About this Journal Submit a Manuscript Table of Contents
Journal of Amino Acids
Volume 2012 (2012), Article ID 463183, 6 pages
http://dx.doi.org/10.1155/2012/463183
Research Article

Crystal Structure of L-Histidinium 2-Nitrobenzoate

1Department of Physics, Madurai Kamaraj University, Madurai 625 021, India
2Department of Physics, Sethu Institute of Technology, Pulloor, Kariapatti 626115, India
3Indian Institute of Chemical Technology, Hyderabad 500 007, India

Received 12 December 2011; Accepted 19 January 2012

Academic Editor: Andrei Malkov

Copyright © 2012 Subramanian Natarajan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Madhavan, S. Aruna, A. Anuradha et al., “Growth and characterization of a new nonlinear optical l-histidine acetate single crystals,” Optical Materials, vol. 29, no. 9, pp. 1211–1216, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. A. B. Ahmed, H. Feki, Y. Abid, H. Boughzala, and C. Minot, “Crystal studies, vibrational spectra and non-linear optical properties of l-histidine chloride monohydrate,” Spectrochimica Acta A, vol. 75, no. 1, pp. 293–298, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. D. Aggarwal, J. Choi, W. S. Wang et al., “Solution growth of a novel nonlinear optical material: L-histidine tetrafluoroborate,” Journal of Crystal Growth, vol. 204, no. 1, pp. 179–182, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Madhavan, S. Aruna, P. C. Thomas, M. Vimalan, S. A. Rajasekar, and P. Sagayaraj, “Growth and characterization of L-histidine hydrochloride monohydrate single crystals,” Crystal Research and Technology, vol. 42, no. 1, pp. 59–64, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Madhavan, S. Aruna, K. Prabha et al., “Growth and characterization of a novel NLO crystal l-histidine hydrofluoride dihydrate (LHHF),” Journal of Crystal Growth, vol. 293, no. 2, pp. 409–414, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. B. Ahmed, H. Feki, Y. Abid, H. Boughzala, and A. Mlayah, “Structural, vibrational and theoretical studies of l-histidine bromide,” Journal of Molecular Structure, vol. 888, no. 1-3, pp. 180–186, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Gokul Raj, G. Ramesh Kumar, R. Mohan, B. Varghese, and R. Jayavel, “Crystal structure of single crystals of nonlinear optical l-histidinium trichloroacetate,” Journal of Molecular Structure, vol. 825, no. 1–3, pp. 158–164, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. S. A. Martin Britto Dhas, J. Suresh, G. Bhagavannarayana, and S. Natarajan, “Growth and characterization of a new organic non-linear optical (NLO) material: L-histidinium trifluoroacetate,” The Open Crystallography Journal, vol. 1, pp. 46–50, 2008.
  9. S. A. Martin Britto Dhas and S. Natarajan, “Growth and characterization of two new NLO materials from the amino acid family: l-Histidine nitrate and l-Cysteine tartrate monohydrate,” Optics Communications, vol. 281, no. 3, pp. 457–462, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. G. M. Sheldrick, “A short history of SHELX,” Acta Crystallographica Section A, vol. 64, no. 1, pp. 112–122, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” Journal of Applied Physics, vol. 39, no. 8, pp. 3798–3813, 1968. View at Publisher · View at Google Scholar · View at Scopus
  12. M. T. Averbuch- Pouchot, “Crystal structure of l-histidinium phosphite and a structure reinvestigation of the monoclinic form of L-histidine,” Zeitschrift für Kristallographie, vol. 207, pp. 111–120, 1993.
  13. J. V. Pratap, R. Ravishankar, and M. Vijayan, “X-ray studies on crystalline complexes involving amino acids and peptides. XXXV. Invariance and variability in amino acid aggregation in the complexes of maleic acid with L-histidine and L-lysine,” Acta Crystallographica Section B, vol. 56, no. 4, pp. 690–696, 2000. View at Scopus
  14. N. T. Saraswathi and M. Vijayan, “X-ray studies on crystalline complexes involving amino acids and peptides. XXXIX. Crystal structures of malonic acid complexes of DL- and L-histidine. Preservation of aggregation pattern on reversal of chirality,” Acta Crystallographica Section B, vol. 58, no. 4, pp. 734–739, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. M. M. Prabu, H. G. Nagendra, S. Suresh, and M. Vijayan, “X-ray studies on crystalline complexes involving amino acids and peptides XXXI. Effect of chirality on ionization state, stoichiometry and aggregation in the complexes of oxalic acid with L-and DL-histidine,” Journal of Biomolecular Structure and Dynamics, vol. 14, no. 3, pp. 387–392, 1996. View at Scopus
  16. G. Portalone, “A redetermination of 2-nitro-benzoic acid,” Acta Crystallographica Section E, vol. 65, no. 5, pp. o954–o955, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. L. Oudar, “Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds,” The Journal of Chemical Physics, vol. 67, no. 2, pp. 446–457, 1977. View at Scopus
  18. J. Zyss and J. L. Oudar, “Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- or two-dimensional units,” Physical Review A, vol. 26, no. 4, pp. 2028–2048, 1982. View at Publisher · View at Google Scholar · View at Scopus
  19. J. M. Cole, J. A. K. Howard, and G. J. McIntyre, “Influence of hydrogen bonding on the second harmonic generation effect: neutron diffraction study of 4-nitro-4′-methylbenzylidene aniline,” Acta Crystallographica Section B, vol. 57, no. 3, pp. 410–414, 2001. View at Publisher · View at Google Scholar · View at Scopus