About this Journal Submit a Manuscript Table of Contents
Journal of Allergy
Volume 2012 (2012), Article ID 341282, 9 pages
http://dx.doi.org/10.1155/2012/341282
Review Article

Integrin and GPCR Crosstalk in the Regulation of ASM Contraction Signaling in Asthma

1Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore 117597
2Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228

Received 29 April 2012; Accepted 24 July 2012

Academic Editor: Yassine Amrani

Copyright © 2012 Chun Ming Teoh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. C. Thomson, “Neurogenic and myogenic mechanisms of nonspecific bronchial hyperresponsiveness,” European Journal of Respiratory Diseases. Supplement, vol. 128, no. 1, pp. 206–212, 1983. View at Scopus
  2. S. An, T. R. Bai, J. H. T. Bates, et al., “Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma,” European Respiratory Journal, vol. 29, no. 5, pp. 834–860, 2007. View at Publisher · View at Google Scholar
  3. A. J. Woolcock, C. M. Salome, and K. Yan, “The shape of the dose-response curve to histamine in asthmatic and normal subjects,” American Review of Respiratory Disease, vol. 130, no. 1, pp. 71–75, 1984. View at Scopus
  4. A. L. James, P. D. Pare, and J. C. Hogg, “The mechanics of airway narrowing in asthma,” American Review of Respiratory Disease, vol. 139, no. 1, pp. 242–246, 1989. View at Scopus
  5. W. O. Spitzer, S. Suissa, P. Ernst, et al., “The use of beta-agonists and the risk of death and near death from asthma,” The New England Journal of Medicine, vol. 326, no. 8, pp. 501–506, 1992. View at Publisher · View at Google Scholar
  6. J. M. Drazen, E. Israel, H. A. Boushey et al., “Comparison of regularly scheduled with as-needed use of albuterol in mild asthma,” The New England Journal of Medicine, vol. 335, no. 12, pp. 841–847, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. D. R. Taylor, G. Town, and G. Herbison, “Asthma control during long term treatment with regular inhaled salbutamol and salmeterol,” Thorax, vol. 53, no. 9, pp. 744–752, 1998.
  8. S. Suissa, P. Ernst, J. F. Boivin, et al., “A cohort analysis of excess mortality in asthma and the use of inhaled beta-agonists,” American Journal of Respiratory and Critical Care Medicine, vol. 149, no. 3, article 1, pp. 604–610, 1994.
  9. T. Haahtela, M. Järvinen, T. Kava et al., “Effects of reducing or discontinuing inhaled budesonide in patients with mild asthma,” The New England Journal of Medicine, vol. 331, no. 11, pp. 700–705, 1994. View at Publisher · View at Google Scholar · View at Scopus
  10. E. R. Sher, D. Y. M. Leung, W. Surs et al., “Steroid-resistant asthma. Cellular mechanisms contributing to inadequate response to glucocorticoid therapy,” The Journal of Clinical Investigation, vol. 93, no. 1, pp. 33–39, 1994. View at Scopus
  11. H. Schäcke, W. D. Döcke, and K. Asadullah, “Mechanisms involved in the side effects of glucocorticoids,” Pharmacology and Therapeutics, vol. 96, no. 1, pp. 23–43, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. B. G. J. Dekkers, I. S. T. Bos, R. Gosens, A. J. Halayko, J. Zaagsma, and H. Meurs, “The integrin-blocking peptide RGDS inhibits airway smooth muscle remodeling in a guinea pig model of allergic asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 181, no. 6, pp. 556–565, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Tran, K. D. McNeill, W. T. Gerthoffer, H. Unruh, and A. J. Halayko, “Endogenous laminin is required for human airway smooth muscle cell maturation,” Respiratory Research, vol. 7, article 117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Tran, K. Ens-Blackie, E. S. Rector et al., “Laminin-binding integrin α7 is required for contractile phenotype expression by human airway myocytes,” American Journal of Respiratory Cell and Molecular Biology, vol. 37, no. 6, pp. 668–680, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. B. E. Slack and M. S. Siniaia, “Adhesion-dependent redistribution of MAP kinase and MEK promotes muscarinic receptor-mediated signaling to the nucleus,” Journal of Cellular Biochemistry, vol. 95, no. 2, pp. 366–378, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. F. J. Alenghat, J. D. Tytell, C. K. Thodeti, A. Derrien, and D. E. Ingber, “Mechanical control of cAMP signaling through integrins is mediated by the heterotrimeric Gαs protein,” Journal of Cellular Biochemistry, vol. 106, no. 4, pp. 529–538, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. K. A. Berg, G. Zardeneta, K. M. Hargreaves, W. P. Clarke, and S. B. Milam, “Integrins regulate opioid receptor signaling in trigeminal ganglion neurons,” Neuroscience, vol. 144, no. 3, pp. 889–897, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. W. L. Chan, N. H. Holstein-Rathlou, and K. P. Yip, “Integrin mobilizes intracellular Ca2+ in renal vascular smooth muscle cells,” American Journal of Physiology—Cell Physiology, vol. 280, no. 3, pp. C593–C603, 2001. View at Scopus
  19. K. Burridge and M. Chrzanowska-Wodnicka, “Focal adhesions, contractility, and signaling,” Annual Review of Cell and Developmental Biology, vol. 12, pp. 463–519, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Brakebusch and R. Fässler, “The integrin-actin connection, an eternal love affair,” The EMBO Journal, vol. 22, no. 10, pp. 2324–2333, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. D. R. Critchley, “Focal adhesions—the cytoskeletal connection,” Current Opinion in Cell Biology, vol. 12, no. 1, pp. 133–139, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. F. G. Giancotti and E. Ruoslahti, “Integrin signaling,” Science, vol. 285, no. 5430, pp. 1028–1032, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. R. S. Ross, “Molecular and mechanical synergy: cross-talk between integrins and growth factor receptors,” Cardiovascular Research, vol. 63, no. 3, pp. 381–390, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. S. J. Gunst, D. D. Tang, and A. Opazo Saez, “Cytoskeletal remodeling of the airway smooth muscle cell: a mechanism for adaptation to mechanical forces in the lung,” Respiratory Physiology and Neurobiology, vol. 137, no. 2-3, pp. 151–168, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. S. J. Gunst and D. D. Tang, “The contractile apparatus and mechanical properties of airway smooth muscle,” European Respiratory Journal, vol. 15, no. 3, pp. 600–616, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Zhang and S. J. Gunst, “Interactions of airway smooth muscle cells with their tissue matrix implications for contraction,” Proceedings of the American Thoracic Society, vol. 5, no. 1, pp. 32–39, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. T. T. B. Nguyen, J. P. T. Ward, and S. J. Hirst, “β1-integrins mediate enhancement of airway smooth muscle proliferation by collagen and fibronectin,” American Journal of Respiratory and Critical Care Medicine, vol. 171, no. 3, pp. 217–223, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. D. J. Fernandes, J. V. Bonnacci, and A. G. Stewart, “Extracellular matrix, integrins, and masenchymal cell function in the airways,” Current Drug Targets, vol. 7, no. 5, pp. 567–577, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Bazán-Perkins, E. Sánchez-Guerrero, M. H. Vargas et al., “β1-integrins shedding in a guinea-pig model of chronic asthma with remodelled airways,” Clinical and Experimental Allergy, vol. 39, no. 5, pp. 740–751, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. W. M. Abraham, A. Ahmed, I. Serebriakov, et al., “A monoclonal antibody to alpha1beta1 blocks antigen-induced airway responses in sheep,” American Journal of Respiratory and Critical Care Medicine, vol. 169, no. 1, pp. 97–104, 2004.
  31. J. V. Bonacci, M. Schuliga, T. Harris, and A. G. Stewart, “Collagen impairs glucocorticoid actions in airway smooth muscle through integrin signalling,” British Journal of Pharmacology, vol. 149, no. 4, pp. 365–373, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. Q. Peng, D. Lai, T. T. B. Nguyen, V. Chan, T. Matsuda, and S. J. Hirst, “Multiple β1 integrins mediate enhancement of human airway smooth muscle cytokine secretion by fibronectin and type I collagen,” The Journal of Immunology, vol. 174, no. 4, pp. 2258–2264, 2005. View at Scopus
  33. J. P. Abonia, J. Hallgren, T. Jones et al., “Alpha-4 integrins and VCAM-1, but not MAdCAM-1, are essential for recruitment of mast cell progenitors to the inflamed lung,” Blood, vol. 108, no. 5, pp. 1588–1594, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. L. M. Moir, J. K. Burgess, and J. L. Black, “Transforming growth factor β1 increases fibronectin deposition through integrin receptor α5β1 on human airway smooth muscle,” Journal of Allergy and Clinical Immunology, vol. 121, no. 4, pp. 1034–1039.e4, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. A. M. Freyer, S. R. Johnson, and I. P. Hall, “Effects of growth factors and extracellular matrix on survival of human airway smooth muscle cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 25, no. 5, pp. 569–576, 2001. View at Scopus
  36. E. L. Palmer, C. Ruegg, R. Ferrando, R. Pytela, and D. Sheppard, “Sequence and tissue distribution of the integrin α9 subunit, a novel partner of β1 that is widely distributed in epithelia and muscle,” Journal of Cell Biology, vol. 123, no. 5, pp. 1289–1297, 1993. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Chen, M. Kudo, F. Rutaganira, et al., “Integrin α9β1 in airway smooth muscle suppresses exaggerated airway narrowing,” The Journal of Clinical Investigation, vol. 122, no. 8, pp. 2916–2927, 2012. View at Publisher · View at Google Scholar
  38. A. L. Tatler, A. E. John, L. Jolly, et al., “Integrin αvβ5-mediated TGF-β activation by airway smooth muscle cells in asthma,” The Journal of Immunology, vol. 187, no. 11, pp. 6094–6107, 2011. View at Publisher · View at Google Scholar
  39. H. Gong, B. Shen, P. Flevaris et al., “G protein subunit Gα13 binds to integrin αIIbβ3 and mediates integrin “outside-in” signaling,” Science, vol. 327, no. 5963, pp. 340–343, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. C. K. Billington and R. B. Penn, “Signaling and regulation of G protein-coupled receptors in airway smooth muscle,” Respiratory Research, vol. 4, no. 1, article 2, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Pohl, S. J. Winder, B. G. Allen, M. P. Walsh, J. R. Sellers, and W. T. Gerthoffer, “Phosphorylation of calponin in airway smooth muscle,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 272, no. 1, part 1, pp. L115–L123, 1997. View at Scopus
  42. H. Hakonarson and M. M. Grunstein, “Regulation of second messengers associated with airway smooth muscle contraction and relaxation,” American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 5, part 3, pp. S115–S122, 1998. View at Scopus
  43. M. A. Giembycz and D. Raeburn, “Current concepts on mechanisms of force generation and maintenance in airways smooth muscle,” Pulmonary Pharmacology, vol. 5, no. 4, pp. 279–297, 1992. View at Publisher · View at Google Scholar · View at Scopus
  44. C. T. Walsh, D. Stupack, and J. H. Brown, “G protien-coupled receptors go extracellular: RhoA integrates the integrins,” Molecular Interventions, vol. 8, no. 4, pp. 165–173, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Erb, J. Liu, J. Ockerhausen et al., “An RGD sequence in the P2Y2 receptor interacts with αvβ3 integrins and is required for Go-mediated signal transduction,” Journal of Cell Biology, vol. 152, no. 3, pp. 491–501, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. A. M. Freyer, C. K. Billington, R. B. Penn, and I. P. Hall, “Extracellular matrix modulates β2-adrenergic receptor signaling in human airway smooth muscle cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 31, no. 4, pp. 440–445, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Parameswaran, A. Willems-Widyastuti, V. K. T. Alagappan, K. Radford, A. R. Kranenburg, and H. S. Sharma, “Role of extracellular matrix and its regulators in human airway smooth muscle biology,” Cell Biochemistry and Biophysics, vol. 44, no. 1, pp. 139–146, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. W. R. Roche, J. H. Williams, R. Beasley, and S. T. Holgate, “Subepithelial fibrosis in the bronchi of asthmatics,” The Lancet, vol. 1, no. 8637, pp. 520–524, 1989. View at Scopus
  49. M. L. Toews, E. E. Ustinova, and H. D. Schultz, “Lysophosphatidic acid enhances contractility of isolated airway smooth muscle,” Journal of Applied Physiology, vol. 83, no. 4, pp. 1216–1222, 1997. View at Scopus
  50. J. M. Hartney, C. E. Gustafson, R. P. Bowler, R. Pelanda, and R. M. Torres, “Thromboxane receptor signaling is required for fibronectin-induced matrix metalloproteinase 9 production by human and murine macrophages and is attenuated by the Arhgef1 molecule,” The Journal of Biological Chemistry, vol. 286, no. 52, pp. 44521–44531, 2011. View at Publisher · View at Google Scholar
  51. S. Haag, S. Matthiesen, U. R. Juergens, and K. Racké, “Muscarinic receptors mediate stimulation of collagen synthesis in human lung fibroblasts,” European Respiratory Journal, vol. 32, no. 3, pp. 555–562, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Rozengurt, “Signal transduction pathways in the mitogenic response to G protein-coupled neuropeptide receptor agonists,” Journal of Cellular Physiology, vol. 177, no. 4, pp. 507–517, 1998. View at Publisher · View at Google Scholar
  53. M. Montiel, E. Pérez de la Blanca, and E. Jiménez, “Angiotensin II induces focal adhesion kinase/paxillin phosphorylation and cell migration in human umbilical vein endothelial cells,” Biochemical and Biophysical Research Communications, vol. 327, no. 4, pp. 971–978, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. B. E. Slack, “Tyrosine phosphorylation of paxillin and focal adhesion kinase by activation of muscarinic m3 receptors is dependent on integrin engagement by the extracellular matrix,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 13, pp. 7281–7286, 1998. View at Publisher · View at Google Scholar · View at Scopus
  55. S. M. Short, J. L. Boyer, and R. L. Juliano, “Integrins regulate the linkage between upstream and downstream events in G protein-coupled receptor signaling to mitogen-activated protein kinase,” The Journal of Biological Chemistry, vol. 275, no. 17, pp. 12970–12977, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Sinnett-Smith, I. Zachary, A. M. Valverde, and E. Rozengurt, “Bombesin stimulation of p125 focal adhesion kinase tyrosine phosphorylation. Role of protein kinase C, Ca2+ mobilization, and the actin cytoskeleton,” The Journal of Biological Chemistry, vol. 268, no. 19, pp. 14261–14268, 1993. View at Scopus
  57. P. Amin, M. Singh, and K. Singh, “β-Adrenergic receptor-stimulated cardiac myocyte apoptosis: role of β1 integrins,” Journal of Signal Transduction, vol. 2011, Article ID 179057, 9 pages, 2011. View at Publisher · View at Google Scholar
  58. V. Litvak, D. Tian, Y. D. Shaul, and S. Lev, “Targeting of PYK2 to focal adhesions as a cellular mechanism for convergence between integrins and G protein-coupled receptor signaling cascades,” The Journal of Biological Chemistry, vol. 275, no. 42, pp. 32736–32746, 2000. View at Scopus
  59. B. Leitinger and N. Hogg, “The involvement of lipid rafts in the regulation of integrin function,” Journal of Cell Science, vol. 115, no. 5, pp. 963–972, 2002. View at Scopus
  60. J. E. Brittain, K. J. Mlinar, C. S. Anderson, E. P. Orringer, and L. V. Parise, “Activation of sickle red blood cell adhesion via integrin-associated protein/CD47-induced signal transduction,” The Journal of Clinical Investigation, vol. 107, no. 12, pp. 1555–1562, 2001. View at Scopus
  61. C. Y. Lin, L. G. W. Hilgenberg, M. A. Smith, G. Lynch, and C. M. Gall, “Integrin regulation of cytoplasmic calcium in excitatory neurons depends upon glutamate receptors and release from intracellular stores,” Molecular and Cellular Neuroscience, vol. 37, no. 4, pp. 770–780, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. G. Wang, A. M. Samarel, and S. L. Lipsius, “Laminin acts via β1 integrin signalling to alter cholinergic regulation of L-type Ca2+ current in cat atrial myocytes,” Journal of Physiology, vol. 526, no. 1, pp. 57–68, 2000. View at Scopus
  63. Y. G. Wang, A. M. Samarel, and S. L. Lipsius, “Laminin binding to β1-integrins selectively alters β1- and β2-adrenoceptor signalling in cat atrial myocytes,” Journal of Physiology, vol. 527, no. 1, pp. 3–9, 2000. View at Scopus
  64. Y. G. Wang, X. Ji, M. Pabbidi, A. M. Samarel, and S. L. Lipsius, “Laminin acts via focal adhesion kinase/phosphatidylinositol-3′ kinase/protein kinase B to down-regulate β1-adrenergic receptor signalling in cat atrial myocytes,” Journal of Physiology, vol. 587, no. 3, pp. 541–550, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. M. R. Pabbidi, X. Ji, A. M. Samarel, and S. L. Lipsius, “Laminin enhances β2-adrenergic receptor stimulation of L-type Ca2+ current via cytosolic phospholipase A2 signalling in cat atrial myocytes,” Journal of Physiology, vol. 587, no. 20, pp. 4785–4797, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. Q. Cheng, R. S. Ross, and K. B. Walsh, “Overexpression of the integrin β1A subunit and the β1A cytoplasmic domain modifies the β-adrenergic regulation of the cardiac L-type Ca2+current,” Journal of Molecular and Cellular Cardiology, vol. 36, no. 6, pp. 809–819, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. Y. Daaka, L. M. Luttrell, and R. J. Lefkowitz, “Switching of the coupling of the β2-adrenergic receptor to different g proteins by protein kinase A,” Nature, vol. 390, no. 6655, pp. 88–91, 1997. View at Publisher · View at Google Scholar · View at Scopus
  68. L. Moro, M. Venturino, C. Bozzo et al., “Integrins induce activation of EGF receptor: role in MAP kinase induction and adhesion-dependent cell survival,” The EMBO Journal, vol. 17, no. 22, pp. 6622–6632, 1998. View at Scopus
  69. C. K. Billington, I. P. Hall, S. J. Mundell et al., “Inflammatory and contractile agents sensitize specific adenylyl cyclase isoforms in human airway smooth muscle,” American Journal of Respiratory Cell and Molecular Biology, vol. 21, no. 5, pp. 597–606, 1999. View at Scopus
  70. D. Xu, C. Isaacs, I. P. Hall, and C. W. Emala, “Human airway smooth muscle expresses 7 isoforms of adenylyl cyclase: a dominant role for isoform V,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 281, no. 4, pp. L832–L843, 2001. View at Scopus
  71. M. D. Sjaastad, R. S. Lewis, and W. J. Nelson, “Mechanisms of integrin-mediated calcium signaling in MDCK cells: regulation of adhesion by IP3- and store-independent calcium influx,” Molecular Biology of the Cell, vol. 7, no. 7, pp. 1025–1041, 1996. View at Scopus
  72. J. S. Chun, M. J. Ha, and B. S. Jacobson, “Differential translocation of protein kinase C ε during HeLa cell adhesion to a gelatin substratum,” The Journal of Biological Chemistry, vol. 271, no. 22, pp. 13008–13012, 1996. View at Publisher · View at Google Scholar · View at Scopus
  73. S. F. Steinberg and L. L. Brunton, “Compartmentation of G protein-coupled signaling pathways in cardiac myocytes,” Annual Review of Pharmacology and Toxicology, vol. 41, pp. 751–773, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. J. M. Lewis and M. A. Schwartz, “Integrins regulate the association and phosphorylation of paxillin by c-Abl,” The Journal of Biological Chemistry, vol. 273, no. 23, pp. 14225–14230, 1998. View at Publisher · View at Google Scholar · View at Scopus
  75. A. J. Halayko, T. Tran, and R. Gosens, “Phenotype and functional plasticity of airway smooth muscle: role of caveolae and caveolins,” Proceedings of the American Thoracic Society, vol. 5, no. 1, pp. 80–88, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. R. S. Ostrom, C. Gregorian, R. M. Drenan, Y. Xiang, J. W. Regan, and P. A. Insel, “Receptor number and caveolar co-localization determine receptor coupling efficiency to adenylyl cyclase,” The Journal of Biological Chemistry, vol. 276, no. 45, pp. 42063–42069, 2001. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Chun, U. K. Liyanage, M. P. Lisanti, and H. F. Lodish, “Signal transduction of a G protein-coupled receptor in caveolae: colocalization of endothelin and its receptor with caveolin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 24, pp. 11728–11732, 1994. View at Publisher · View at Google Scholar · View at Scopus
  78. T. Sabourin, L. Bastien, D. R. Bachvarov, and F. Marceau, “Agonist-induced translocation of the kinin B1 receptor to caveolae-related rafts,” Molecular Pharmacology, vol. 61, no. 3, pp. 546–553, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. R. Gosens, G. L. Stelmack, G. Dueck et al., “Caveolae facilitate muscarinic receptor-mediated intracellular Ca2+ mobilization and contraction in airway smooth muscle,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 293, no. 6, pp. L1406–L1418, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. K. K. Wary, A. Mariotti, C. Zurzolo, and F. G. Giancotti, “A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth,” Cell, vol. 94, no. 5, pp. 625–634, 1998. View at Publisher · View at Google Scholar · View at Scopus
  81. V. O. Rybin, X. Xu, M. P. Lisanti, and S. F. Steinberg, “Differential targeting of β-adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae: a mechanism to functionally regulate the cAMP signaling pathway,” The Journal of Biological Chemistry, vol. 275, no. 52, pp. 41447–41457, 2000. View at Publisher · View at Google Scholar · View at Scopus
  82. A. Bergdahl and K. Swärd, “Caveolae-associated signalling in smooth muscle,” Canadian Journal of Physiology and Pharmacology, vol. 82, no. 5, pp. 289–299, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. A. J. Halayko and G. L. Stelmack, “The association of caveolae, actin, and the dystrophin-glycoprotein complex: a role in smooth muscle phenotype and function?” Canadian Journal of Physiology and Pharmacology, vol. 83, no. 10, pp. 877–891, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Umesh, M. A. Thompson, E. N. Chini, K. P. Yip, and J. S. K. Sham, “Integrin ligands mobilize Ca2+ from ryanodine receptor-gated stores and lysosome-related acidic organelles in pulmonary arterial smooth muscle cells,” The Journal of Biological Chemistry, vol. 281, no. 45, pp. 34312–34323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. M. S. Kwon, C. S. Park, K. R. Choi et al., “Calreticulin couples calcium release and calcium influx in integrin-mediated calcium signaling,” Molecular Biology of the Cell, vol. 11, no. 4, pp. 1433–1443, 2000. View at Scopus
  86. C. L. Grainge, L. C. K. Lau, J. A. Ward et al., “Effect of bronchoconstriction on airway remodeling in asthma,” The New England Journal of Medicine, vol. 364, no. 21, pp. 2006–2015, 2011. View at Publisher · View at Google Scholar · View at Scopus