About this Journal Submit a Manuscript Table of Contents
Journal of Amino Acids
Volume 2012 (2012), Article ID 565404, 11 pages
http://dx.doi.org/10.1155/2012/565404
Review Article

On the Hydration State of Amino Acids and Their Derivatives at Different Ionization States: A Comparative Multinuclear NMR and Crystallographic Investigation

Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece

Received 15 December 2011; Accepted 8 March 2012

Academic Editor: Heather M. Wallace

Copyright © 2012 Charalampos G. Pappas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures, Springer, New York, NY, USA, 1991.
  2. I. P. Gerothanassis, “Multinuclear and multidimensional NMR methodology for studying individual water molecules bound to peptides and proteins in solution: principles and applications,” Progress in Nuclear Magnetic Resonance Spectroscopy, vol. 26, no. 3, pp. 171–237, 1994. View at Scopus
  3. G. D. Rose and R. Wolfenden, “Hydrogen bonding, hydrophobicity, packing, and protein folding,” Annual Review of Biophysics and Biomolecular Structure, vol. 22, pp. 381–415, 1993. View at Scopus
  4. Y. Levy and J. N. Onuchic, “Water mediation in protein folding and molecular recognition,” Annual Review of Biophysics and Biomolecular Structure, vol. 35, pp. 389–415, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Levy, J. Jortner, and O. M. Becker, “Solvent effects on the energy landscapes and folding kinetics of polyalanine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 5, pp. 2188–2193, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. J. C. Covalt, M. Roy, and P. A. Jennings, “Core and surface mutations affect folding kinetics, stability and cooperativity in IL-1β: does alteration in buried water play a role?” Journal of Molecular Biology, vol. 307, no. 2, pp. 657–669, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. M. S. Cheung, A. E. García, and J. N. Onuchic, “Protein folding mediated by solvation: water expulsion and formation of the hydrophobic core occur after the structural collapse,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 2, pp. 685–690, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Van Haverbeke, R. N. Muller, and L. Vander Elst, “pH-induced motional and conformational changes of amino acids. A reexamination by deuterium longitudinal nuclear relaxation,” Journal of Physical Chemistry, vol. 88, no. 21, pp. 4978–4980, 1984. View at Scopus
  9. A. Spisni, E. D. Gotsis, and D. Fiat, “17O NMR investigation of the hydration of L-Alanine and L-Proline in water/Me2SO mixtures,” Biochemical and Biophysical Research Communications, vol. 135, no. 2, pp. 363–366, 1986. View at Scopus
  10. J. Lauterwein, I. P. Gerothanassis, R. N. Hunston, and M. Schumacher, “17O NMR relaxation times of the protein amino acids in aqueous solution. Estimation of the relative hydration numbers in the cationic, anionic, and zwitterionic forms,” Journal of Physical Chemistry, vol. 95, no. 9, pp. 3804–3811, 1991. View at Scopus
  11. A. N. Troganis, C. Tsanaktsidis, and I. P. Gerothanassis, “14N NMR relaxation times of several protein amino acids in aqueous solution—comparison with 17O NMR data and estimation of the relative hydration numbers in the cationic and zwitterionic forms,” Journal of Magnetic Resonance, vol. 164, no. 2, pp. 294–303, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. I. P. Gerothanassis, “Oxygen-17 NMR spectroscopy: basic principles and applications (part II),” Progress in Nuclear Magnetic Resonance Spectroscopy, vol. 57, no. 1, pp. 1–110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. I. P. Gerothanassis, “Oxygen-17 NMR spectroscopy: basic principles and applications (Part I),” Progress in Nuclear Magnetic Resonance Spectroscopy, vol. 56, no. 2, pp. 95–197, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. L. Hollenberg and J. B. Ifft, “Hydration numbers by near-infrared spectrophotometry. 1. Amino acids,” Journal of Physical Chemistry, vol. 86, no. 11, pp. 1938–1941, 1982. View at Scopus
  15. B. Hernández, F. Pflüger, M. Nsangou, and M. Ghomi, “Vibrational analysis of amino acids and short peptides in hydrated media. IV. amino acids with hydrophobic side chains: L-Alanine, L-Valine, and L-Isoleucine,” Journal of Physical Chemistry B, vol. 113, no. 10, pp. 3169–3178, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. R. M. Balabin, “The first step in glycine solvation: the glycine-water complex,” Journal of Physical Chemistry B, vol. 114, no. 46, pp. 15075–15078, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. J. Locke and R. T. McIver, “Effect of solvation on the acid/base properties of glycine,” Journal of the American Chemical Society, vol. 105, no. 13, pp. 4226–4232, 1983. View at Scopus
  18. J. L. Alonso, E. J. Cocinero, A. Lesarri, M. E. Sanz, and J. C. López, “The glycine-water complex,” Angewandte Chemie—International Edition, vol. 45, no. 21, pp. 3471–3474, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Fiat, T. E. St Amour, M. I. Burgar, A. Steinschneider, B. Valentine, and D. Dhawan, “17O nuclear magnetic resonance and its biological applications,” The Bulletin of Magnetic Resonance, vol. 1, p. 18, 1980.
  20. J. G. Pearson and E. Oldfield, “17O NMR: applications in biochemistr,” in Encyclopedia of Nuclear Magnetic Resonance, D. M. Grant and R. K. Harris, Eds., pp. 3440–3443, John Wiley & Sons, 1995.
  21. D. W. Boykin, 17O NMR Spectroscopy in Organic Chemistry, CRC Press, Boston, Mass, USA, 1991.
  22. S. Berger, S. Braun, and H. O. Kalinowski, NMR Spectroscopy of Non-Metallic Elements, John Wiley & Sons, Chichester, UK, 1997.
  23. J. Lauterwein, I. P. Gerothanassis, and R. N. Hunston, “17O NMR of enriched acetic-acid, glycine, glutamic-acid and aspartic-acid in aqueous-solution.1. Chemical-shift studies,” Helvetica Chimica Acta, vol. 65, no. 6, pp. 1764–1773, 1982.
  24. J. Lauterwein, I. P. Gerothanassis, and R. N. Hunston, “17O NMR of enriched acetic-acid, glycine, glutamic-acid and aspartic-acid in aqueous-solution.2. Relaxation studies,” Helvetica Chimica Acta, vol. 65, no. 6, pp. 1774–1784, 1982.
  25. A. Steinschneider, M. I. Burgar, A. Buku, and D. Fiat, “Labeling of amino acids and peptides with isotopic oxygen as followed by 17O NMR,” International Journal of Peptide and Protein Research, vol. 18, no. 3, pp. 324–333, 1981. View at Scopus
  26. B. Valentine, T. S. Amour, R. Walter, and D. Fiat, “pH dependence of oxygen-17 chemical shifts and linewidths of l-alanine and glycine,” Journal of Magnetic Resonance, vol. 38, no. 3, pp. 413–418, 1980. View at Scopus
  27. G. W. Kabalka and N. M. Goudgaon, “17O enrichment methods,” in 17O NMR Spectroscopy in Organic Chemistry, D. W. Boykin, Ed., chapter 2, pp. 21–37, CRC Press, Boston, Mass, USA, 1991.
  28. T. Karayannis, I. P. Gerothanassis, M. Sakarellos-Daitsiotis, C. Sakarellos, and M. Marraud, “17O- and 14N-nmr studies of leu-enkephalin and enkephalin-related fragments in aqueous solution,” Biopolymers, vol. 29, no. 2, pp. 423–439, 1990. View at Scopus
  29. J. Reuben, “Hydrogen-bonding effects on oxygen-17 chemical shifts,” Journal of the American Chemical Society, vol. 91, no. 21, pp. 5725–5729, 1969. View at Scopus
  30. J. Tritt Goc and D. Fiat, “Determination of dynamic parameters in amino-acids from 17O NMR line-width measurements,” Magnetic Resonance in Chemistry, vol. 29, no. 2, pp. 156–163, 1991.
  31. D. E. Woessner, “Nuclear magnetic dipole-dipole relaxation in molecules with internal motion,” The Journal of Chemical Physics, vol. 42, no. 6, pp. 1855–1859, 1965. View at Scopus
  32. P. G. Takis, V. S. Melissas, and A. N. Troganis, private communication, 2011.
  33. C. H. Gorbitz, “Hydrogen-bond distances and angles in the structures of amino-acids and peptides,” Acta Crystallogrica B, vol. 45, pp. 390–395, 1989.
  34. E. Arunan, G. R. Desiraju, R. A. Klein et al., “Defining the hydrogen bond: an account (IUPAC Technical Report),” Pure and Applied Chemistry, vol. 83, no. 8, pp. 1619–1636, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. C. B. Aakeröy and K. R. Seddon, “The hydrogen bond and crystal engineering,” Chemical Society Reviews, vol. 22, no. 6, pp. 397–407, 1993. View at Scopus
  36. T. Steiner, “The hydrogen bond in the solid state,” Angewandte Chemie—International Edition, vol. 41, no. 1, pp. 49–76, 2002.
  37. R. Taylor, O. Kennard, and W. Versichel, “Geometry of the NHO=C hydrogen bond. 2. Three-center (“bifurcated”) and four-center ((“trifurcated”) bonds,” Journal of the American Chemical Society, vol. 106, no. 1, pp. 244–248, 1984. View at Scopus
  38. L. Infantes and W. D. S. Motherwell, “Hydrogen bond competition between chemical groups: new methodology and the Cambridge Structural Database,” Zeitschrift fur Kristallographie, vol. 220, no. 4, pp. 333–339, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Taylor, O. Kennard, and W. Versichel, “The geometry of the NHO=C hydrogen-bond .3. Hydrogen-bond distances and angles,” Acta Crystallographica B, vol. 40, pp. 280–288, 1984.
  40. G. N. J. Port and A. Pullman, “Quantum-mechanical studies of environmental effects on biomolecules. III. Ab-initio model studies of hydration of peptides and proteins,” International Journal of Quantum Chemistry, vol. 8, supplement 1, pp. 21–32, 1974.
  41. G. A. Jeffrey and H. Maluszynska, “The stereochemistry of the water molecules in the hydrates of small biological molecules,” Acta Crystallographica. Section B, vol. 46, part 4, pp. 546–549, 1990. View at Publisher · View at Google Scholar · View at Scopus
  42. C. H. Görbitz and M. C. Etter, “Hydrogen bonds to carboxylate groups. Syn/anti distributions and steric effects,” Journal of the American Chemical Society, vol. 114, no. 2, pp. 627–631, 1992. View at Scopus
  43. T. F. Koetzle and M. S. Lehmann, “The hydrogen bond—recent developments,” in Theory and Experiments, P. Schuster, G. Zundel, and C. Sandorfy, Eds., chapter 2, pp. 457–469, North Holland, Amsterdam, The Netherlands, 1976.
  44. S. Xu, J. M. Nilles, and K. H. Bowen, “Zwitterion formation in hydrated amino acid, dipole bound anions: how many water molecules are required?” The Journal of Chemical Physics, vol. 119, no. 20, pp. 10696–10701, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Tiwari, P. C. Mishra, and S. Suhai, “Solvent effect of aqueous media on properties of glycine: significance of specific and bulk solvent effects, and geometry optimization in aqueous media,” International Journal of Quantum Chemistry, vol. 108, no. 5, pp. 1004–1016, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. S. M. Bachrach, “Microsolvation of glycine: a DFT study,” Journal of Physical Chemistry A, vol. 112, no. 16, pp. 3722–3730, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. A. E. García and J. N. Onuchic, “Folding a protein in a computer: an atomic description of the folding/unfolding of protein A,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 2, pp. 13898–13903, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. A. C. De Dios, “Ab initio calculations of the NMR chemical shift,” Progress in Nuclear Magnetic Resonance Spectroscopy, vol. 29, no. 3-4, pp. 229–278, 1996. View at Publisher · View at Google Scholar · View at Scopus
  49. R. A. Klein, B. Mennucci, and J. Tomasi, “Ab initio calculations of 17O NMR-chemical shifts for water. The limits of PCM theory and the role of hydrogen-bond geometry and cooperativity,” Journal of Physical Chemistry A, vol. 108, no. 27, pp. 5851–5863, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Klamt, B. Mennucci, J. Tomasi et al., “On the performance of continuum solvation methods. A comment on “Universal Approaches to Solvation Modeling”,” Accounts of Chemical Research, vol. 42, no. 4, pp. 489–492, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. V. G. Malkin, O. L. Malkina, G. Steinebrunner, and H. Huber, “Solvent effect on the NMR chemical shieldings in water calculated by a combination of molecular dynamics and density functional theory,” Chemistry, vol. 2, pp. 452–457, 1996.
  52. G. Wu, “Solid-state 17O NMR studies of organic and biological molecules,” Progress in Nuclear Magnetic Resonance Spectroscopy, vol. 52, no. 2-3, pp. 118–169, 2008. View at Publisher · View at Google Scholar · View at Scopus