About this Journal Submit a Manuscript Table of Contents
Journal of Allergy
Volume 2012 (2012), Article ID 936870, 8 pages
http://dx.doi.org/10.1155/2012/936870
Review Article

Dendritic Cells, Viruses, and the Development of Atopic Disease

Section of Allergy and Immunology, Department of Pediatrics, MACC Fund Research Center, Medical College of Wisconsin, Room 5064, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA

Received 14 June 2012; Accepted 17 September 2012

Academic Editor: Brian Oliver

Copyright © 2012 Jonathan S. Tam and Mitchell H. Grayson. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. I. Asher, S. Montefort, B. Björkstén et al., “Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys,” The Lancet, vol. 368, no. 9537, pp. 733–743, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. D. S. Cheung, S. J. Ehlenbach, T. Kitchens, D. A. Riley, and M. H. Grayson, “Development of atopy by severe paramyxoviral infection in a mouse model,” Annals of Allergy, Asthma & Immunology, vol. 105, no. 6, pp. 437.e1–443.e1, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Perelmutter, P. Phipps, and L. Potvin, “Viral infections and IgE levels,” Annals of Allergy, vol. 41, no. 3, pp. 158–159, 1978. View at Scopus
  4. L. Perelmutter, L. Potvin, and P. Phipps, “Immunoglobulin E response during viral infections,” The Journal of Allergy and Clinical Immunology, vol. 64, no. 2, pp. 127–130, 1979. View at Scopus
  5. R. C. Welliver, T. N. Kaul, and P. L. Ogra, “The appearance of cell-bound IgE in respiratory-tract epithelium after respiratory-syncytial-virus infection,” The New England Journal of Medicine, vol. 303, no. 21, pp. 1198–1202, 1980. View at Scopus
  6. R. C. Welliver, D. T. Wong, M. Sun, et al., “The development of respiratory syncytial virus-specific IgE and the release of histamine in nasopharyngeal secretions after infection,” The New England Journal of Medicine, vol. 305, no. 15, pp. 841–846, 1981. View at Scopus
  7. O. L. Frick, D. F. German, and J. Mills, “Development of allergy in children. I. Association with virus infections,” The Journal of Allergy and Clinical Immunology, vol. 63, no. 4, pp. 228–241, 1979. View at Scopus
  8. N. Sigurs, R. Bjarnason, F. Sigurbergsson, B. Kjellman, and B. Björksten, “Asthma and immunoglobulin E antibodies after respiratory syncytial virus bronchiolitis: a prospective cohort study with matched controls,” Pediatrics, vol. 95, no. 4, pp. 500–505, 1995. View at Scopus
  9. L. S. Subrata, J. Bizzintino, E. Mamessier et al., “Interactions between innate antiviral and atopic immunoinflammatory pathways precipitate and sustain asthma exacerbations in children,” The Journal of Immunology, vol. 183, no. 4, pp. 2793–2800, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. F. D. Martinez, A. L. Wright, L. M. Taussig et al., “Asthma and wheezing in the first six years of life,” The New England Journal of Medicine, vol. 332, no. 3, pp. 133–138, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. W. V. La Via, M. I. Marks, and H. R. Stutman, “Respiratory syncytial virus puzzle: clinical features, pathophysiology, treatment, and prevention,” The Journal of Pediatrics, vol. 121, no. 4, pp. 503–510, 1992. View at Publisher · View at Google Scholar · View at Scopus
  12. H. C. Meissner, “Reducing the impact of viral respiratory infections in children,” Pediatric Clinics of North America, vol. 52, no. 3, pp. 695–710, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Sigurs, R. Bjarnason, F. Sigurbergsson, and B. Kjellman, “Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 5, pp. 1501–1507, 2000. View at Scopus
  14. N. Sigurs, P. M. Gustafsson, R. Bjarnason et al., “Severe respiratory syncytial virus bronchiolitis in infancy and asthma and allergy at age 13,” American Journal of Respiratory and Critical Care Medicine, vol. 171, no. 2, pp. 137–141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Wu, W. D. Dupont, M. R. Griffin et al., “Evidence of a causal role of winter virus infection during infancy in early childhood asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 178, no. 11, pp. 1123–1129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. S. F. Thomsen, S. van der Sluis, L. G. Stensballe et al., “Exploring the association between severe respiratory syncytial virus infection and asthma: a registry-based twin study,” American Journal of Respiratory and Critical Care Medicine, vol. 179, no. 12, pp. 1091–1097, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Bufe, K. Gehlhar, E. Grage-Griebenow, and M. Ernst, “Atopic phenotype in children is associated with decreased virus-induced interferon-α release,” International Archives of Allergy and Immunology, vol. 127, no. 1, pp. 82–88, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Gehlhar, C. Bilitewski, K. Reinitz-Rademacher, G. Rohde, and A. Bufe, “Impaired virus-induced interferon-α2 release in adult asthmatic patients,” Clinical and Experimental Allergy, vol. 36, no. 3, pp. 331–337, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. M. A. Gill, G. Bajwa, T. A. George et al., “Counterregulation between the FcεRI pathway and antiviral responses in human plasmacytoid dendritic cells,” The Journal of Immunology, vol. 184, no. 11, pp. 5999–6006, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. E. A. F. Simoes, J. R. Groothuis, X. Carbonell-Estrany et al., “Palivizumab prophylaxis, respiratory syncytial virus, and subsequent recurrent wheezing,” The Journal of Pediatrics, vol. 151, no. 1, pp. 34.e1–42.e1, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. C.-H. Chen, Y.-T. Lin, Y.-H. Yang et al., “Ribavirin for respiratory syncytial virus bronchiolitis reduced the risk of asthma and allergen sensitization,” Pediatric Allergy and Immunology, vol. 19, no. 2, pp. 166–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. R. T. Stein, D. Sherrill, W. J. Morgan et al., “Respiratory syncytial virus in early life and risk of wheeze and allergy by age 13 years,” The Lancet, vol. 354, no. 9178, pp. 541–545, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. E. K. Miller, X. Lu, D. D. Erdman et al., “Rhinovirus-associated hospitalizations in young children,” Journal of Infectious Diseases, vol. 195, no. 6, pp. 773–781, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Jartti, P. Lehtinen, T. Vuorinen, and O. Ruuskanen, “Bronchiolitis: age and previous wheezing episodes are linked to viral etiology and atopic characteristics,” The Pediatric Infectious Disease Journal, vol. 28, no. 4, pp. 311–317, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. D. J. Jackson, M. D. Evans, R. E. Gangnon, C. J. Tisler, T. E. Pappas, W.-M. Lee, et al., “Evidence for a causal relationship between allergic sensitization and rhinovirus wheezing in early life,” American Journal of Respiratory and Critical Care Medicine, vol. 185, no. 3, pp. 281–285, 2012. View at Publisher · View at Google Scholar
  26. A. Kotaniemi-Syrjänen, R. Vainionpää, T. M. Reijonen, M. Waris, K. Korhonen, and M. Korppi, “Rhinovirus-induced wheezing in infancy—the first sign of childhood asthma?” The Journal of Allergy and Clinical Immunology, vol. 111, no. 1, pp. 66–71, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. K. N. Carroll, P. Wu, T. Gebretsadik et al., “Season of infant bronchiolitis and estimates of subsequent risk and burden of early childhood asthma,” The Journal of Allergy and Clinical Immunology, vol. 123, no. 4, pp. 964–966, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. R. F. Lemanske, “The childhood origins of asthma (COAST) study,” Pediatric Allergy and Immunology, vol. 13, supplement 15, pp. 38–43, 2002. View at Scopus
  29. R. F. Lemanske, D. J. Jackson, R. E. Gangnon et al., “Rhinovirus illnesses during infancy predict subsequent childhood wheezing,” The Journal of Allergy and Clinical Immunology, vol. 116, no. 3, pp. 571–577, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. D. J. Jackson, R. E. Gangnon, M. D. Evans et al., “Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children,” American Journal of Respiratory and Critical Care Medicine, vol. 178, no. 7, pp. 667–672, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. S. L. Friedlander, D. J. Jackson, R. E. Gangnon et al., “Viral infections, cytokine dysregulation and the origins of childhood asthma and allergic diseases,” The Pediatric Infectious Disease Journal, vol. 24, no. 11, pp. S170–S176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. M. M. H. Kusel, N. H. de Klerk, T. Kebadze et al., “Early-life respiratory viral infections, atopic sensitization, and risk of subsequent development of persistent asthma,” The Journal of Allergy and Clinical Immunology, vol. 119, no. 5, pp. 1105–1110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Kumar and M. H. Grayson, “The role of viruses in the development and exacerbation of atopic disease,” Annals of Allergy, Asthma & Immunology, vol. 103, no. 3, pp. 181–187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Cheung and M. Grayson, “Role of viruses in the development of atopic disease in pediatric patients,” Current Allergy and Asthma Reports. In press. View at Publisher · View at Google Scholar
  35. M. Colonna, G. Trinchieri, and Y.-J. Liu, “Plasmacytoid dendritic cells in immunity,” Nature Immunology, vol. 5, no. 12, pp. 1219–1226, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. W. Barchet, A. Blasius, M. Cella, and M. Colonna, “Plasmacytoid dendritic cells: in search of their niche in immune responses,” Immunologic Research, vol. 32, no. 1–3, pp. 75–83, 2005. View at Scopus
  37. M. Salio, M. J. Palmowski, A. Atzberger, I. F. Hermans, and V. Cerundolo, “CpG-matured murine plasmacytoid dendritic cells are capable of in vivo priming of functional CD8 T cell responses to endogenous but not exogenous antigens,” The Journal of Experimental Medicine, vol. 199, no. 4, pp. 567–579, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. J. C. Ochando, C. Homma, Y. Yang et al., “Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts,” Nature Immunology, vol. 7, no. 6, pp. 652–662, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Gilliet, W. Cao, and Y.-J. Liu, “Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases,” Nature Reviews Immunology, vol. 8, no. 8, pp. 594–606, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Irla, N. Küpfer, T. Suter et al., “MHC class II-restricted antigen presentation by plasmacytoid dendritic cells inhibits T cell-mediated autoimmunity,” The Journal of Experimental Medicine, vol. 207, no. 9, pp. 1891–1905, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Takagi, T. Fukaya, K. Eizumi, Y. Sato, K. Sato, A. Shibazaki, et al., “Plasmacytoid dendritic cells are crucial for the initiation of inflammation and T cell immunity in vivo,” Immunity, vol. 35, no. 6, pp. 958–971, 2011. View at Publisher · View at Google Scholar
  42. S. Hanabuchi and Y.-J Liu, “In vivo role of pDCs in regulating adaptive immunity,” Immunity, vol. 35, no. 6, pp. 851–853, 2011. View at Publisher · View at Google Scholar
  43. M. M. Meredith, K. Liu, G. Darrasse-Jeze, A. O. Kamphorst, H. A. Schreiber, P. Guermonprez, et al., “Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage,” The Journal of Experimental Medicine, vol. 209, no. 6, pp. 1153–1165, 2012. View at Publisher · View at Google Scholar
  44. A. T. Satpathy, K. C. Wumesh, J. C. Albring, B. T. Edelson, N. M. Kretzer, D. Bhattacharya, et al., “Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages,” The Journal of Experimental Medicine, vol. 209, no. 6, pp. 1135–1152, 2012. View at Publisher · View at Google Scholar
  45. T. V. Condon, R. T. Sawyer, M. J. Fenton, and D. W. H. Riches, “Lung dendritic cells at the innate-adaptive immune interface,” Journal of Leukocyte Biology, vol. 90, no. 5, pp. 883–895, 2011. View at Publisher · View at Google Scholar
  46. L. S. van Rijt, S. Jung, A. KleinJan et al., “In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma,” The Journal of Experimental Medicine, vol. 201, no. 6, pp. 981–991, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. S.-S. J. Sung, S. M. Fu, C. E. Rose, F. Gaskin, S.-T. Ju, and S. R. Beaty, “A major lung CD103 (αE)-β7 integrin-positive epithelial dendritic cell population expressing langerin and tight junction proteins,” The Journal of Immunology, vol. 176, no. 4, pp. 2161–2172, 2006. View at Scopus
  48. B. D. Medoff, E. Seung, S. Hong et al., “CD11b+ myeloid cells are the key mediators of Th2 cell homing into the airway in allergic inflammation,” The Journal of Immunology, vol. 182, no. 1, pp. 623–635, 2009. View at Scopus
  49. B. L. Kelsall, C. A. Biron, O. Sharma, and P. M. Kaye, “Dendritic cells at the host-pathogen interface,” Nature Immunology, vol. 3, no. 8, pp. 699–702, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Sertl, T. Takemura, E. Tschachler, et al., “Dendritic cells with antigen-presenting capability reside in airway epithelium, lung parenchyma, and visceral pleura,” The Journal of Experimental Medicine, vol. 163, no. 2, pp. 436–451, 1986. View at Scopus
  51. A. S. McWilliam, D. J. Nelson, and P. G. Holt, “The biology of airway dendritic cells,” Immunology and Cell Biology, vol. 73, no. 5, pp. 405–413, 1995. View at Scopus
  52. B. N. Lambrecht, B. Salomon, D. Klatzmann, and R. A. Pauwels, “Dendritic cells are required for the development of chronic eosinophilic airway inflammation in response to inhaled antigen in sensitized mice,” The Journal of Immunology, vol. 160, no. 8, pp. 4090–4097, 1998. View at Scopus
  53. P. G. Holt, “Pulmonary dendritic cells in local immunity to inert and pathogenic antigens in the respiratory tract,” Proceedings of the American Thoracic Society, vol. 2, no. 2, pp. 116–120, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. P. A. Stumbles, D. H. Strickland, C. L. Pimm et al., “Regulation of dendritic cell recruitment into resting and inflamed airway epithelium: use of alternative chemokine receptors as a function of inducing stimulus,” The Journal of Immunology, vol. 167, no. 1, pp. 228–234, 2001. View at Scopus
  55. P. G. Holt, S. Haining, D. J. Nelson, and J. D. Sedgwick, “Origin and steady-state turnover of class II MHC-bearing dendritic cells in the epithelium of the conducting airways,” The Journal of Immunology, vol. 153, no. 1, pp. 256–261, 1994. View at Scopus
  56. M. Ghaznawie, J. M. Papadimitriou, and P. J. Heenan, “The steady-state turnover of murine epidermal Langerhans cells,” British Journal of Dermatology, vol. 141, no. 1, pp. 57–61, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. I. Fugier-Vivier, C. Servet-Delprat, P. Rivailler, M.-C. Rissoan, Y.-J. Liu, and C. Rabourdin-Combe, “Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells,” The Journal of Experimental Medicine, vol. 186, no. 6, pp. 813–823, 1997. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Engelmayer, M. Larsson, M. Subklewe et al., “Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion,” The Journal of Immunology, vol. 163, no. 12, pp. 6762–6768, 1999. View at Scopus
  59. M. Salio, M. Cella, M. Suter, and A. Lanzavecchia, “Inhibition of dendritic cell maturation by herpes simplex virus,” European Journal of Immunology, vol. 29, no. 10, pp. 3245–3253, 1999.
  60. D. Tortorella, B. E. Gewurz, M. H. Furman, D. J. Schust, and H. L. Ploegh, “Viral subversion of the immune system,” Annual Review of Immunology, vol. 18, no. 1, pp. 861–926, 2000. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Cambi, F. de Lange, N. M. van Maarseveen et al., “Microdomains of the C-type lectin DC-SIGN are portals for virus entry into dendritic cells,” The Journal of Cell Biology, vol. 164, no. 1, pp. 145–155, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. J. F. Fonteneau, D. G. Kavanagh, M. Lirvall et al., “Characterization of the MHC class I cross-presentation pathway for cell-associated antigens by human dendritic cells,” Blood, vol. 102, no. 13, pp. 4448–4455, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. P. S. Ohashi and A. L. DeFranco, “Making and breaking tolerance,” Current Opinion in Immunology, vol. 14, no. 6, pp. 744–759, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. C. J. M. Melief, “Mini-review: regulation of cytotoxic T lymphocyte responses by dendritic cells: peaceful coexistence of cross-priming and direct priming?” European Journal of Immunology, vol. 33, no. 10, pp. 2645–2654, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. K. L. Legge and T. J. Braciale, “Accelerated migration of respiratory dendritic cells to the regional lymph nodes is limited to the early phase of pulmonary infection,” Immunity, vol. 18, no. 2, pp. 265–277, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. M. H. Grayson, M. S. Ramos, M. M. Rohlfing et al., “Controls for lung dendritic cell maturation and migration during respiratory viral infection,” The Journal of Immunology, vol. 179, no. 3, pp. 1438–1448, 2007. View at Scopus
  67. M. A. Gill, K. Long, T. Kwon et al., “Differential recruitment of dendritic cells and monocytes to respiratory mucosal sites in children with influenza virus or respiratory syncytial virus infection,” Journal of Infectious Diseases, vol. 198, no. 11, pp. 1667–1676, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. C. Asselin-Paturel, G. Brizard, J.-J. Pin, F. Brière, and G. Trinchieri, “Mouse Strain Differences in Plasmacytoid Dendritic Cell Frequency and Function Revealed by a Novel Monoclonal Antibody,” The Journal of Immunology, vol. 171, no. 12, pp. 6466–6477, 2003. View at Scopus
  69. H. Wang, N. Peters, V. Laza-Stanca, N. Nawroly, S. L. Johnston, and J. Schwarze, “Local CD11c+ MHC class II-precursors generate lung dendritic cells during respiratory viral infection, but are depleted in the process,” The Journal of Immunology, vol. 177, no. 4, pp. 2536–2542, 2006. View at Scopus
  70. A. L. Pritchard, M. L. Carroll, J. G. Burel, O. J. White, S. Phipps, and J. W. Upham, “Innate IFNs and plasmacytoid dendritic cells constrain Th2 cytokine responses to rhinovirus: a regulatory mechanism with relevance to asthma,” The Journal of Immunology, vol. 188, no. 12, pp. 5898–5905, 2012. View at Publisher · View at Google Scholar
  71. M. Sakamoto, S. Ida, and T. Takishima, “Effect of influenza virus infection on allergic sensitization to aerosolized ovalbumin in mice,” The Journal of Immunology, vol. 132, no. 5, pp. 2614–2617, 1984. View at Scopus
  72. S. Suzuki, Y. Suzuki, N. Yamamoto, Y. Matsumoto, A. Shirai, and T. Okubo, “Influenza A virus infection increases IgE production and airway responsiveness in aerosolized antigen-exposed mice,” The Journal of Allergy and Clinical Immunology, vol. 102, no. 5, pp. 732–740, 1998. View at Scopus
  73. N. Yamamoto, S. Suzuki, A. Shirai, M. Suzuki, M. Nakazawa, Y. Nagashima, et al., “Dendritic cells are associated with augmentation of antigen sensitization by influenza A virus infection in mice,” European Journal of Immunology, vol. 30, no. 1, pp. 316–326, 2000.
  74. J. Freihorst, P. A. Piedra, Y. Okamoto, and P. L. Ogra, “Effect of respiratory syncytial virus infection on the uptake of and immune response to other inhaled antigens,” Proceedings of the Society for Experimental Biology and Medicine, vol. 188, no. 2, pp. 191–197, 1988. View at Scopus
  75. E. Leibovitz, J. Freihorst, P. A. Piedra, and P. L. Ogra, “Modulation of systemic and mucosal immune responses to inhaled ragweed antigen in experimentally induced infection with respiratory syncytial virus implication in virally induced allergy,” International Archives of Allergy and Applied Immunology, vol. 86, no. 1, pp. 112–116, 1988. View at Scopus
  76. M. J. Walter, J. D. Morton, N. Kajiwara, E. Agapov, and M. J. Holtzman, “Viral induction of a chronic asthma phenotype and genetic segregation from the acute response,” The Journal of Clinical Investigation, vol. 110, no. 2, pp. 165–175, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. D. S. Cheung, S. J. Ehlenbach, R. T. Kitchens et al., “Cutting edge: CD49d+ neutrophils induce FcεRI expression on lung dendritic cells in a mouse model of postviral asthma,” The Journal of Immunology, vol. 185, no. 9, pp. 4983–4987, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. M. H. Grayson, D. Cheung, M. M. Rohlfing et al., “Induction of high-affinity IgE receptor on lung dendritic cells during viral infection leads to mucous cell metaplasia,” The Journal of Experimental Medicine, vol. 204, no. 11, pp. 2759–2769, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. R. Stephens and D. D. Chaplin, “IgE cross-linking or lipopolysaccharide treatment induces recruitment of Th2 cells to the lung in the absence of specific antigen,” The Journal of Immunology, vol. 169, no. 10, pp. 5468–5476, 2002. View at Scopus
  80. S. H. Khan and M. H. Grayson, “Cross-linking IgE augments human conventional dendritic cell production of CC chemokine ligand 28,” The Journal of Allergy and Clinical Immunology, vol. 125, no. 1–3, pp. 265–267, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Vasudev, D. S. Cheung, H. Pincsak, S.-H. Li, K. Yan, P. Simpson, et al., “Expression of high-affinity IgE receptor on human peripheral blood dendritic cells in children,” PLoS ONE, vol. 7, no. 2, Article ID e32556, 2012. View at Publisher · View at Google Scholar
  82. J. J. Smit, B. D. Rudd, and N. W. Lukacs, “Plasmacytoid dendritic cells inhibit pulmonary immunopathology and promote clearance of respiratory syncytial virus,” The Journal of Experimental Medicine, vol. 203, no. 5, pp. 1153–1159, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. A. Sykes, M. R. Edwards, J. Macintyre, A. del Rosario, E. Bakhsoliani, M.-B. Trujillo-Torralbo, et al., “Rhinovirus 16-induced IFN-α and IFN-β are deficient in bronchoalveolar lavage cells in asthmatic patients,” The Journal of Allergy and Clinical Immunology, vol. 129, no. 6, pp. 1506.e6–1514.e6, 2012. View at Publisher · View at Google Scholar
  84. J. R. Tversky, T. V. Le, A. P. Bieneman, K. L. Chichester, R. G. Hamilton, and J. T. Schroeder, “Human blood dendritic cells from allergic subjects have impaired capacity to produce interferon-α via toll-like receptor 9,” Clinical and Experimental Allergy, vol. 38, no. 5, pp. 781–788, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. J. T. Schroeder, A. P. Bieneman, H. Xiao et al., “TLR9- and FcεRI-mediated responses oppose one another in plasmacytoid dendritic cells by down-regulating receptor expression,” The Journal of Immunology, vol. 175, no. 9, pp. 5724–5731, 2005. View at Scopus
  86. S. R. Durrani, D. J. Montville, A. S. Pratt, S. Sahu, M. K. DeVries, V. Rajamanickam, et al., “Innate immune responses to rhinovirus are reduced by the high-affinity IgE receptor in allergic asthmatic children,” The Journal of Allergy and Clinical Immunology, vol. 130, no. 2, pp. 489–495, 2012. View at Publisher · View at Google Scholar