About this Journal Submit a Manuscript Table of Contents
Journal of Amino Acids
Volume 2012 (2012), Article ID 575180, 16 pages
http://dx.doi.org/10.1155/2012/575180
Research Article

Elucidation of the Rotavirus NSP4-Caveolin-1 and -Cholesterol Interactions Using Synthetic Peptides

1Department of Veterinary Pathobiology, Texas A&M University, TVMC, College Station, TX 77843-4467, USA
2Molecular Diagnostics Texas Veterinary Medical Diagnostic Laboratory, College Station, TX 77843, USA
3Department of Pharmacology and Physiology, Texas A&M University, TVMC, College Station, TX 77843-4467, USA
4Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Diggs 056, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA

Received 8 July 2011; Accepted 16 November 2011

Academic Editor: Jordi Bella

Copyright © 2012 Megan E. Schroeder et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. K. Fischer, C. Viboud, U. Parashar et al., “Hospitalizations and deaths from diarrhea and rotavirus among children <5 years of age in the United States, 1993–2003,” Journal of Infectious Diseases, vol. 195, no. 8, pp. 1117–1125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. U. D. Parashar, J. P. Alexander, and R. I. Glass, “Prevention of rotavirus gastroenteritis among infants and children. Recommendations of the Advisory Committee on Immunization Practices (ACIP),” MMWR, vol. 55, no. RR12, pp. 1–13, 2006. View at Scopus
  3. J. M. Ball, P. Tian, C. Q. Y. Zeng, A. P. Morris, and M. K. Estes, “Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein,” Science, vol. 272, no. 5258, pp. 101–104, 1996. View at Scopus
  4. Y. Dong, C. Q. Y. Zeng, J. M. Ball, M. K. Estes, and A. P. Morris, “The rotavirus enterotoxin NSP4 mobilizes intracellular calcium in human intestinal cells by stimulating phospholipase C-mediated inositol 1,4,5-trisphosphate production,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 8, pp. 3960–3965, 1997. View at Scopus
  5. A. P. Morris, J. K. Scott, J. M. Ball, C. Q.-Y. Zeng, W. K. O'Neal, and M. K. Estes, “NSP4 elicits age-dependent diarrhea and Ca2+-mediated I- influx into intestinal crypts of CF mice,” American Journal of Physiology, vol. 277, pp. G431–G444, 1999.
  6. P. Tian, M. K. Estes, Y. Hu, J. M. Ball, C. Q. Y. Zeng, and W. P. Schilling, “The rotavirus nonstructural glycoprotein NSP4 mobilizes Ca2+ from the endoplasmic reticulum,” Journal of Virology, vol. 69, no. 9, pp. 5763–5772, 1995. View at Scopus
  7. C. C. Bergmann, D. Maass, M. S. Poruchynsky, P. H. Atkinson, and A. R. Bellamy, “Topology of the non-structural rotavirus receptor glycoprotein NS28 in the rough endoplasmic reticulum,” The EMBO Journal, vol. 8, no. 6, pp. 1695–1703, 1989. View at Scopus
  8. K. S. Au, E. Mavoungou, and M. K. Estes, “A subviral particle binding domain on the rotavirus nonstructural glycoprotein NSP28,” Virology, vol. 194, pp. 165–173, 1993.
  9. J. A. Boshuizen, J. W. A. Rossen, C. K. Sitaram et al., “Rotavirus enterotoxin NSP4 binds to the extracellular matrix proteins laminin-β3 and fibronectin,” Journal of Virology, vol. 78, no. 18, pp. 10045–10053, 2004. View at Publisher · View at Google Scholar
  10. J. A. O'Briek, J. A. Taylor, and A. R. Bellamy, “Probing the structure of rotavirus NSP4: a short sequence at the extreme C terminus mediates binding to the inner capsid particle,” Journal of Virology, vol. 74, no. 11, pp. 5388–5394, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. N. S. Seo, C. Q. Y. Zeng, J. M. Hyser et al., “Integrins α1β1 and α2β1 are receptors for the rotavirus enterotoxin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 26, pp. 8811–8818, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Xu, A. R. Bellamy, and J. A. Taylor, “Immobilization of the early secretory pathway by a virus glycoprotein that binds to microtubules,” The EMBO Journal, vol. 19, no. 23, pp. 6465–6474, 2000. View at Scopus
  13. G. D. Bowman, I. M. Nodelman, O. Levy et al., “Crystal structure of the oligomerization domain of NSP4 from rotavirus reveals a core metal-binding site,” Journal of Molecular Biology, vol. 304, no. 5, pp. 861–871, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. J. M. Ball, R. D. Parr, and C. E. Schutt, “Genetic, structural and functional analyses of rotavirus NSP4,” in Structure and Molecular Biology of Segmented Double-Standed RNA Viruses, N. A. Patton, Ed., pp. 307–332, Horizon Scientific Press, 2008.
  15. J. A. Taylor, J. A. O'Brien, and M. Yeager, “The cytoplasmic tail of NSP4, the endoplasmic reticulum-localized non-structural glycoprotein of rotavirus, contains distinct virus binding and coiled coil domains,” The EMBO Journal, vol. 15, no. 17, pp. 4469–4476, 1996. View at Scopus
  16. L. Liu, J. Abramowitz, A. Askari, and J. C. Allen, “Role of caveolae in ouabain-induced proliferation of cultured vascular smooth muscle cells of the synthetic phenotype,” American Journal of Physiology, vol. 287, no. 5, pp. H2173–H2182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. S. A. Vishwanathan, A. Thomas, R. Brasseur, R. F. Epand, E. Hunter, and R. M. Epand, “Hydrophobic substitutions in the first residue of the CRAC segment of the gp41 protein of HIV,” Biochemistry, vol. 47, no. 1, pp. 124–130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Murata, J. Peränen, R. Schreiner, F. Wieland, T. V. Kurzchalia, and K. Simons, “VIP21/caveolin is a cholesterol-binding protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 22, pp. 10339–10343, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. R. M. Epand, “Cholesterol and the interaction of proteins with membrane domains,” Progress in Lipid Research, vol. 45, no. 4, pp. 279–294, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Vincent, C. Genin, and E. Malvoisin, “Identification of a conserved domain of the HIV-1 transmembrane protein gp41 which interacts with cholesteryl groups,” Biochimica et Biophysica Acta, vol. 1567, pp. 157–164, 2002. View at Publisher · View at Google Scholar
  21. C. Schroeder, H. Heider, E. Möncke-Buchner, and T. I. Lin, “The influenza virus ion channel and maturation cofactor M2 is a cholesterol-binding protein,” European Biophysics Journal, vol. 34, no. 1, pp. 52–66, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Asano and A. Asano, “Binding of cholesterol and inhibitory peptide derivatives with the fusogenic hydrophobic sequence of F-glycoprotein of HVJ (Sendai virus): possible implication in the fusion reaction,” Biochemistry, vol. 27, no. 4, pp. 1321–1329, 1988. View at Scopus
  23. R. D. Parr, S. M. Storey, D. M. Mitchell et al., “The rotavirus enterotoxin NSP4 directly interacts with the caveolar structural protein caveolin-1,” Journal of Virology, vol. 80, no. 6, pp. 2842–2854, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. K. D. Mir, R. D. Parr, F. Schroeder, and J. M. Ball, “Rotavirus NSP4 interacts with both the amino- and carboxyl-termini of caveolin-1,” Virus Research, vol. 126, no. 1-2, pp. 106–115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. J. M. Ball, D. M. Mitchell, T. F. Gibbons, and R. D. Parr, “Rotavirus NSP4: a multifunctional viral enterotoxin,” Viral Immunology, vol. 18, no. 1, pp. 27–40, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Isshiki and R. G. W. Anderson, “Calcium signal transduction from caveolae,” Cell Calcium, vol. 26, no. 5, pp. 201–208, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Isshiki and R. G. W. Anderson, “Function of caveolae in Ca2+ entry and Ca2+ -dependent signal transduction,” Traffic, vol. 4, no. 11, pp. 717–723, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Ikonen, “Cellular cholesterol trafficking and compartmentalization,” Nature Reviews Molecular Cell Biology, vol. 9, no. 2, pp. 125–138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Ikonen and R. G. Parton, “Caveolins and cellular cholesterol balance,” Traffic, vol. 1, no. 3, pp. 212–217, 2000. View at Scopus
  30. E. J. Smart, Y. S. Ying, W. C. Donzell, and R. G. W. Anderson, “A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane,” Journal of Biological Chemistry, vol. 271, no. 46, pp. 29427–29435, 1996. View at Publisher · View at Google Scholar · View at Scopus
  31. R. G. Parton, M. Hanzal-Bayer, and J. F. Hancock, “Biogenesis of caveolae: a structural model for caveolin-induced domain formation,” Journal of Cell Science, vol. 119, no. 5, pp. 787–796, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Huang, F. Schroeder, M. K. Estes, T. McPherson, and J. M. Ball, “Interaction(s) of rotavirus non-structural protein 4 (NSP4) C-terminal peptides with model membranes,” Biochemical Journal, vol. 380, no. 3, pp. 723–733, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Huang, F. Schroeder, C. Zeng, M. K. Estes, J. K. Schoer, and J. M. Ball, “Membrane interactions of a novel viral enterotoxin: rotavirus nonstructural glycoprotein NSP4,” Biochemistry, vol. 40, no. 13, pp. 4169–4180, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. S. M. Storey, T. F. Gibbons, C. V. Williams, R. D. Parr, F. Schroeder, and J. M. Ball, “Full-length, glycosylated NSP4 is localized to plasma membrane caveolae by a novel raft isolation technique,” Journal of Virology, vol. 81, no. 11, pp. 5472–5483, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. T. F. Gibbons, Rotavirus NSP4 in extrareticular sites: support for its pathogenic role as an enterotoxin, Ph.D. thesis in Veterinary Pathobiology, Texas A&M University, College Station, 2007.
  36. T. F. Gibbons, S. M. Storey, C. V. Williams, M. Schroeder, F. Schroeder, and J. M. Ball, “278–297 full-length, fully-glycosylated rotavirus NSP4 is exposed on the plasma membrane exofacial surface and released from rotavirus-infected cells,” Virology Journal, vol. 8, pp. 278–297, 2011.
  37. R. Axén, J. Porath, and S. Ernback, “Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides,” Nature, vol. 214, no. 5095, pp. 1302–1304, 1967. View at Publisher · View at Google Scholar · View at Scopus
  38. D. M. A. Mitchell and J. M. Ball, “Characterization of a spontaneously polarizing HT-29 cell line, HT-29/cl.f8,” In Vitro Cellular & Developmental Biology, vol. 40, pp. 297–302, 2005.
  39. P. A. Conrad, E. J. Smart, Y. S. Ying, R. G. W. Anderson, and G. S. Bloom, “Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps,” Journal of Cell Biology, vol. 131, no. 6, pp. 1421–1433, 1995. View at Publisher · View at Google Scholar · View at Scopus
  40. P. A. Orlandi and P. H. Fishman, “Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains,” Journal of Cell Biology, vol. 141, no. 4, pp. 905–915, 1998. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Silva, A. Coutinho, A. Fedorov, and M. Prieto, “Competitive binding of cholesterol and ergosterol to the polyene antibiotic nystatin: a fluorescence study,” Biophysical Journal, vol. 90, no. 10, pp. 3625–3631, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. J. E. Schnitzer, P. Oh, E. Pinney, and J. Allard, “Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules,” Journal of Cell Biology, vol. 127, no. 5, pp. 1217–1232, 1994. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. H. Chen, J. T. Yang, and K. H. Chau, “Determination of the helix and β form of proteins in aqueous solution by circular dichroism,” Biochemistry, vol. 13, no. 16, pp. 3350–3359, 1974. View at Scopus
  44. L. Campbell, A. J. Hollins, A. Al-Eid, G. R. Newman, C. Von Ruhland, and M. Gumbleton, “Caveolin-1 expression and caveolae biogenesis during cell transdifferentiation in lung alveolar epithelial primary cultures,” Biochemical and Biophysical Research Communications, vol. 262, no. 3, pp. 744–751, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. A. W. Alberts, “Discovery, biochemistry and biology of lovastatin,” The American Journal of Cardiology, vol. 62, no. 15, pp. 10J–15J, 1988. View at Scopus
  46. F. Schroeder, A. Frolov, J. Schoer et al., “Intracellular cholesterol binding proteins, cholesterol transport, and membrane domains,” in Intracellular Cholesterol Trafficking, D. Freeman and T. Y. Chang, Eds., pp. 213–234, Kluwer Academic Publishers, Boston, Mass, USA, 1998.
  47. C. F. Arias, M. A. Dector, L. Segovia et al., “RNA silencing of rotavirus gene expression,” Virus Research, vol. 102, no. 1, pp. 43–51, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Cheng, A. Montero, P. Gastaminza et al., “A virocidal amphipathic α-helical peptide that inhibits hepatitis C virus infection in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 8, pp. 3088–3093, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. J. M. Ball, N. L. Henry, R. C. Montelaro, and M. J. Newman, “A versatile synthetic peptide-based ELISA for identifying antibody epitopes,” Journal of Immunological Methods, vol. 171, no. 1, pp. 37–44, 1994. View at Publisher · View at Google Scholar · View at Scopus
  50. D. W. Brighty and S. R. Jassal, “The synthetic peptide P-197 inhibits human T-cell leukemia virus type 1 envelope-mediated syncytium formation by a mechanism that is independent of Hsc70,” Journal of Virology, vol. 75, no. 21, pp. 10472–10478, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. I. Fernandez, Y. Ying, J. Albanesi, and R. G. W. Anderson, “Mechanism of caveolin filament assembly,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 17, pp. 11193–11198, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Spisni, V. Tomasi, A. Cestaro, and S. C. Tosatto, “Structural insignts into the function of human caveolin 1,” Biochemical and Biophysical Research Communications, vol. 338, pp. 1383–1390, 2005.
  53. M. Sargiacomo, P. E. Scherer, Z. Tang et al., “Oligomeric structure of caveolin: implications for caveolae membrane organization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 20, pp. 9407–9411, 1995. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Couet, S. Li, T. Okamoto, T. Ikezu, and M. P. Lisanti, “Identification of peptide and protein ligands for the caveolin- scaffolding domain: implications for the interaction of caveolin with caveolae-associated proteins,” Journal of Biological Chemistry, vol. 272, no. 10, pp. 6525–6533, 1997. View at Publisher · View at Google Scholar · View at Scopus
  55. R. G. W. Anderson, “The caveolae membrane system,” Annual Review of Biochemistry, vol. 67, pp. 199–225, 1998. View at Publisher · View at Google Scholar · View at Scopus
  56. R. G. W. Anderson and K. Jacobson, “Cell biology: a role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains,” Science, vol. 296, no. 5574, pp. 1821–1825, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Li, J. Couet, and M. P. Lisanti, “Src tyrosine kinases, G(α) subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin: caveolin binding negatively regulates the auto-activation of Src tyrosine kinases,” Journal of Biological Chemistry, vol. 271, no. 46, pp. 29182–29190, 1996. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Li, T. Okamoto, M. Chun et al., “Evidence for a regulated interaction between heterotrimeric G proteins and caveolin,” Journal of Biological Chemistry, vol. 270, no. 26, pp. 15693–15701, 1995. View at Publisher · View at Google Scholar · View at Scopus
  59. M. C. Ruiz, J. Cohen, and F. Michelangeli, “Role of Ca2+ in the replication and pathogenesis of rotavirus and other viral infections,” Cell Calcium, vol. 28, no. 3, pp. 137–149, 2000. View at Publisher · View at Google Scholar · View at Scopus
  60. M. C. Ruiz, Y. Díaz, F. Peña, O. C. Aristimuño, M. E. Chemello, and F. Michelangeli, “Ca2+ permeability of the plasma membrane induced by rotavirus infection in cultured cells is inhibited by tunicamycin and brefeldin A,” Virology, vol. 333, no. 1, pp. 54–65, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Zhang, C. Q. Y. Zeng, A. P. Morris, and M. K. Estes, “A functional NSP4 enterotoxin peptide secreted from rotavirus-infected cells,” Journal of Virology, vol. 74, no. 24, pp. 11663–11670, 2000. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Bugarcic and J. A. Taylor, “Rotavirus nonstructural glycoprotein NSP4 is secreted from the apical surfaces of polarized epithelial cells,” Journal of Virology, vol. 80, no. 24, pp. 12343–12349, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. F. J. Field, E. Born, S. Murthy, and S. N. Mathur, “Caveolin is present in intestinal cells: role in cholesterol trafficking?” Journal of Lipid Research, vol. 39, no. 10, pp. 1938–1950, 1998. View at Scopus
  64. M. J. Robenek, K. Schlattmann, K.-P. Zimmer, G. Plenz, D. Troyer, and H. Robenek, “Cholesterol transporter caveolin-1 transits the lipid bilayer during intracellular cycling,” The FASEB Journal, vol. 17, pp. 1940–1942, 2003.
  65. S. Martin and R. G. Parton, “Caveolin, cholesterol, and lipid bodies,” Seminars in Cell and Developmental Biology, vol. 16, no. 2, pp. 163–174, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. R. G. Parton, “Caveolae and caveolins,” Current Opinion in Cell Biology, vol. 8, no. 4, pp. 542–548, 1996. View at Publisher · View at Google Scholar · View at Scopus
  67. C. Sapin, O. Colard, O. Delmas et al., “Rafts promote assembly and atypical targeting of a nonenveloped virus, rotavirus, in Caco-2 cells,” Journal of Virology, vol. 76, no. 9, pp. 4591–4602, 2002. View at Publisher · View at Google Scholar · View at Scopus