About this Journal Submit a Manuscript Table of Contents
Journal of Amino Acids
Volume 2012 (2012), Article ID 356081, 13 pages
http://dx.doi.org/10.1155/2012/356081
Review Article

Drosophila Answers to TDP-43 Proteinopathies

1Department of Life Sciences, University of Trieste, Via A. Valerio 28, 34127 Trieste, Italy
2International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy

Received 5 December 2011; Accepted 23 January 2012

Academic Editor: Yijuang Chern

Copyright © 2012 Maurizio Romano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Initially implicated in the pathogenesis of CFTR and HIV-1 transcription, nuclear factor TDP-43 was subsequently found to be involved in the origin and development of several neurodegenerative diseases. In 2006, in fact, it was reported for the first time the cytoplasmic accumulation of TDP-43 in ubiquitin-positive inclusions of ALS and FTLD patients, suggesting the presence of a shared underlying mechanism for these diseases. Today, different animal models of TDP-43 proteinopathies are available in rodents, nematodes, fishes, and flies. Although these models recapitulate several of the pathological features found in patients, the mechanisms underpinning the progressive neuronal loss observed in TDP-43 proteinopathies remain to be characterized. Compared to other models, Drosophila are appealing because they combine the presence of a sophisticated brain with the possibility to investigate quickly and massively phenotypic genetic modifiers as well as possible therapeutic strategies. At present, the development of TDP-43-related Drosophila models has further strengthened the hypothesis that both TDP-43 “loss-of-function” and “gain-of-function” mechanisms can contribute to disease. The aim of this paper is to describe and compare the results obtained in a series of transgenic and knockout flies, along with the information they have generated, towards a better understanding of the mechanisms underlying TDP-43 proteinopathies.