About this Journal Submit a Manuscript Table of Contents
Journal of Allergy
Volume 2012 (2012), Article ID 423612, 10 pages
http://dx.doi.org/10.1155/2012/423612
Research Article

Substance P Regulates Environmental Tobacco Smoke-Enhanced Tracheal Smooth Muscle Responsiveness in Mice

Department of Neurobiology and Anatomy, Robert C. Byrd Health Sciences Center, West Virginia University, P.O. Box 9128, Morgantown, WV 26506, USA

Received 16 April 2012; Revised 5 June 2012; Accepted 4 July 2012

Academic Editor: Ynuk Bossé

Copyright © 2012 Lan Xiao and Zhong-Xin Wu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. X. Wu, D. D. Hunter, V. L. Kish, K. M. Benders, T. P. Batchelor, and R. D. Dey, “Prenatal and early, but not late, postnatal exposure of mice to sidestream tobacco smoke increases airway hyperresponsiveness later in life,” Environmental Health Perspectives, vol. 117, no. 9, pp. 1434–1440, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. X. Wu and L. Y. Lee, “Airway hyperresponsiveness induced by chronic exposure to cigarette smoke in guinea pigs: role of tachykinins,” Journal of Applied Physiology, vol. 87, no. 5, pp. 1621–1628, 1999. View at Scopus
  3. S. T. Weiss, “The origins of childhood asthma,” Monaldi Archives for Chest Disease, vol. 49, no. 2, pp. 154–158, 1994. View at Scopus
  4. S. T. Weiss, M. J. Utell, and J. M. Samet, “Environmental tobacco smoke exposure and asthma in adults,” Environmental Health Perspectives, vol. 107, no. 6, pp. 891–895, 1999. View at Scopus
  5. F. D. Martinez, M. Cline, and B. Burrows, “Increased incidence of asthma in children of smoking mothers,” Pediatrics, vol. 89, no. 1, pp. 21–26, 1992. View at Scopus
  6. M. Weitzman, S. Gortmaker, D. K. Walker, and A. Sobol, “Maternal smoking and childhood asthma,” Pediatrics, vol. 85, no. 4, pp. 505–511, 1990. View at Scopus
  7. F. D. Gilliland, K. Berhane, Y. F. Li, E. B. Rappaport, and J. M. Peters, “Effects of early onset asthma and in utero exposure to maternal smoking on childhood lung function,” American Journal of Respiratory and Critical Care Medicine, vol. 167, no. 6, pp. 917–924, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. S. E. Håberg, H. Stigum, W. Nystad, and P. Nafstad, “Effects of pre- and postnatal exposure to parental smoking on early childhood respiratory health,” American Journal of Epidemiology, vol. 166, no. 6, pp. 679–686, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Raherison, C. Pénard-Morand, D. Moreau et al., “In utero and childhood exposure to parental tobacco smoke, and allergies in schoolchildren,” Respiratory Medicine, vol. 101, no. 1, pp. 107–117, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Wang and K. E. Pinkerton, “Detrimental effects of tobacco smoke exposure during development on postnatal lung function and asthma,” Birth Defects Research C, vol. 84, no. 1, pp. 54–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. R. R. Dietert, R. A. Etzel, D. Chen et al., “Workshop to identify critical windows of exposure for children's health: immune and respiratory systems work group summary,” Environmental Health Perspectives, vol. 108, no. 3, pp. 483–490, 2000. View at Scopus
  12. J. A. Nadel, “Autonomic regulation of airway smooth muscle,” in Physiology and Pharmacology of the Airways, pp. 217–257, Marcel Dekker, New York, NY, USA, 1980.
  13. J. B. Richardson, “Nerve supply to the lungs,” American Review of Respiratory Disease, vol. 119, no. 5, pp. 785–802, 1979. View at Scopus
  14. P. J. Barnes, “Sensory nerves, neuropeptides, and asthma,” Annals of the New York Academy of Sciences, vol. 629, pp. 359–370, 1991. View at Scopus
  15. J. M. Lundberg, C. R. Martling, and A. Saria, “Substance P and capsaicin-induced contraction of human bronchi,” Acta Physiologica Scandinavica, vol. 119, no. 1, pp. 49–53, 1983. View at Scopus
  16. A. Fischer, G. P. McGregor, A. Saria, B. Philippin, and W. Kummer, “Induction of tachykinin gene and peptide expression in guinea pig nodose primary afferent neurons by allergic airway inflammation,” Journal of Clinical Investigation, vol. 98, no. 10, pp. 2284–2291, 1996. View at Scopus
  17. E. R. Sikora, S. Stone, S. Tomblyn, D. G. Frazer, V. Castranova, and R. D. Dey, “Asphalt exposure enhances neuropeptide levels in sensory neurons projecting to the rat nasal epithelium,” Journal of Toxicology and Environmental Health A, vol. 66, no. 11, pp. 1015–1027, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Kwong, Z. X. Wu, M. L. Kashon, K. M. Krajnak, P. M. Wise, and L. Y. Lee, “Chronic smoking enhances tachykinin synthesis and airway responsiveness in guinea pigs,” American Journal of Respiratory Cell and Molecular Biology, vol. 25, no. 3, pp. 299–305, 2001. View at Scopus
  19. J. M. Lundberg, C. R. Martling, and L. Lundblad, “Cigarette smoke-induced irritation in the airways in relation to peptide-containing, capsaicin-sensitive sensory neurons,” Klinische Wochenschrift, vol. 66, supplement 11, pp. 151–160, 1988. View at Scopus
  20. J. M. Lundberg, K. Alving, J. A. Karlsson, R. Matran, and G. Nilsson, “Sensory neuropeptide involvement in animal models of airway irritation and of allergen-evoked asthma,” American Review of Respiratory Disease, vol. 143, no. 6, pp. 1429–1431, 1991. View at Scopus
  21. K. O. de Swert, K. R. Bracke, T. Demoor, G. G. Brusselle, and G. F. Joos, “Role of the tachykinin NK1 receptor in a murine model of cigarette smoke-induced pulmonary inflammation,” Respiratory Research, vol. 10, article 37, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. X. Wu, D. Zhou, G. Chen, and L. Y. Lee, “Airway hyperresponsiveness to cigarette smoke in ovalbumin-sensitized guinea pigs,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 1, pp. 73–80, 2000. View at Scopus
  23. D. J. Dusser, T. D. Djokic, D. B. Borson, and J. A. Nadel, “Cigarette smoke induces bronchoconstrictor hyperresponsiveness to substance P and inactivates airway neutral endopeptidase in the guinea pig,” Journal of Clinical Investigation, vol. 84, no. 3, pp. 900–906, 1989. View at Scopus
  24. A. L. Wang, T. L. Blackford, and L. Y. Lee, “Vagal bronchopulmonary C-fibers and acute ventilatory response to inhaled irritants,” Respiration Physiology, vol. 104, no. 2-3, pp. 231–239, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. X. Wu, R. F. Morton, and L. Y. Lee, “Role of tachykinins in ozone-induced airway hyperresponsiveness to cigarette smoke in guinea pigs,” Journal of Applied Physiology, vol. 83, no. 3, pp. 958–965, 1997. View at Scopus
  26. N. Watson, J. Maclagan, and P. J. Barnes, “Endogenous tachykinins facilitate ganglionic cholinergic neurotransmission, via NK1 receptors,” American Review of Respiratory Disease, vol. 145, article A261, 1992.
  27. A. K. Hall, P. J. Barnes, L. A. Meldrum, and J. Maclagan, “Facilitation by tachykinins of neurotransmission in guinea-pig pulmonary parasympathetic nerves,” British Journal of Pharmacology, vol. 97, no. 1, pp. 274–280, 1989. View at Scopus
  28. K. Sekizawa, J. Tamaoki, P. D. Graf, C. B. Basbaum, D. B. Borson, and J. A. Nadel, “Enkephalinase inhibitor potentiates mammalian tachykinin-induced contraction in ferret trachea,” Journal of Pharmacology and Experimental Therapeutics, vol. 243, no. 3, pp. 1211–1217, 1987. View at Scopus
  29. K. Sekizawa, J. Tamaoki, J. A. Nadel, and D. B. Borson, “Enkephalinase inhibitor potentiates substance P- and electrically induced contraction in ferret trachea,” Journal of Applied Physiology, vol. 63, no. 4, pp. 1401–1405, 1987. View at Scopus
  30. K. G. Tournoy, K. O. de Swert, P. G. Leclere, R. A. Lefebvre, R. A. Pauwels, and G. F. Joos, “Modulatory role of tachykinin NK1 receptor in cholinergic contraction of mouse trachea,” European Respiratory Journal, vol. 21, no. 1, pp. 3–10, 2003. View at Scopus
  31. K. E. Pinkerton and J. P. Joad, “The mammalian respiratory system and critical windows of exposure for children's health,” Environmental Health Perspectives, vol. 108, supplement 3, pp. 457–462, 2000. View at Scopus
  32. M. Yu, X. Zheng, J. Peake, J. P. Joad, and K. E. Pinkerton, “Perinatal environmental tobacco smoke exposure alters the immune response and airway innervation in infant primates,” Journal of Allergy and Clinical Immunology, vol. 122, no. 3, pp. 640.e1–647.e1, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. Z. X. Wu and R. D. Dey, “Nerve growth factor-enhanced airway responsiveness involves substance P in ferret intrinsic airway neurons,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 291, no. 1, pp. L111–L118, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. R. D. Dey, B. Satterfield, and J. B. Altemus, “Innervation of tracheal epithelium and smooth muscle by neurons in airway ganglia,” Anatomical Record, vol. 254, no. 2, pp. 166–172, 1999.
  35. Z. X. Wu, B. E. Satterfield, and R. D. Dey, “Substance P released from intrinsic airway neurons contributes to ozone-enhanced airway hyperresponsiveness in ferret trachea,” Journal of Applied Physiology, vol. 95, no. 2, pp. 742–750, 2003. View at Scopus
  36. L. Y. Lee and T. E. Pisarri, “Afferent properties and reflex functions of bronchopulmonary C-fibers,” Respiration Physiology, vol. 125, no. 1-2, pp. 47–65, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. R. D. Dey, J. B. Altemus, I. Zervos, and J. Hoffpauir, “Origin and colocalization of CGRP- and SP-reactive nerves in cat airway epithelium,” Journal of Applied Physiology, vol. 68, no. 2, pp. 770–778, 1990. View at Scopus
  38. D. D. Hunter and B. J. Undem, “Identification and substance P content of vagal afferent neurons innervating the epithelium of the guinea pig trachea,” American Journal of Respiratory and Critical Care Medicine, vol. 159, no. 6, pp. 1943–1948, 1999. View at Scopus
  39. J. M. Lundberg, C. R. Martling, and A. Saria, “Cigarette smoke-induced airway oedema due to activation of capsaicin-sensitive vagal afferents and substance P release,” Neuroscience, vol. 10, no. 4, pp. 1361–1368, 1983. View at Publisher · View at Google Scholar · View at Scopus
  40. M. A. Martins, S. A. Shore, and J. M. Drazen, “Release of tachykinins by histamine, methacholine, PAF, LTD4, and substance P from guinea pig lungs,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 261, no. 6, pp. L449–L455, 1991. View at Scopus
  41. L. Porra, F. Peták, S. Strengell et al., “Acute cigarette smoke inhalation blunts lung responsiveness to methacholine and allergen in rabbit: differentiation of central and peripheral effects,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 299, no. 2, pp. L242–L251, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. D. Roehrs, W. R. Rogers, and W. G. Johanson Jr., “Bronchial reactivity to inhaled methacholine in cigarette-smoking baboons,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 50, no. 4, pp. 754–760, 1981. View at Scopus
  43. B. N. Melgert, D. S. Postma, M. Geerlings et al., “Short-term smoke exposure attenuates ovalbumin-induced airway inflammation in allergic mice,” American Journal of Respiratory Cell and Molecular Biology, vol. 30, no. 6, pp. 880–885, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. J. C. Emms and D. F. Rogers, “Cigarette smoke-inhibition of neurogenic bronchoconstriction in guinea-pigs in vivo: involvement of exogenous and endogenous nitric oxide,” British Journal of Pharmacology, vol. 122, no. 4, pp. 779–785, 1997. View at Publisher · View at Google Scholar · View at Scopus
  45. K. B. Moerloose, R. A. Pauwels, and G. F. Joos, “Short-term cigarette smoke exposure enhances allergic airway inflammation in mice,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 2, pp. 168–172, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Rumold, M. Jyrala, and D. Diaz-Sanchez, “Secondhand smoke induces allergic sensitization in mice,” Journal of Immunology, vol. 167, no. 8, pp. 4765–4770, 2001. View at Scopus
  47. Y. Chiba, M. Murata, H. Ushikubo et al., “Effect of cigarette smoke exposure in vivo on bronchial smooth muscle contractility in vitro in rats,” American Journal of Respiratory Cell and Molecular Biology, vol. 33, no. 6, pp. 574–581, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. A. L. James, L. J. Palmer, E. Kick et al., “Decline in lung function in the Busselton health study: the effects of asthma and cigarette smoking,” American Journal of Respiratory and Critical Care Medicine, vol. 171, no. 2, pp. 109–114, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. B. W. Granström, C. B. Xu, E. Nilsson, P. Vikman, and L. Edvinsson, “Smoking particles enhance endothelin A and endothelin B receptor-mediated contractions by enhancing translation in rat bronchi,” BMC Pulmonary Medicine, vol. 6, article 6, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. T. H. Thatcher, R. P. Benson, R. P. Phipps, and P. J. Sime, “High-dose but not low-dose mainstream cigarette smoke suppresses allergic airway inflammation by inhibiting T cell function,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 295, no. 3, pp. L412–L421, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. S. L. Ollerenshaw, D. Jarvis, C. E. Sullivan, and A. J. Woolcock, “Substance P immunoreactive nerves in airways from asthmatics and nonasthmatics,” European Respiratory Journal, vol. 4, no. 6, pp. 673–682, 1991. View at Scopus
  52. F. O'Connell, D. R. Springall, A. Moradoghli-Haftvani et al., “Abnormal intraepithelial airway nerves in persistent unexplained cough?” American Journal of Respiratory and Critical Care Medicine, vol. 152, no. 6, pp. 2068–2075, 1995. View at Scopus