About this Journal Submit a Manuscript Table of Contents
Journal of Allergy
Volume 2012 (2012), Article ID 901940, 7 pages
http://dx.doi.org/10.1155/2012/901940
Review Article

Skin Barrier Function and Its Importance at the Start of the Atopic March

Section of Allergy, Immunology and Pulmonology, Department of Pediatrics, University of Nevada School of Medicine, Reno, NV 89503, USA

Received 9 June 2011; Revised 24 January 2012; Accepted 6 February 2012

Academic Editor: Jacqueline Pongracic

Copyright © 2012 Mary Beth Hogan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Kay, D. J. Gawkrodger, M. J. Mortimer, and A. G. Jaron, “The prevalence of childhood atopic eczema in a general population,” Journal of the American Academy of Dermatology, vol. 30, no. 1, pp. 35–39, 1994. View at Scopus
  2. M. H. Shamssain and N. Shamsian, “Prevalence and severity of asthma, rhinitis, and atopic eczema: the north east study,” Archives of Disease in Childhood, vol. 81, no. 4, pp. 313–317, 1999. View at Scopus
  3. D. J. Purvis, J. M. D. Thompson, P. M. Clark, et al., “Risk factors for atopic dermatitis in New Zealand children at 3.5 year of age,” British Journal of Dermatology, vol. 152, no. 4, pp. 742–749, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Laughter, J. A. Istvan, S. J. Tofte, and J. M. Hanifin, “The prevalence of atopic dermatitis in Oregon schoolchildren,” Journal of the American Academy of Dermatology, vol. 43, no. 4, pp. 649–655, 2000. View at Scopus
  5. J. M. Spergel, “Epidemiology of atopic dermatitis and atopic March in children,” Immunology and Allergy Clinics of North America, vol. 30, no. 3, pp. 269–280, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. T. R. Hata, P. Kotol, M. Boguniewicz, et al., “History of eczema herpeticum is associated with the inability to induce human β-defensin (HBD)-2, HBD-3 and cathelicidin in the skin of patients with atopic dermatitis,” British Journal of Dermatology, vol. 163, no. 3, pp. 659–661, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Gläser, U. Meyer-Hoffert, J. Harder, et al., “The antimicrobial protein psoriasin (S100A7) is upregulated in atopic dermatitis and after experimental skin barrier disruption,” Journal of Investigative Dermatology, vol. 129, no. 3, pp. 641–649, 2009.
  8. P. Y. Ong, T. Ohtake, C. Brandt, I. Strickland, et al., “Endogenous antimicrobial peptides and skin infections in atopic dermatitis,” The New England Journal of Medicine, vol. 347, no. 15, pp. 1151–1160, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. J. G. Marks Jr. and J. J. Miller, Lookingbill and Marks' Principles of Dermatology, Elsevier Health Sciences, Philadelphia, Pa, USA, 4th edition, 2006.
  10. A. De Benedetto, N. M. Rafaels, L. Y. McGirt, et al., “Tight junction defects in patients with atopic dermatitis,” Journal of Allergy and Clinical Immunology, vol. 127, no. 3, pp. 773–786, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. P. M. Elias, N. Matsuyoshi, H. Wu, et al., “Desmoglein isoform distribution affects stratum corneum structure and function,” Journal of Cell Biology, vol. 153, no. 2, pp. 243–249, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. L. M. Sevilla, R. Nachat, K. R. Groot, et al., “Mice deficient in involucrin, envoplakin, and periplakin have a defective epidermal barrier,” Journal of Cell Biology, vol. 179, no. 7, pp. 1599–1612, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Bonnart, C. Deraison, M. Lacroix, et al., “Elastase 2 is expressed in human and mouse epidermis and impairs skin barrier function in Netherton syndrome through filaggrin and lipid misprocessing,” Journal of Clinical Investigation, vol. 120, no. 3, pp. 871–882, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. Q. Liu, Y. Xia, W. Zhang, et al., “A functional polymorphism in the SPINK5 gene is associated with asthma in a Chinese Han Population,” BMC Medical Genetics, vol. 10, article 59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. S. K. Jeong, H. J. Kim, J. K. Youm, et al., “Mite and cockroach allergens activate protease-activated receptor 2 and delay epidermal permeability barrier recovery,” Journal of Investigative Dermatology, vol. 128, no. 8, pp. 1930–1939, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Roelandt, C. Heughebaert, and J. P. Hachem, “Proteolytically active allergens cause barrier breakdown,” Journal of Investigative Dermatology, vol. 128, no. 8, pp. 1878–1880, 2008. View at Publisher · View at Google Scholar
  17. F. Mascia, V. Mariani, A. Giannetti, G. Girolomoni, and S. Pastore, “House dust mite allergen exerts no direct proinflammatory effects on human keratinocytes,” Journal of Allergy and Clinical Immunology, vol. 109, no. 3, pp. 532–538, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Sandilands, G. M. O'Regan, H. Liao, et al., “Prevalent and rare mutations in the gene encoding filaggrin cause ichthyosis vulgaris and predispose individuals to atopic dermatitis,” Journal of Investigative Dermatology, vol. 126, no. 8, pp. 1770–1775, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. J. N. Barker, C. N. Palmer, Y. Zhao, et al., “Null mutations in the filaggrin gene (FLG) determine major susceptibility to early-onset atopic dermatitis that persists into adulthood,” Journal of Investigative Dermatology, vol. 127, no. 3, pp. 564–567, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. G. M. O'Regan and A. D. Irvine, “The role of filaggrin in the atopic diathesis,” Clinical and Experimental Allergy, vol. 40, no. 7, pp. 965–972, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. J. M. Jungersted, H. Scheer, M. Mempel, et al., “Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema,” Allergy, vol. 65, no. 7, pp. 911–918, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Baurecht, A. D. Irvine, N. Novak, et al., “Toward a major risk factor for atopic eczema: meta-analysis of filaggrin polymorphism data,” Journal of Allergy and Clinical Immunology, vol. 120, no. 6, pp. 1406–1412, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. C. N. Palmer, A. D. Irvine, A. Terron-Kwiatkowski, et al., “Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis,” Nature Genetics, vol. 38, no. 4, pp. 441–446, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Nomura, A. Sandilands, M. Akiyama, et al., “Unique mutations in the filaggrin gene in Japanese patients with ichthyosis vulgaris and atopic dermatitis,” Journal of Allergy and Clinical Immunology, vol. 119, no. 2, pp. 434–440, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Ruether, M. Stoll, T. T. Schwarz, S. Schreiber, and R. Folster-Holst, “Filaggrin loss-of-function variant contributes to atopic dermatitis risk in the population of Northern Germany,” British Journal of Dermatology, vol. 155, no. 5, pp. 1093–1094, 2006. View at Publisher · View at Google Scholar
  26. S. J. Brown, C. L. Relton, and H. Liao, “Filaggrin haploinsufficiency is highly penetrant and is associated with increased severity of eczema: further delineation of the skin phenotype in a prospective epidemiological study of 792 school children,” British Journal of Dermatology, vol. 161, no. 4, pp. 884–889, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. O. Macheleidt, H. W. Kaiser, and K. Sandhoff, “Deficiency of epidermal protein-bound ω-hydroxyceramides in atopic dermatitis,” Journal of Investigative Dermatology, vol. 119, no. 1, pp. 166–173, 2002. View at Publisher · View at Google Scholar
  28. J. S. Kang, W. K. Yoon, J. K. Youm, et al., “Inhibition of atopic dermatitis-like skin lesions by topical application of a novel ceramide derivative, K6PC-9p, in NC/Nga mice,” Experimental Dermatology, vol. 17, no. 11, pp. 958–964, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Chiba, A. Masuda, Y. Yoshikai, and T. Matsuguchi, “Ceramide inhibits LPS-induced production of IL-5, IL-10, and IL-13 from mast cells,” Journal of Cellular Physiology, vol. 213, no. 1, pp. 126–136, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Flohr, K. England, S. Radulovic, et al., “Filaggrin loss-of-function mutations are associated with early-onset eczema, eczema severity and transepidermal water loss at 3 months of age,” British Journal of Dermatology, vol. 163, no. 6, pp. 1333–1336, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Kezic, G. M. O'Regan, and N. Yau, “Levels of filaggrin degradation products are influenced by both filaggrin genotype and atopic dermatitis severity,” Allergy, vol. 66, no. 7, pp. 934–940, 2011. View at Publisher · View at Google Scholar
  32. I. Nemoto-Hasebe, M. Akiyama, T. Nomura, A. Sandilands, W. H. McLean, and H. Shimizu, “Clinical severity correlates with impaired barrier in filaggrin-related eczema,” Journal of Investigative Dermatology, vol. 129, no. 3, pp. 682–689, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. T. C. Scharschmidt, M. Q. Man, Y. Hatano, et al., “Filaggrin deficiency confers a paracellular barrier abnormality that reduces inflammatory thresholds to irritants and haptens,” Journal of Allergy and Clinical Immunology, vol. 124, no. 3, pp. 496–506, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Knor, A. Meholji-Fetahovic, and A. Mehmedagic, “Stratum corneum hydration and skin surface pH in patients with Atopic dermatitis,” Acta Dermatovenerologica Croatica, vol. 19, no. 4, pp. 242–247, 2011.
  35. M. Mildner, J. Jin, and L. Eckhart, “Knockdown of filaggrin impairs diffusion barrier function and increases UV sensitivity in a human skin model,” Journal of Investigative Dermatology, vol. 130, no. 9, pp. 2286–2294, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. J. M. Spergel and A. S. Paller, “Atopic dermatitis and the atopic march,” Journal of Allergy and Clinical Immunology, vol. 112, no. 6, pp. S118–S127, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Henderson, K. Northstone, S. P. Lee et al., “The burden of disease associated with filaggrin mutations: a population-based, longitudinal birth cohort study,” Journal of Allergy and Clinical Immunology, vol. 121, no. 4, pp. 872–877, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Ohshima, A. Yamada, M. Hiraoka et al., “Early sensitization to house dust mite is a major risk factor for subsequent development of bronchial asthma in Japanese infants with atopic dermatitis: results of a 4-year follow-up study,” Annals of Allergy, Asthma and Immunology, vol. 89, no. 3, pp. 265–270, 2002. View at Scopus
  39. R. van den Oord and A. Sheikh, “Filaggrin gene defects and risk of developing allergic sensitisation and allergic disorders: systematic review and meta-analysis,” BMJ, vol. 339, Article ID b2433, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. M. K. Oyoshi, G. F. Murphy, and R. S. Geha, “Filaggrin-deficient mice exhibit TH17-dominated skin inflammation and permissiveness to epicutaneous sensitization with protein antigen,” Journal of Allergy and Clinical Immunology, vol. 124, no. 3, pp. 485–493, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Osawa, M. Akiyama, and H. Shimizu, “Filaggrin gene defects and the risk of developing allergic disorders,” Allergology International, vol. 60, no. 1, pp. 1–9, 2011. View at Publisher · View at Google Scholar
  42. J. M. Spergel, “Epidemiology of atopic dermatitis and atopic March in children,” Immunology and Allergy Clinics of North America, vol. 30, no. 3, pp. 269–280, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. I. J. Wang, Y. T. Lin, Y. H. Yang et al., “Correlation between age and allergens in pediatric atopic dermatitis,” Annals of Allergy, Asthma and Immunology, vol. 93, no. 4, pp. 334–338, 2004. View at Scopus
  44. S. Michel, N. Yawalkar, B. Schnyder, B. Fischer, and A. Helbling, “Eczematous skin reaction to atopy patch testing with cockroach in patients with atopic dermatitis,” Journal of Investigational Allergology and Clinical Immunology, vol. 19, no. 3, pp. 173–179, 2009.
  45. M. T. Hedayati, A. Arabzadehmoghadam, and Z. Hajheydari, “Specific IgE against Alternaria alternata in atopic dermatitis and asthma patients,” European Review for Medical and Pharmacological Sciences, vol. 13, no. 3, pp. 187–191, 2009. View at Scopus
  46. S. Wananukul, P. Huiprasert, and P. Pongprasit, “Eczematous skin reaction from patch testing with aeroallergens in atopic children with and without atopic dermatitis,” Pediatric Dermatology, vol. 10, no. 3, pp. 209–213, 1993. View at Scopus
  47. A. J. Lowe, M. J. Abramson, C. S. Hosking et al., “The temporal sequence of allergic sensitization and onset of infantile eczema,” Clinical and Experimental Allergy, vol. 37, no. 4, pp. 536–542, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. T. G. Epstein, D. I. Bernstein, L. Levin et al., “Opposing effects of cat and dog ownership and allergic sensitization on eczema in an atopic birth cohort,” Journal of Pediatrics, vol. 158, no. 2, pp. 265–271, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. A. E. van der Hulst, H. Klip, and P. L. Brand, “Risk of developing asthma in young children with atopic eczema: a systematic review,” Journal of Allergy and Clinical Immunology, vol. 120, no. 3, pp. 565–569, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. N. D. Berg, L. L. Husemoen, B. H. Thuesen, et al., “Interaction between filaggrin null mutations and tobacco smoking in relation to asthma,” Journal of Allergy and Clinical Immunology, vol. 129, no. 2, pp. 374–380, 2012. View at Publisher · View at Google Scholar
  51. I. Marenholz, A. Bauerfeind, J Esparza-Gordillo, et al., “The eczema risk variant on chromosome 11q13 (rs7927894) in the population-based ALSPAC cohort: a novel susceptibility factor for asthma and hay fever,” Human Molecular Genetics, vol. 20, no. 12, pp. 2443–2449, 2011.
  52. J. A. Castro-Rodriguez, C. J. Holberg, A. L. Wright, and F. D. Martinez, “A clinical index to define risk of asthma in young children with recurrent wheezing,” American Journal of Respiratory and Critical Care Medicine, vol. 162, no. 4 I, pp. 1403–1406, 2000. View at Scopus
  53. J. I. Na, J. S. Hwang, H. J. Park, et al., “A new moisturizer containing physiologic lipid granules alleviates atopic dermatitis,” Journal of Dermatological Treatment, vol. 21, no. 1, pp. 23–27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. S. L. Chamlin, J. Kao, I. J. Frieden, et al., “Ceramide-dominant barrier repair lipids alleviate childhood atopic dermatitis: changes in barrier function provide a sensitive indicator of disease activity,” Journal of the American Academy of Dermatology, vol. 47, no. 2, pp. 198–208, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Y. Park, D. H. Kim, M. S. Jeong, K. Li, and S. J. Seo, “Changes of antimicrobial peptides and transepidermal water loss after topical application of tacrolimus and ceramide-dominant emollient in patients with atopic dermatitis,” Journal of Korean Medical Science, vol. 25, no. 5, pp. 766–771, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Bikowski, “The use of cleansers as therapeutic concomitants in various dermatologic disorders,” Cutis, vol. 68, no. 5, supplement, pp. 12–19, 2001. View at Scopus
  57. E. L. Simpson, T. M. Berry, P. A. Brown, and J. M. Hanifin, “A pilot study of emollient therapy for the primary prevention of atopic dermatitis,” Journal of the American Academy of Dermatology, vol. 63, no. 4, pp. 587–593, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Lodén, “Role of topical emollients and moisturizers in the treatment of dry skin barrier disorders,” American Journal of Clinical Dermatology, vol. 4, no. 11, pp. 771–788, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Hatano, M. Q. Man, Y. Uchida, et al., “Maintenance of an acidic stratum corneum prevents emergence of murine atopic dermatitis,” Journal of Investigative Dermatology, vol. 129, no. 7, pp. 1824–1835, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Thyssen, B. Carlsen, and H. Bisgaard, “Individuals who are homozygous for the 2282del4 and R501X filaggrin null mutations do not always develop dermatitis and complete long-term remission is possible,” Journal of the European Academy of Dermatology and Venereology, vol. 26, no. 3, pp. 386–389, 2012. View at Publisher · View at Google Scholar