About this Journal Submit a Manuscript Table of Contents
Journal of Allergy
Volume 2012 (2012), Article ID 593784, 9 pages
http://dx.doi.org/10.1155/2012/593784
Review Article

Airway Smooth Muscle as a Target in Asthma and the Beneficial Effects of Bronchial Thermoplasty

Firestone Institute for Respiratory Health, St. Joseph’s Hospital and Department of Medicine, McMaster University, Hamilton, ON, Canada L8N 3Z5

Received 4 July 2012; Accepted 1 August 2012

Academic Editor: Ynuk Bossé

Copyright © 2012 Luke J. Janssen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. K. Lambert, B. R. Wiggs, K. Kuwano, J. C. Hogg, and P. D. Pare, “Functional significance of increased airway smooth muscle in asthma and COPD,” Journal of Applied Physiology, vol. 74, no. 6, pp. 2771–2781, 1993. View at Scopus
  2. B. R. Wiggs, C. Bosken, P. D. Paré, A. James, and J. C. Hogg, “A model of airway narrowing in asthma and in chronic obstructive pulmonary disease,” American Review of Respiratory Disease, vol. 145, no. 6, pp. 1251–1258, 1992. View at Scopus
  3. A. L. James and S. Wenzel, “Clinical relevance of airway remodelling in airway diseases,” European Respiratory Journal, vol. 30, no. 1, pp. 134–155, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. D. A. Knight and S. T. Holgate, “The airway epithelium: structural and functional properties in health and disease,” Respirology, vol. 8, no. 4, pp. 432–446, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Aikawa, S. Shimura, H. Sasaki, M. Ebina, and T. Takishima, “Marked goblet cell hyperplasia with mucus accumulation in the airways of patients who died of severe acute asthma attack,” Chest, vol. 101, no. 4, pp. 916–921, 1992. View at Scopus
  6. C. L. Ordoñez, R. Khashayar, H. H. Wong et al., “Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 2, pp. 517–523, 2001. View at Scopus
  7. M. S. Dunnill, “The pathology of asthma, with special reference to changes in the bronchial mucosa,” Journal of clinical pathology, vol. 13, pp. 27–33, 1960. View at Scopus
  8. J. W. Messer, G. A. Peters, and W. A. Bennett, “Causes of death and pathologic findings in 304 cases of bronchial asthma,” Diseases of the Chest, vol. 38, pp. 616–624, 1960. View at Scopus
  9. M. Ebina, T. Takahashi, T. Chiba, and M. Motomiya, “Cellular hypertrophy and hyperplasia of airway smooth muscles underlying bronchial asthma: a 3-D morphometric study,” American Review of Respiratory Disease, vol. 148, no. 3, pp. 720–726, 1993. View at Scopus
  10. S. Hossain and B. E. Heard, “Hyperplasia of bronchial muscle in chronic bronchitis,” Journal of Pathology, vol. 101, no. 2, pp. 171–184, 1970. View at Scopus
  11. P. G. Woodruff, G. M. Dolganov, R. E. Ferrando et al., “Hyperplasia of smooth muscle in mild to moderate asthma without changes in cell size or gene expression,” American Journal of Respiratory and Critical Care Medicine, vol. 169, no. 9, pp. 1001–1006, 2004. View at Scopus
  12. A. L. James, J. G. Elliot, R. L. Jones et al., “Airway smooth muscle hypertrophy and hyperplasia in asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 185, no. 10, pp. 1058–1064, 2012. View at Scopus
  13. W. Mitzner, “Airway smooth muscle: the appendix of the lung,” American Journal of Respiratory and Critical Care Medicine, vol. 169, no. 7, pp. 787–790, 2004. View at Scopus
  14. C. Y. Seow and J. J. Fredberg, “Historical perspective on airway smooth muscle: the saga of a frustrated cell,” Journal of Applied Physiology, vol. 91, no. 2, pp. 938–952, 2001. View at Scopus
  15. C. L. Armour, J. L. Black, N. Berend, and A. J. Woolcock, “The relationship between bronchial hyperresponsiveness to methacholine and airway smooth muscle structure and reactivity,” Respiration Physiology, vol. 58, no. 2, pp. 223–233, 1984. View at Publisher · View at Google Scholar · View at Scopus
  16. M. S. Dunnill, G. R. Massarella, and J. A. Anderson, “A comparison of the quantitative anatomy of the bronchi in normal subjects, in status asthmaticus, in chronic bronchitis, and in emphysema,” Thorax, vol. 24, no. 2, pp. 176–179, 1969. View at Scopus
  17. A. L. James, T. R. Bai, T. Mauad et al., “Airway smooth muscle thickness in asthma is related to severity but not duration of asthma,” European Respiratory Journal, vol. 34, no. 5, pp. 1040–1045, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. L. James, F. H. Green, M. J. Abramson et al., “Airway basement membrane perimeter distensibility and airway smooth muscle area in asthma,” Journal of Applied Physiology, vol. 104, no. 6, pp. 1703–1708, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Kuwano, C. H. Bosken, P. D. Pare, T. R. Bai, B. R. Wiggs, and J. C. Hogg, “Small airways dimensions in asthma and in chronic obstructive pulmonary disease,” American Review of Respiratory Disease, vol. 148, no. 5, pp. 1220–1225, 1993. View at Scopus
  20. J. G. Martin, A. Duguet, and D. H. Eidelman, “The contribution of airway smooth muscle to airway narrowing and airway hyperresponsiveness in disease,” European Respiratory Journal, vol. 16, no. 2, pp. 349–354, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. P. M. O'Byrne and M. D. Inman, “Airway hyperresponsiveness,” Chest, vol. 123, no. 3, pp. 411S–416S, 2003. View at Scopus
  22. T. Takizawa and W. M. Thurlbeck, “Muscle and mucous gland size in the major bronchi of patients with chronic bronchitis, asthma, and asthmatic bronchitis,” American Review of Respiratory Disease, vol. 104, no. 3, pp. 331–336, 1971. View at Scopus
  23. Y. Amrani and C. Bronner, “Tumor necrosis factor alpha potentiates the increase in cytosolic free calcium induced by bradykinin in guinea-pig tracheal smooth muscle cells,” Comptes Rendus de l'Academie des Sciences III, vol. 316, no. 12, pp. 1489–1494, 1993. View at Scopus
  24. Y. Amrani, R. A. Panettieri, N. Frossard, and C. Bronner, “. Activation of the TNF alpha-p55 receptor induces myocyte proliferation and modulates agonist-evoked calcium transients in cultured human tracheal smooth muscle cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 15, no. 1, pp. 55–63, 1996. View at Scopus
  25. Y. Chiba, H. Sakai, T. Arimoto, Y. Takada, T. Yoshikawa, and M. Misawa, “Gq protein level increases concurrently with antigen-induced airway hyperresponsiveness in rats,” Respiration Physiology, vol. 121, no. 1, pp. 75–83, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Chiba, H. Sakai, H. Suenaga, K. Kamata, and M. Misawa, “Enhanced Ca2+ sensitization of the bronchial smooth muscle contraction in antigen-induced airway hyperresponsive rats,” Research Communications in Molecular Pathology and Pharmacology, vol. 106, no. 1-2, pp. 77–85, 1999. View at Scopus
  27. Y. Chiba, Y. Takada, S. Miyamoto, M. Mitsui-Saito, H. Karaki, and M. Misawa, “Augmented acetylcholine-induced, Rho-mediated Ca2+ sensitization of bronchial smooth muscle contraction in antigen-induced airway hyperresponsive rats,” British Journal of Pharmacology, vol. 127, no. 3, pp. 597–600, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. J. A. He, K. Rao, A. J. Halayko, W. Kepron, and N. L. Stephens, “Isotonic shortening parameters but not isometric force development are altered in ragweed pollen sensitized canine bronchial smooth muscle,” Advances in Experimental Medicine and Biology, vol. 304, pp. 445–453, 1991. View at Scopus
  29. H. Jiang, K. Rao, A. J. Halayko, X. Liu, and N. L. Stephens, “Ragweed sensitization-induced increase of myosin light chain kinase content in canine airway smooth muscle,” American journal of respiratory cell and molecular biology, vol. 7, no. 6, pp. 567–573, 1992. View at Scopus
  30. H. Jiang, K. Rao, X. Liu, G. Liu, and N. L. Stephens, “Increased Ca2+ and myosin phosphorylation, but not calmodulin activity in sensitized airway smooth muscles,” American Journal of Physiology, vol. 268, no. 5, pp. L739–L746, 1995. View at Scopus
  31. S. K. Kong, A. J. Halayko, and N. L. Stephens, “Increased myosin phosphorylation in sensitized canine tracheal smooth muscle,” American Journal of Physiology, vol. 259, no. 2, pp. L53–L56, 1990. View at Scopus
  32. X. Liu, A. J. Halayko, G. Liu, K. Rao, H. Jiang, and N. L. Stephens, “Myosin light chain phosphatase activity in ragweed pollen-sensitized canine tracheal smooth muscle,” American Journal of Respiratory Cell and Molecular Biology, vol. 11, no. 6, pp. 676–681, 1994. View at Scopus
  33. K. Rao, H. Jiang, A. J. Halayko, N. Pan, W. Kepron, and N. L. Stephens, “Increased ATPase activity and myosin light chain kinase (MLCK) content in airway smooth muscle from sensitized dogs,” Advances in Experimental Medicine and Biology, vol. 304, pp. 369–376, 1991. View at Scopus
  34. H. Sakai, Y. Chiba, and M. Misawa, “Site difference in RhoA expression between rat bronchial and tracheal smooth muscles after antigen challenge—relation to development of hyperresponsiveness,” Inflammation Research, vol. 50, no. 11, pp. 577–580, 2001. View at Scopus
  35. N. L. Stephens, S. K. Kong, and C. Y. Seow, “Mechanisms of increased shortening of sensitized airway smooth muscle,” Progress in Clinical and Biological Research, vol. 263, pp. 231–254, 1988. View at Scopus
  36. N. L. Stephens, C. Y. Seow, and S. K. Kong, “Mechanical properties of sensitized airway smooth muscle: Shortening capacity,” American Review of Respiratory Disease, vol. 143, no. 3, pp. S13–S14, 1991. View at Scopus
  37. M. E. Zacour, B. Tolloczko, and J. G. Martin, “Calcium and growth responses of hyperresponsive airway smooth muscle to different isoforms of platelet-derived growth factor (PDGF),” Canadian Journal of Physiology and Pharmacology, vol. 78, no. 11, pp. 867–873, 2000. View at Scopus
  38. T. R. Bai, “Abnormalities in airway smooth muscle in fatal asthma,” American Review of Respiratory Disease, vol. 141, no. 3 I, pp. 552–557, 1990. View at Scopus
  39. T. R. Bai, “Abnormalities in airway smooth muscle in fatal asthma: a comparison between trachea and bronchus,” American Review of Respiratory Disease, vol. 143, no. 2, pp. 441–443, 1991. View at Scopus
  40. X. Ma, Z. Cheng, H. Kong et al., “Changes in biophysical and biochemical properties of single bronchial smooth muscle cells from asthmatic subjects,” American Journal of Physiology, vol. 283, no. 6, pp. L1181–L1189, 2002. View at Scopus
  41. K. Mahn, S. J. Hirst, S. Ying et al., “Diminished sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) expression contributes to airway remodelling in bronchial asthma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 26, pp. 10775–10780, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. P. R. A. Johnson, M. Roth, M. Tamm et al., “Airway smooth muscle cell proliferation is increased in asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 3, pp. 474–477, 2001. View at Scopus
  43. A. S. Gounni, V. Wellemans, J. Yang et al., “Human airway smooth muscle cells express the high affinity receptor for IgE (FcεRI): a critical role of FcεRI in human airway smooth muscle cell function,” Journal of Immunology, vol. 175, no. 4, pp. 2613–2621, 2005. View at Scopus
  44. H. Hakonarson, C. Carter, C. Kim, and M. M. Grunstein, “Altered expression and action of the low-affinity IgE receptor FcεRII (CD23) in asthmatic airway smooth muscle,” Journal of Allergy and Clinical Immunology, vol. 104, no. 3, pp. 575–584, 1999. View at Scopus
  45. P. H. Howarth, A. J. Knox, Y. Amrani, O. Tliba, R. A. Panettieri, and M. Johnson, “Synthetic responses in airway smooth muscle,” Journal of Allergy and Clinical Immunology, vol. 114, no. 2, pp. S32–S50, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. S. R. Johnson and A. J. Knox, “Synthetic functions of airway smooth muscle in asthma,” Trends in Pharmacological Sciences, vol. 18, no. 8, pp. 288–292, 1997. View at Publisher · View at Google Scholar · View at Scopus
  47. M. B. Sukkar, A. J. Stanley, A. E. Blake et al., “‘Proliferative’ and “synthetic” airway smooth muscle cells are overlapping populations,” Immunology and Cell Biology, vol. 82, no. 5, pp. 471–478, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. J. K. Burgess, H. L. Jin, Q. I. Ge et al., “Dual ERK and phosphatidylinositol 3-kinase pathways control airway smooth muscle proliferation: differences in asthma,” Journal of Cellular Physiology, vol. 216, no. 3, pp. 673–679, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Benckhuijsen, J.-W. Van Den Bos, E. Van Velzen, R. De Bruijn, and R. Aalbers, “Differences in the effect of allergen avoidance on bronchial hyperresponsiveness as measured by methacholine, adenosine 5'-monophosphate, and exercise in asthmatic children,” Pediatric Pulmonology, vol. 22, no. 3, pp. 147–153, 1996. View at Publisher · View at Google Scholar · View at Scopus
  50. E. Van Velzen, J. W. Van Den Bos, J. A. W. Benckhuijsen, T. Van Essel, R. De Bruijn, and R. Aalbers, “Effect of allergen avoidance at high altitude on direct and indirect bronchial hyperresponsiveness and markers of inflammation in children with allergic asthma,” Thorax, vol. 51, no. 6, pp. 582–584, 1996. View at Scopus
  51. P. K. Jeffery, R. W. Godfrey, E. Adelroth, F. Nelson, A. Rogers, and S. A. Johansson, “Effects of treatment on airway inflammation and thickening of basement membrane reticular collagen in asthma: a quantitative light and electron microscopic study,” American Review of Respiratory Disease, vol. 145, no. 4 I, pp. 890–899, 1992. View at Scopus
  52. J. K. Sont, L. N. A. Willems, E. H. Bel et al., “Clinical control and histopathologic outcome of asthma when using airway hyperresponsiveness as an additional guide to long-term treatment,” American Journal of Respiratory and Critical Care Medicine, vol. 159, no. 4 I, pp. 1043–1051, 1999. View at Scopus
  53. A. J. Woolcock, K. Yan, and C. M. Salome, “Effect of therapy on bronchial hyperresponsiveness in the long-term management of asthma,” Clinical Allergy, vol. 18, no. 2, pp. 165–176, 1988. View at Scopus
  54. P. M. O'Byrne, “Acute asthma intervention: insights from the STAY study,” Journal of Allergy and Clinical Immunology, vol. 119, no. 6, pp. 1332–1336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. M. A. Kaliner, “Evolution of asthma treatments,” Annals of Allergy, vol. 71, no. 3, pp. 300–305, 1993. View at Scopus
  56. M. R. Sears, “The evolution of beta2-agonists,” Respiratory medicine, vol. 95, pp. S2–6, 2001. View at Scopus
  57. A. Chetta, A. Foresi, M. Del Donno, G. Bertorelli, A. Pesci, and D. Olivieri, “Airways remodeling is a distinctive feature of asthma and is related to severity of disease,” Chest, vol. 111, no. 4, pp. 852–857, 1997. View at Scopus
  58. E. Middleton, “The treatment of asthma—beyond bronchodilators,” New England and Regional Allergy Proceedings, vol. 6, no. 3, pp. 235–237, 1985. View at Scopus
  59. L. J. Janssen, “Asthma therapy: how far have we come, why did we fail and where should we go next?” European Respiratory Journal, vol. 33, no. 1, pp. 11–20, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Devonec, C. Ogden, P. Perrin, and S. St Clair Carter, “Clinical response to transurethral microwave thermotherapy is thermal dose dependent,” European Urology, vol. 23, no. 2, pp. 267–274, 1993. View at Scopus
  61. S. Gravas, P. Laguna, and J. De La Rosette, “Thermotherapy and thermoablation for benign prostatic hyperplasia,” Current Opinion in Urology, vol. 13, no. 1, pp. 45–49, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Ogawa, K. Namiki, M. Miki, S. Sakai, and I. Yoshihama, “Thermal effect on α1-adrenoceptors in the guinea-pig vas deferens: histological and binding studies,” Japanese Journal of Urology, vol. 89, no. 9, pp. 739–748, 1998. View at Scopus
  63. Y. C. Park, K. Hashimoto, N. Ohnishi et al., “How does thermotherapy effectively work on benign prostatic hyperplasia: an experimental study,” Japanese Journal of Urology, vol. 86, no. 8, pp. 1360–1367, 1995. View at Scopus
  64. S. E. Abrams, K. P. Walsh, M. J. Diamond, M. J. Clarkson, and P. Sibbons, “Radiofrequency thermal angioplasty maintains arterial duct patency: an experimental study,” Circulation, vol. 90, no. 1, pp. 442–448, 1994. View at Scopus
  65. T. Kang, J. Resar, and J. D. Humphrey, “Heat-induced changes in the mechanical behavior of passive coronary arteries,” Journal of Biomechanical Engineering, vol. 117, no. 1, pp. 86–93, 1995. View at Scopus
  66. J. F. Mitchel, R. G. McKay, M. A. Azrin, T. A. Aretz, D. D. Waters, and D. B. Fram, “Effect of low grade radiofrequency heating on arterial vasospasm in the porcine model,” Catheterization and Cardiovascular Diagnosis, vol. 42, no. 3, pp. 348–355, 1997. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Ohkubo, K. Takahashi, M. Kishiro, K. Akimoto, and Y. Yamashiro, “Histological findings after angioplasty using conventional balloon, radiofrequency thermal balloon, and stent for experimental aortic coarctation,” Pediatrics International, vol. 46, no. 1, pp. 39–47, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. M. J. Post, A. N. De Graaf-Bos, H. G. Van Zanten, P. G. De Groot, J. J. Sixma, and C. Borst, “Thrombogenicity of the human arterial wall after interventional thermal injury,” Journal of Vascular Research, vol. 33, no. 2, pp. 156–163, 1996. View at Scopus
  69. N. Sreeram, P. Townsend, and D. B. Morton, “Radiofrequency thermal balloon angioplasty in an experimental model of peripheral arterial stenosis,” International Journal of Cardiology, vol. 74, no. 1, pp. 25–32, 2000. View at Publisher · View at Google Scholar · View at Scopus
  70. P. G. Cox, J. Miller, A. McWilliams, A. Fitzgerald, and S. Lam, “Bronchial thermoplasty: one-year update,” American Journal of Respiratory and Critical Care Medicine, vol. 169, p. A313, 2004.
  71. P. G. Cox, J. Miller, W. Mitzner, and A. R. Leff, “Radiofrequency ablation of airway smooth muscle for sustained treatment of asthma: preliminary investigations,” European Respiratory Journal, vol. 24, no. 4, pp. 659–663, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. C. J. Danek, C. M. Lombard, D. L. Dungworth et al., “Reduction in airway hyperresponsiveness to methacholine by the application of RF energy in dogs,” Journal of Applied Physiology, vol. 97, no. 5, pp. 1946–1953, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. C. M. Lombard, L. Vincic, and P. G. Cox, “Histological effects of bronchial thermoplasty of canine and human airways,” American Journal of Respiratory and Critical Care Medicine, vol. 165, p. A779, 2002.
  74. J. D. Miller, G. Cox, L. Vincic, C. M. Lombard, B. E. Loomas, and C. J. Danek, “A prospective feasibility study of bronchial thermoplasty in the human airway,” Chest, vol. 127, no. 6, pp. 1999–2006, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. J. D. Miller, P. G. Cox, L. Vincic, C. M. Lombard, B. E. Loomas, and C. J. Danek, “Bronchial thermoplasty is well tolerated by non-asthmatic patients requiring lobectomy,” American Journal of Respiratory and Critical Care Medicine, vol. 165, p. A216, 2002.
  76. M. Castro, A. S. Rubin, M. Laviolette et al., “Effectiveness and safety of bronchial thermoplasty in the treatment of severe asthma: a multicenter, randomized, double-blind, sham-controlled clinical trial,” American Journal of Respiratory and Critical Care Medicine, vol. 181, no. 2, pp. 116–124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. G. Cox, J. D. Miller, A. McWilliams, J. M. FitzGerald, and S. Lam, “Bronchial thermoplasty for asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 173, no. 9, pp. 965–969, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. G. Cox, N. C. Thomson, A. S. Rubin et al., “Asthma control during the year after bronchial thermoplasty,” New England Journal of Medicine, vol. 356, no. 13, pp. 1327–1337, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. I. D. Pavord, G. Cox, N. C. Thomson et al., “Safety and efficacy of bronchial thermoplasty in symptomatic, severe asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 176, no. 12, pp. 1185–1191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Castro, A. Rubin, M. Laviolette, N. A. Hanania, B. Armstrong, and G. Cox, “Persistence of effectiveness of bronchial thermoplasty in patients with severe asthma,” Annals of Allergy, Asthma and Immunology, vol. 107, no. 1, pp. 65–70, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. N. C. Thomson, A. S. Rubin, R. M. Niven et al., “Long-term (5 year) safety of bronchial thermoplasty: Asthma Intervention Research (AIR) trial,” BMC Pulmonary Medicine, vol. 11, article 8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. M. E. Feder and G. E. Hofmann, “Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology,” Annual Review of Physiology, vol. 61, pp. 243–282, 1999. View at Publisher · View at Google Scholar · View at Scopus
  83. P. D. Bowman, S. T. Schuschereba, D. F. Lawlor, G. R. Gilligan, J. R. Mata, and D. R. Debaere, “Survival of human epidermal keratinocytes after short-duration high temperature: synthesis of HSP70 and IL-8,” American Journal of Physiology, vol. 272, no. 6, pp. C1988–C1994, 1997. View at Scopus
  84. S. S. An, B. Fabry, M. Mellema et al., “Role of heat shock protein 27 in cytoskeletal remodeling of the airway smooth muscle cell,” Journal of Applied Physiology, vol. 96, no. 5, pp. 1701–1713, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. J. C. Hedges, M. A. Dechert, I. A. Yamboliev et al., “A role for p38(MAPK)/HSP27 pathway in smooth muscle cell migration,” Journal of Biological Chemistry, vol. 274, no. 34, pp. 24211–24219, 1999. View at Publisher · View at Google Scholar · View at Scopus
  86. J. D. Hasday, A. Garrison, I. S. Singh et al., “Febrile-range hyperthermia augments pulmonary neutrophil recruitment and amplifies pulmonary oxygen toxicity,” American Journal of Pathology, vol. 162, no. 6, pp. 2005–2017, 2003. View at Scopus
  87. P. Rice, E. Martin, J. R. He et al., “Febrile-range hyperthermia augments neutrophil accumulation and enhances lung injury in experimental gram-negative bacterial pneumonia,” Journal of Immunology, vol. 174, no. 6, pp. 3676–3685, 2005. View at Scopus
  88. A. Nagarsekar, J. D. Hasday, and I. S. Singh, “CXC chemokines: a new family of heat-shock proteins?” Immunological Investigations, vol. 34, no. 3, pp. 381–398, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. I. S. Singh, A. Gupta, A. Nagarsekar et al., “Heat shock co-activates interleukin-8 transcription,” American Journal of Respiratory Cell and Molecular Biology, vol. 39, no. 2, pp. 235–242, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. P. Dyrda, T. Tazzeo, L. DoHarris et al., “Acute response of airway muscle to extreme temperature includes disruption of actin-myosin interaction,” American Journal of Respiratory Cell and Molecular Biology, vol. 44, no. 2, pp. 213–221, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. M. J. Caterina, M. A. Schumacher, M. Tominaga, T. A. Rosen, J. D. Levine, and D. Julius, “The capsaicin receptor: a heat-activated ion channel in the pain pathway,” Nature, vol. 389, no. 6653, pp. 816–824, 1997. View at Publisher · View at Google Scholar · View at Scopus
  92. M. J. Caterina, T. A. Rosen, M. Tominaga, A. J. Brake, and D. Julius, “A capsaicin-receptor homologue with a high threshold for noxious heat,” Nature, vol. 398, no. 6726, pp. 436–441, 1999. View at Publisher · View at Google Scholar · View at Scopus
  93. Y. Yamamoto, Y. Sato, and K. Taniguchi, “Distribution of TRPV1- and TRPV2-immunoreactive afferent nerve endings in rat trachea,” Journal of Anatomy, vol. 211, no. 6, pp. 775–783, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. P. J. Kennelly, M. A. Starovasnik, A. M. Edelman, and E. G. Krebs, “Modulation of the stability of rabbit skeletal muscle myosin light chain kinase through the calmodulin-binding domain,” Journal of Biological Chemistry, vol. 265, no. 3, pp. 1742–1749, 1990. View at Scopus
  95. N. G. Carroll, C. Cooke, and A. L. James, “Bronchial blood vessel dimensions in asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 155, no. 2, pp. 689–695, 1997. View at Scopus
  96. X. Li and J. W. Wilson, “Increased vascularity of the bronchial mucosa in mild asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 156, no. 1, pp. 229–233, 1997. View at Scopus
  97. B. J. Canning and D. Spina, “Sensory nerves and airway irritability,” Handbook of Experimental Pharmacology, vol. 194, pp. 139–183, 2009. View at Publisher · View at Google Scholar · View at Scopus