About this Journal Submit a Manuscript Table of Contents
Journal of Allergy
Volume 2012 (2012), Article ID 289468, 8 pages
http://dx.doi.org/10.1155/2012/289468
Review Article

Altered CD38/Cyclic ADP-Ribose Signaling Contributes to the Asthmatic Phenotype

1Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
2Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
3Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA

Received 2 August 2012; Revised 13 October 2012; Accepted 13 October 2012

Academic Editor: Michael M. Grunstein

Copyright © 2012 Joseph A. Jude et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Roux, C. Guibert, J. P. Savineau, and R. Marthan, “[Ca2+](i) oscillations induced by muscarinic stimulation in airway smooth muscle cells: receptor subtypes and correlation with the mechanical activity,” British Journal of Pharmacology, vol. 120, no. 7, pp. 1294–1301, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. D. A. Deshpande, T. A. White, S. Dogan, T. F. Walseth, R. A. Panettieri, and M. S. Kannan, “CD38/cyclic ADP-ribose signaling: role in the regulation of calcium homeostasis in airway smooth muscle,” American Journal of Physiology, vol. 288, no. 5, pp. L773–L788, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. X. Liu and J. M. Farley, “Depletion and refilling of acetylcholine- and caffeine-sensitive Ca++ stores in tracheal myocytes,” Journal of Pharmacology and Experimental Therapeutics, vol. 277, no. 2, pp. 789–795, 1996. View at Scopus
  4. B. Ay, Y. S. Prakash, C. M. Pabelick, and G. C. Sieck, “Store-operated Ca2+ entry in porcine airway smooth muscle,” American Journal of Physiology, vol. 286, no. 5, pp. L909–L917, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. S. M. Sims, Y. Jiao, and Z. G. Zheng, “Intracellular calcium stores in isolated tracheal smooth muscle cells,” American Journal of Physiology, vol. 271, no. 2, pp. L300–L309, 1996. View at Scopus
  6. H. C. Lee, “Enzymatic functions and structures of CD38 and homologs,” Chemical Immunology, vol. 75, pp. 39–59, 2000. View at Scopus
  7. R. K. Murray and M. I. Kotlikoff, “Receptor-activated calcium influx in human airway smooth muscle cells,” Journal of Physiology, vol. 435, pp. 123–144, 1991. View at Scopus
  8. J. F. Worley III and M. I. Kotlikoff, “Dihydropyridine-sensitive single calcium channels in airway smooth muscle cells,” American Journal of Physiology, vol. 259, no. 6, pp. L468–L480, 1990. View at Scopus
  9. T. A. White, A. Xue, E. N. Chini, M. Thompson, G. C. Sieck, and M. E. Wylam, “Role of transient receptor potential C3 in TNF-α-enhanced calcium influx in human airway myocytes,” American Journal of Respiratory Cell and Molecular Biology, vol. 35, no. 2, pp. 243–251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. D. A. Deshpande, T. F. Walseth, R. A. Panettieri, and M. S. Kannan, “CD38/cyclic ADP-ribose-mediated Ca2+ signaling contributes to airway smooth muscle hyper-responsiveness,” The FASEB Journal, vol. 17, no. 3, pp. 452–454, 2003. View at Scopus
  11. D. A. Deshpande, S. Dogan, T. F. Walseth et al., “Modulation of calcium signaling by interleukin-13 in human airway smooth muscle: role of CD38/cyclic adenosine diphosphate ribose pathway,” American Journal of Respiratory Cell and Molecular Biology, vol. 31, no. 1, pp. 36–42, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. J. A. Jude, J. Solway, R. A. Panettieri Jr., T. F. Walseth, and M. S. Kannan, “Differential induction of CD38 expression by TNF-α in asthmatic airway smooth muscle cells,” American Journal of Physiology, vol. 299, no. 6, pp. L879–L890, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. H. C. Lee, “Multiplicity of Ca2+ messengers and Ca2+ stores: a perspective from cyclic ADP-ribose and NAADP,” Current Molecular Medicine, vol. 4, no. 3, pp. 227–237, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. T. A. White, M. S. Kannan, and T. F. Walseth, “Intracellular calcium signaling through the cADPR pathway is agonist specific in porcine airway smooth muscle,” The FASEB Journal, vol. 17, no. 3, pp. 482–484, 2003. View at Scopus
  15. W. X. Tang, Y. F. Chen, A. P. Zou, W. B. Campbell, and P. L. Li, “Role of FKBP12.6 in cADPR-induced activation of reconstituted ryanodine receptors from arterial smooth muscle,” American Journal of Physiology, vol. 282, no. 4, pp. H1304–H1310, 2002. View at Scopus
  16. N. Fritz, N. Macrez, J. Mironneau, L. H. Jeyakumar, S. Fleischer, and J. L. Morel, “Ryanodine receptor subtype 2 encodes Ca2+ oscillations activated by acetylcholine via the M2 muscarinic receptor/cADP-ribose signalling pathway in duodenum myocytes,” Journal of Cell Science, vol. 118, no. 10, pp. 2261–2270, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. X. Wang, Y. M. Zheng, Q. B. Mei et al., “FKBP12.6 and cADPR regulation of Ca2+ release in smooth muscle cells,” American Journal of Physiology, vol. 286, no. 3, pp. C538–C546, 2004. View at Scopus
  18. Y. S. Prakash, M. S. Kannan, T. F. Walseth, and G. C. Sieck, “Role of cyclic ADP-ribose in the regulation of [Ca2+](i) in porcine tracheal smooth muscle,” American Journal of Physiology, vol. 274, no. 6, pp. C1653–C1660, 1998. View at Scopus
  19. S. Partida-Sanchez, A. Gasser, R. Fliegert et al., “Chemotaxis of mouse bone marrow neutrophils and dendritic cells is controlled by ADP-ribose, the major product generated by the CD38 enzyme reaction,” The Journal of Immunology, vol. 179, no. 11, pp. 7827–7839, 2007. View at Scopus
  20. S. Partida-Sánchez, S. Goodrich, K. Kusser, N. Oppenheimer, T. D. Randall, and F. E. Lund, “Regulation of dendritic cell trafficking by the ADP-ribosyl cyclase CD38: impact on the development of humoral immunity,” Immunity, vol. 20, no. 3, pp. 279–291, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. D. A. Cockayne, T. Muchamuel, J. C. Grimaldi et al., “Mice deficient for the ecto-nicotinamide adenine dinucleotide glycohydrolase CD38 exhibit altered humoral immune responses,” Blood, vol. 92, no. 4, pp. 1324–1333, 1998. View at Scopus
  22. D. A. Deshpande, T. A. White, A. G. P. Guedes et al., “Altered airway responsiveness in CD38-deficient mice,” American Journal of Respiratory Cell and Molecular Biology, vol. 32, no. 2, pp. 149–156, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. B. N. Kang, D. A. Deshpande, K. G. Tirumurugaan, R. A. Panettieri, T. F. Walseth, and M. S. Kannan, “Adenoviral mediated anti-sense CD38 attenuates TNF-α-induced changes in calcium homeostasis of human airway smooth muscle cells,” Canadian Journal of Physiology and Pharmacology, vol. 83, no. 8-9, pp. 799–804, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. A. G. P. Guedes, J. A. Jude, J. Paulin, H. Kita, F. E. Lund, and M. S. Kannan, “Role of CD38 in TNF-α-induced airway hyperresponsiveness,” American Journal of Physiology, vol. 294, no. 2, pp. L290–L299, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. A. G. P. Guedes, J. Paulin, L. Rivero-Nava, H. Kita, F. E. Lund, and M. S. Kannan, “CD38-deficient mice have reduced airway hyperresponsiveness following IL-13 challenge,” American Journal of Physiology, vol. 291, no. 6, pp. L1286–L1293, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. F. E. Lund, “Signaling properties of CD38 in the mouse immune system: enzyme-dependent and -independent roles in immunity,” Molecular Medicine, vol. 12, no. 11-12, pp. 328–333, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Gally, J. M. Hartney, W. J. Janssen, and A. L. Perraud, “CD38 plays a dual role in allergen-induced airway hyperresponsiveness,” American Journal of Respiratory Cell and Molecular Biology, vol. 40, no. 4, pp. 433–442, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. J. A. Jude, M. Dileepan, S. Subramanian et al., “MiR-140-3p regulation of TNF-α-induced CD38 expression in human airway smooth muscle cells,” American Journal of Physiology, vol. 303, no. 5, pp. L460–L468, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. K. G. Tirumurugaan, J. A. Jude, B. N. Kang, R. A. Panettieri, T. F. Walseth, and M. S. Kannan, “TNF-α induced CD38 expression in human airway smooth muscle cells: role of MAP kinases and transcription factors NF-κB and AP-1,” American Journal of Physiology, vol. 292, no. 6, pp. L1385–L1395, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. K. G. Tirumurugaan, B. N. Kang, R. A. Panettieri, D. N. Foster, T. F. Walseth, and M. S. Kannan, “Regulation of the cd38 promoter in human airway smooth muscle cells by TNF-α and dexamethasone,” Respiratory Research, vol. 9, article 26, 2008.
  31. W. Liu, Q. Liang, S. Balzar, S. Wenzel, M. Gorska, and R. Alam, “Cell-specific activation profile of extracellular signal-regulated kinase 1/2, Jun N-terminal kinase, and p38 mitogen-activated protein kinases in asthmatic airways,” Journal of Allergy and Clinical Immunology, vol. 121, no. 4, pp. 893.e2–902.e2, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. J. K. Burgess, H. L. Jin, Q. I. Ge et al., “Dual ERK and phosphatidylinositol 3-kinase pathways control airway smooth muscle proliferation: differences in asthma,” Journal of Cellular Physiology, vol. 216, no. 3, pp. 673–679, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. J. H. Lee, P. R. A. Johnson, M. Roth, N. H. Hunt, and J. L. Black, “ERK activation and mitogenesis in human airway smooth muscle cells,” American Journal of Physiology, vol. 280, no. 5, pp. L1019–L1029, 2001. View at Scopus
  34. J. A. Jude, K. G. Tirumurugaan, B. N. Kang, R. A. Panettieri, T. F. Walseth, and M. S. Kannan, “Regulation of CD38 expression in human airway smooth muscle cells: role of class I phosphatidylinositol 3 kinases,” American Journal of Respiratory Cell and Molecular Biology, vol. 47, no. 4, pp. 427–435, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. X. C. Fan and J. A. Steitz, “Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs,” EMBO Journal, vol. 17, no. 12, pp. 3448–3460, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. R. L. Ogilvie, M. Abelson, H. H. Hau, I. Vlasova, P. J. Blackshear, and P. R. Bohjanen, “Tristetraprolin down-regulates IL-2 gene expression through AU-rich element-mediated mRNA decay,” The Journal of Immunology, vol. 174, no. 2, pp. 953–961, 2005. View at Scopus
  38. I. A. Vlasova, N. M. Tahoe, D. Fan et al., “Conserved GU-Rich elements mediate mRNA decay by binding to CUG-binding protein 1,” Molecular Cell, vol. 29, no. 2, pp. 263–270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Brewer, “An A + U-rich element RNA-binding factor regulates c-myc mRNA stability in vitro,” Molecular and Cellular Biology, vol. 11, no. 5, pp. 2460–2466, 1991. View at Scopus
  40. B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets,” Cell, vol. 120, no. 1, pp. 15–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Chiba, M. Tanabe, K. Goto, H. Sakai, and M. Misawa, “Down-regulation of miR-133a contributes to up-regulation of RhoA in bronchial smooth muscle cells,” American Journal of Respiratory and Critical Care Medicine, vol. 180, no. 8, pp. 713–719, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. A. R. Kuhn, K. Schlauch, R. Lao, A. J. Halayko, W. T. Gerthoffer, and C. A. Singer, “MicroRNA expression in human airway smooth muscle cells: role of miR-25 in regulation of airway smooth muscle phenotype,” American Journal of Respiratory Cell and Molecular Biology, vol. 42, no. 4, pp. 506–513, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Tsitsiou, A. E. Williams, S. A. Moschos et al., “Transcriptome analysis shows activation of circulating CD8(+) T cells in patients with severe asthma,” Journal of Allergy and Clinical Immunology, vol. 129, no. 1, pp. 95–103, 2012. View at Publisher · View at Google Scholar
  44. M. J. Jardim, L. Dailey, R. Silbajoris, and D. Diaz-Sanchez, “Distinct microRNA expression in human airway cells of asthmatic donors identifies a novel asthma-associated gene,” American Journal of Respiratory Cell and Molecular Biology, vol. 47, no. 4, pp. 536–542, 2012. View at Publisher · View at Google Scholar
  45. T. X. Lu, J. Hartner, E. J. Lim et al., “MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity,” The Journal of Immunology, vol. 187, no. 6, pp. 3362–3373, 2011. View at Publisher · View at Google Scholar
  46. A. Sharma, M. Kumar, T. Ahmad et al., “Antagonism of mmu-mir-106a attenuates asthma features in allergic murine model,” Journal of Applied Physiology, vol. 113, no. 3, pp. 459–464, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. M.-J. Feng, F. Shi, C. Qiu, and W.-K. Peng, “MicroRNA-181a, -146a and -146b in spleen CD4+ T lymphocytes play proinflammatory roles in a murine model of asthma,” International Immunopharmacology, vol. 13, no. 3, pp. 347–353, 2012. View at Publisher · View at Google Scholar · View at Scopus