergy and Clinical Immunology, vol. 115, no. 3, pp. 449–457, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Hamano, “Effect of sex hormones on eosinophilic inflammation in nasal mucosa,” Allergy and Asthma Proceedings, vol. 19, no. 5, pp. 263–269, 1998. View at Scopus
  8. C. Dimitropoulou, A. Chatterjee, L. McCloud, G. Yetik-Anacak, and J. D. Catravas, “Angiotensin, bradykinin and the endothelium.,” Handbook of Experimental Pharmacology, no. 176, pp. 255–294, 2006. View at Scopus
  9. K. Kario, “Hypertension and its clinical implications for morning renin-angiotensin control,” Renin Angiotensin System and Cardiovascular Disease, vol. 1, pp. 6–11, 2005.
  10. K. Persson, A. C. E. Säfholm, R. G. G. Andersson, and J. Ahlner, “Glyceryl trinitrate-induced angiotensin-converting enzyme (ACE) inhibition in healthy volunteers is dependent on ACE genotype,” Canadian Journal of Physiology and Pharmacology, vol. 83, no. 12, pp. 1117–1122, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Reyes-Engel, L. Morcillo, F. J. Aranda et al., “Influence of gender and genetic variability on plasma angiotensin peptides,” Journal of the Renin-Angiotensin-Aldosterone System, vol. 7, no. 2, pp. 92–97, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. H. J. Danser, J. Deinum, A. P. R. M. Osterop, P. J. J. Admiraal, and M. A. D. H. Schalekamp, “Angiotensin I to angiotensin II conversion in the human forearm and leg. Effect of the angiotensin converting enzyme gene insertion/deletion polymorphism,” Journal of Hypertension, vol. 17, no. 12, pp. 1867–1872, 1999. View at Scopus
  13. G. S. Stokes, J. C. Monaghan, A. P. Schrader, C. L. Glenn, M. Ryan, and B. J. Morris, “Influence of angiotensin converting enzyme (ACE) genotype on interpretation of diagnostic tests for serum ACE activity,” Australian and New Zealand Journal of Medicine, vol. 29, no. 3, pp. 315–318, 1999. View at Scopus
  14. G. Arcaro, A. Solini, T. Monauni et al., “ACE genotype and endothelium-dependent vasodilation of conduit arteries and forearm microcirculation in humans,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 8, pp. 1313–1319, 2001. View at Scopus
  15. M. A. Van Dijk, I. Kroon, A. M. Kamper, F. Boomsma, A. H. Danser, and P. C. Chang, “The angiotensin-converting enzyme gene polymorphism and responses to angiotensins and bradykinin in the human forearm,” Journal of Cardiovascular Pharmacology, vol. 35, no. 3, pp. 484–490, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. J. V. Mombouli and P. M. Vanhoutte, “Heterogeneity of endothelium-dependent vasodilator effects of angiotensin- converting enzyme inhibitors: role of bradykinin generation during ACE inhibition,” Journal of Cardiovascular Pharmacology, vol. 20, no. 9, pp. S74–S82, 1992. View at Scopus
  17. A. Sato, H. Miura, Y. Liu et al., “Effect of gender on endothelium-dependent dilation to bradykinin in human adipose microvessels,” American Journal of Physiology, vol. 283, no. 3, pp. H845–H852, 2002. View at Scopus
  18. D. Woods, J. Sanders, A. Jones et al., “The serum angiotensin-converting enzyme and angiotensin II response to altered posture and acute exercise, and the influence of ACE genotype,” European Journal of Applied Physiology, vol. 91, no. 2-3, pp. 342–348, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Y. L. Zee, A. P. Schrader, and B. J. Morris, “Effect of angiotensin-converting enzyme genotype on renin-angiotensin components in hypertensives,” Clinica Chimica Acta, vol. 252, no. 1, pp. 33–39, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. K. E. Bernstein, H. D. Xiao, K. Frenzel et al., “Six truisms concerning ACE and the renin-angiotensin system educed from the genetic analysis of mice,” Circulation Research, vol. 96, no. 11, pp. 1135–1144, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. P. M. Jiménez, C. Conde, A. Casanegra, C. Romero, A. H. Tabares, and M. Orías, “Association of ACE genotype and predominantly diastolic hypertension: a preliminary study,” Journal of the Renin-Angiotensin-Aldosterone System, vol. 8, no. 1, pp. 42–44, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Hoover, M. Lippmann, E. Grouzmann, F. Marceau, and P. Herscu, “Angiotensin converting enzyme inhibitor induced angio-oedema: a review of the pathophysiology and risk factors,” Clinical and Experimental Allergy, vol. 40, no. 1, pp. 50–61, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. A. D. Hingorani, H. Jia, P. A. Stevens, R. Hopper, J. E. C. Dickerson, and M. J. Brown, “Renin-angiotensin system gene polymorphisms influence blood pressure and the response to angiotensin converting enzyme inhibition,” Journal of Hypertension, vol. 13, no. 12, pp. 1602–1609, 1995. View at Scopus
  24. L. M. Resnick, F. B. Muller, and J. H. Laragh, “Calcium-regulating hormones in essential hypertension: relation to plasma renin activity and sodium metabolism,” Annals of Internal Medicine, vol. 105, no. 5, pp. 649–654, 1986. View at Scopus
  25. K. Hermann and J. Ring, “The renin angiotensin system and hymenoptera venom anaphylaxis,” Clinical and Experimental Allergy, vol. 23, no. 9, pp. 762–769, 1993. View at Scopus
  26. K. Hermann and J. Ring, “Hymenoptera venom anaphylaxis: may decreased levels of angiotensin peptides play a role?” Clinical and Experimental Allergy, vol. 20, no. 5, pp. 569–570, 1990. View at Scopus
  27. C. W. Summers, R. S. Pumphrey, C. N. Woods, G. McDowell, P. W. Pemberton, and P. D. Arkwright, “Factors predicting anaphylaxis to peanuts and tree nuts in patients referred to a specialist center,” Journal of Allergy and Clinical Immunology, vol. 121, no. 3, pp. 632–e2, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. L. Stumpf, N. Shehab, and A. C. Patel, “Safety of angiotensin-converting enzyme inhibitors in patients with insect venom allergies,” Annals of Pharmacotherapy, vol. 40, no. 4, pp. 699–703, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. R. J. Mullins, S. Clark, and C. A. Camargo Jr, “Regional variation in epinephrine autoinjector prescriptions in Australia: more evidence for the vitamin D-anaphylaxis hypothesis,” Annals of Allergy, Asthma and Immunology, vol. 103, no. 6, pp. 488–495, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. W. Yuan, W. Pan, J. Kong et al., “1,25-Dihydroxyvitamin D3 suppresses renin gene transcription by blocking the activity of the cyclic AMP response element in the renin gene promoter,” Journal of Biological Chemistry, vol. 282, no. 41, pp. 29821–29830, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Butler, A. D. Morris, B. Burchell, and A. D. Struthers, “DD angiotensin-converting enzyme gene polymorphism is associated with endothelial dysfunction in normal humans,” Hypertension, vol. 33, no. 5, pp. 1164–1168, 1999. View at Scopus
  32. B. Rigat, C. Hubert, F. Alhenc-Gelas, F. Cambien, P. Corvol, and F. Soubrier, “An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels,” Journal of Clinical Investigation, vol. 86, no. 4, pp. 1343–1346, 1990. View at Scopus
  33. B. Rigat, C. Hubert, P. Corvol, and F. Soubrier, “PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1),” Nucleic Acids Research, vol. 20, no. 6, p. 1433, 1992. View at Scopus
  34. H. Tomita, Y. Ina, Y. Sugiura et al., “Polymorphism in the angiotensin-converting enzyme (ACE) gene and sarcoidosis,” American Journal of Respiratory and Critical Care Medicine, vol. 156, no. 1, pp. 255–259, 1997. View at Scopus
  35. H. J. Roth, “Measurement of vitamin D levels,” Annals of Clinical Biochemistry, vol. 45, no. 2, pp. 153–159, 2008. View at Publisher · View at Google Scholar
  36. M. L. K. Tang, N. Osborne, and K. Allen, “Epidemiology of anaphylaxis,” Current Opinion in Allergy and Clinical Immunology, vol. 9, no. 4, pp. 351–356, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Bugajska-Schretter, H. Rumpold, S. Spitzauer et al., “Purification, biochemical, and immunological characterisation of a major food allergen: different immunoglobulin E recognition of the apo- and calcium-bound forms of carp parvalbumin,” Gut, vol. 46, no. 5, pp. 661–669, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Niedoszytko, M. Ratajska, M. Chełmińska et al., “The angiotensinogen AGT p.M235T gene polymorphism may be responsible for the development of severe anaphylactic reactions to insect venom allergens,” International Archives of Allergy and Immunology, vol. 153, no. 2, pp. 166–172, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. P. E. Gallagher, P. Li, J. R. Lenhart, M. C. Chappell, and K. B. Brosnihan, “Estrogen regulation of angiotensin-converting enzyme mRNA,” Hypertension, vol. 33, no. 1, pp. 323–328, 1999. View at Scopus
  40. H. Sumino, S. Ichikawa, T. Kanda et al., “Hormone replacement therapy in postmenopausal women with essential hypertension increases circulating plasma levels of bradykinin,” American Journal of Hypertension, vol. 12, no. 10, pp. 1044–1047, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Vliagoftis, V. Dimitriadou, W. Boucher et al., “Estradiol augments while tamoxifen inhibits rat mast cell secretion,” International Archives of Allergy and Immunology, vol. 98, no. 4, pp. 398–409, 1992. View at Scopus
  42. M. Tsuda, M. Iwai, J. M. Li et al., “Inhibitory effects of AT1 receptor blocker, olmesartan, and estrogen on atherosclerosis via anti-oxidative stress,” Hypertension, vol. 45, no. 4, pp. 545–551, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Fukuda, H. Kawashima, K. Saito, N. Inomata, M. Matsui, and T. Nakanishi, “Effect of human plasma-type platelet-activating factor acetylhydrolase in two anaphylactic shock models,” European Journal of Pharmacology, vol. 390, no. 1-2, pp. 203–207, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Arimura and M. Harada, “Differential effect of a PAF antagonist CV-3988 on active and passive anaphylactic shock in various mouse strains,” Lipids, vol. 26, no. 12, pp. 1386–1390, 1991. View at Scopus
  45. P. Vadas, M. Gold, B. Perelman et al., “Platelet-Activating Factor, PAF acetylhydrolase, and severe anaphylaxis,” New England Journal of Medicine, vol. 358, no. 1, pp. 28–35, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. D. J. Campbell, T. Alexiou, H. D. Xiao et al., “Effect of reduced angiotensin-converting enzyme gene expression and angiotensin-converting enzyme inhibition on angiotensin and bradykinin peptide levels in mice,” Hypertension, vol. 43, no. 4, pp. 854–859, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Pretorius, J. M. Luther, L. J. Murphey, D. E. Vaughan, and N. J. Brown, “Angiotensin-converting enzyme inhibition increases basal vascular tissue plasminogen activator release in women but not in men,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 11, pp. 2435–2440, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. T. Ortega, M. Paul, A. Ackermann, M. S. Fernández-Alfonso, R. S. De Rojas, and C. González, “Modulation of angiotensin-converting enzyme by nitric oxide,” British Journal of Pharmacology, vol. 124, no. 2, pp. 291–298, 1998. View at Publisher · View at Google Scholar · View at Scopus
  49. D. G. Waller, “The circulating renin-angiotensin system and the response to hypotension,” Clinical and Experimental Allergy, vol. 23, no. 9, pp. 718–721, 1993. View at Scopus
  50. C. A. Camargo, S. Clark, M. S. Kaplan, P. Lieberman, and R. A. Wood, “Regional differences in EpiPen prescriptions in the United States: the potential role of vitamin D,” Journal of Allergy and Clinical Immunology, vol. 120, no. 1, pp. 131–136, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. C. D. Sigmund, “Regulation of renin expression and blood pressure by vitamin D3,” Journal of Clinical Investigation, vol. 110, no. 2, pp. 155–156, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Qiao, J. Kong, M. Uskokovic, and C. L. Yan, “Analogs of 1α,25-dihydroxyvitamin D3 as novel inhibitors of renin biosynthesis,” Journal of Steroid Biochemistry and Molecular Biology, vol. 96, no. 1, pp. 59–66, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. T. J. Wang, M. J. Pencina, S. L. Booth et al., “Vitamin D deficiency and risk of cardiovascular disease,” Circulation, vol. 117, no. 4, pp. 503–511, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Butler, “The DD-ACE genotype and cardiovascular disease,” Pharmacogenomics, vol. 1, no. 2, pp. 153–167, 2000. View at Scopus