About this Journal Submit a Manuscript Table of Contents
Journal of Amino Acids
Volume 2012 (2012), Article ID 967347, 13 pages
http://dx.doi.org/10.1155/2012/967347
Review Article

Cancer Treatment Using Peptides: Current Therapies and Future Prospects

American Peptide Company Inc., Sunnyvale, CA 94086, USA

Received 30 October 2012; Accepted 7 December 2012

Academic Editor: Michele Caraglia

Copyright © 2012 Jyothi Thundimadathil. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. “Global cancer facts & figures,” 2nd edition, American Cancer Society, http://www.cancer.org/.
  3. B. Vogelstein and K. W. Kinzler, “Cancer genes and the pathways they control,” Nature Medicine, vol. 10, no. 8, pp. 789–799, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Folkman, “Angiogenesis in cancer, vascular, rheumatoid and other disease,” Nature Medicine, vol. 1, no. 1, pp. 27–31, 1995. View at Scopus
  5. D. Kakde, D. Jain, V. Shrivastava, R. Kakde, and A. T. Patil, “Cancer therapeutics—opportunities, challenges and advances in drug delivery,” Journal of Applied Pharmaceutical Science, vol. 1, no. 9, pp. 1–10, 2011.
  6. J. Enbäck and P. Laakkonen, “Tumour-homing peptides: tools for targeting, imaging and destruction,” Biochemical Society Transactions, vol. 35, no. 4, pp. 780–783, 2007. View at Scopus
  7. R. T. Dorsam and J. S. Gutkind, “G-protein-coupled receptors and cancer,” Nature Reviews Cancer, vol. 7, no. 2, pp. 79–94, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. O. H. Aina, T. C. Sroka, M. L. Chen, and K. S. Lam, “Therapeutic cancer targeting peptides,” Biopolymers, vol. 66, no. 3, pp. 184–199, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Meng, L. Yang, X. Zhao, L. Zhang, H. Zhu, et al., “Targeted delivery of chemotherapy agents using a liver cancer-specific aptamer,” PLoS One, vol. 7, no. 4, Article ID e33434, 2012. View at Publisher · View at Google Scholar
  10. X. X. Zhang, H. S. Eden, and X. Chen, “Peptides in cancer nanomedicine: drug carriers, targeting ligands and protease substrates,” Journal of Controlled Release, vol. 159, pp. 2–13, 2012. View at Publisher · View at Google Scholar
  11. P. Vlieghe, V. Lisowski, J. Martinez, and M. Khrestchatisky, “Synthetic therapeutic peptides: science and market,” Drug Discovery Today, vol. 15, no. 1-2, pp. 40–56, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Q. Qiu, H. Wang, B. Cai, L. L. Wang, and S. T. Yue, “Small antibody mimetics comprising two complementarity-determining regions and a framework region for tumor targeting,” Nature Biotechnology, vol. 25, no. 8, pp. 921–929, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. T. M. Allen, “Ligand-targeted therapeutics in anticancer therapy,” Nature Reviews Cancer, vol. 2, pp. 750–763, 2002. View at Publisher · View at Google Scholar
  14. I. Pastan, R. Hassan, D. J. Fitzgerald, and R. J. Kreitman, “Immunotoxin therapy of cancer,” Nature Reviews Cancer, vol. 6, pp. 559–565, 2006. View at Publisher · View at Google Scholar
  15. P. E. Thorpe, “Vascular targeting agents as cancer therapeutics,” Cancer Research, vol. 10, pp. 415–427, 2004. View at Publisher · View at Google Scholar
  16. T. Mori, “Cancer-specific ligands identified from screening of peptide-display libraries,” Current Pharmaceutical Design, vol. 10, no. 19, pp. 2335–2343, 2004.
  17. M. E. Reff, K. Hariharan, and G. Braslawsky, “Future of monoclonal antibodies in the treatment of hematologic malignancies,” Cancer Control, vol. 9, no. 2, pp. 152–166, 2002. View at Scopus
  18. A. M. Thayer, “Improving peptides,” Chemical and Engineering News, vol. 89, pp. 13–20, 2011.
  19. C. Borghouts, C. Kunz, and B. Groner, “Current strategies for the development of peptide-based anti-cancer therapeutics,” Journal of Peptide Science, vol. 11, no. 11, pp. 713–726, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. Peptide Therapeutics Foundation, “Development trends for peptide therapeutics,” Tech. Rep., San Diego, Calif, USA, 2010.
  21. J. Adams and M. Kauffman, “Development of the proteasome inhibitor Velcade (Bortezomib),” Cancer Investigation, vol. 22, no. 2, pp. 304–311, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. P. A. Meyers, C. L. Schwartz, M. Krailo et al., “Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate,” Journal of Clinical Oncology, vol. 23, no. 9, pp. 2004–2011, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. W. R. Miller, W. N. Scott, and R. Morris, “Growth of human breast cancer cells inhibited by a luteinizing hormone-releasing hormone agonist,” Nature, vol. 313, no. 5999, pp. 231–233, 1985. View at Scopus
  24. A. V. Schally, A. M. Comaru-Schally, A. Plonowski, A. Nagy, G. Halmos, and Z. Rekasi, “Peptide analogues in the therapy of prostate cancer,” Prostate, vol. 5, no. 2, pp. 158–166, 2000.
  25. E. D. Crawford, “Hormonal therapy in prostate cancer: historical approaches,” Reviews in Urology, vol. 6, no. 7, pp. S3–S11, 2004.
  26. J. B. Engel and A. V. Schally, “Drug insight: clinical use of agonists and antagonists of luteinizing-hormone-releasing hormone,” Nature Clinical Practice Endocrinology and Metabolism, vol. 3, no. 2, pp. 157–167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. P. C. Sogani and W. R. Fair, “Treatment of advanced prostatic cancer,” Urologic Clinics of North America, vol. 14, no. 2, pp. 353–371, 1987. View at Scopus
  28. M. Wirth and M. Froehner, “A review of studies of hormonal adjuvant therapy in prostate cancer,” European Urology, vol. 36, no. 2, pp. 14–19, 1999. View at Scopus
  29. T. H. Lee, Y. H. Lin, K. M. Seow, J. L. Hwang, C. R. Tzeng, and Y. S. Yang, “Effectiveness of cetrorelix for the prevention of premature luteinizing hormone surge during controlled ovarian stimulation using letrozole and gonadotropins: a randomized trial,” Fertility and Sterility, vol. 90, no. 1, pp. 113–120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Debruyne, G. Bhat, and M. B. Garnick, “Abarelix for injectable suspension: first-in-class gonadotropin-releasing hormone antagonist for prostate cancer,” Future Oncology, vol. 2, no. 6, pp. 677–696, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Broqua, P. J. M. Riviere, P. Michael Conn, J. E. Rivier, M. L. Aubert, and J. L. Junien, “Pharmacological profile of a new, potent, and long-acting gonadotropin-releasing hormone antagonist: Degarelix,” Journal of Pharmacology and Experimental Therapeutics, vol. 301, no. 1, pp. 95–102, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Z. Strowski and A. D. Blake, “Function and expression of somatostatin receptors of the endocrine pancreas,” Molecular and Cellular Endocrinology, vol. 286, no. 1-2, pp. 169–179, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Saltz, B. Trochanowski, M. Buckley et al., “Octreotide as an antineoplastic agent in the treatment of functional and nonfunctional neuroendocrine tumors,” Cancer, vol. 72, no. 1, pp. 244–248, 1993. View at Scopus
  34. S. Faiss, U. F. Pape, M. Böhmig et al., “Prospective, randomized, multicenter trial on the antiproliferative effect of lanreotide, interferon alfa, and their combination for therapy of metastatic neuroendocrine gastroenteropancreatic tumors—the International Lanreotide and Interferon Alfa Study Group,” Journal of Clinical Oncology, vol. 21, no. 14, pp. 2689–2696, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Hoyer, G. I. Bell, M. Berelowitz et al., “Classification and nomenclature of somatostatin receptors,” Trends in Pharmacological Sciences, vol. 16, no. 3, pp. 86–88, 1995. View at Publisher · View at Google Scholar · View at Scopus
  36. V. Rufini, M. L. Calcagni, and R. P. Baum, “Imaging of neuroendocrine tumors,” Seminars in Nuclear Medicine, vol. 36, no. 3, pp. 228–247, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. I. Virgolini, T. Traub, C. Novotny et al., “Experience with Indium-111 and Yttrium-90-labeled somatostatin analogs,” Current Pharmaceutical Design, vol. 8, no. 20, pp. 1781–1807, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. D. L. Bushnell, Y. Menda, M. T. Madsen et al., “99mTc-depreotide tumour uptake in patients with non-Hodgkin's lymphoma,” Nuclear Medicine Communications, vol. 25, no. 8, pp. 839–843, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Kwekkeboom, E. P. Krenning, and M. de Jong, “Peptide receptor imaging and therapy,” Journal of Nuclear Medicine, vol. 41, pp. 1704–1713, 2000.
  40. E. P. Krenning, M. de Jong, P. P. Kooij, et al., “Radiolabelled somatostatin analogue(s) for peptide receptor scintigraphy and radionuclide therapy,” Annals of Oncology, vol. 10, no. 2, pp. 23–29, 1999.
  41. D. J. Kwekkeboom, J. J. Teunissen, W. H. Bakker et al., “Radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors,” Journal of Clinical Oncology, vol. 23, no. 12, pp. 2754–2762, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Pauwels, R. Barone, S. Walrand et al., “Practical dosimetry of peptide receptor radionuclide therapy with 90Y-labeled somatostatin analogs,” Journal of Nuclear Medicine, vol. 46, no. 1, pp. S92–S98, 2005. View at Scopus
  43. J. P. Esser, E. P. Krenning, J. J. M. Teunissen et al., “Comparison of [177Lu-DOTA0,Tyr3]octreotate and [177Lu-DOTA0,Tyr3]octreotide: ehich peptide is preferable for PRRT?” European Journal of Nuclear Medicine and Molecular Imaging, vol. 33, no. 11, pp. 1346–1351, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Otte, E. Jermann, M. Behe, et al., “DOTATOC: a powerful new tool for receptormediated radionuclide therapy,” European Journal of Nuclear Medicine, vol. 24, pp. 792–795, 1997.
  45. M. De Jong, R. Valkema, F. Jamar et al., “Somatostatin receptor-targeted radionuclide therapy of tumors: preclinical and clinical findings,” Seminars in Nuclear Medicine, vol. 32, no. 2, pp. 133–140, 2002. View at Scopus
  46. G. Nicolas, G. Giovacchini, J. Müller-Brand, and F. Forrer, “Targeted radiotherapy with radiolabeled somatostatin analogs,” Endocrinology and Metabolism Clinics of North America, vol. 40, no. 1, pp. 187–204, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Grozinsky-Glasberg, I. Shimon, M. Korbonits, and A. B. Grossman, “Somatostatin analogues in the control of neuroendocrine tumours: efficacy and mechanisms,” Endocrine-Related Cancer, vol. 15, no. 3, pp. 701–720, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Wild, H. R. Mäcke, B. Waser et al., “68Ga-DOTANOC: a first compound for PET imaging with high affinity for somatostatin receptor subtypes 2 and 5,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 32, no. 6, p. 724, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. D. J. Kwekkeboom, W. W. De Herder, B. L. Kam et al., “Treatment with the radiolabeled somatostatin analog [177Lu- DOTA0,Tyr3]octreotate: toxicity, efficacy, and survival,” Journal of Clinical Oncology, vol. 26, no. 13, pp. 2124–2130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Van Essen, E. P. Krenning, P. P. Kooij et al., “Effects of therapy with [177Lu-DOTA0, Tyr 3]octreotate in patients with paraganglioma, meningioma, small cell lung carcinoma, and melanoma,” Journal of Nuclear Medicine, vol. 47, no. 10, pp. 1599–1606, 2006. View at Scopus
  51. R. P. Baum, V. Prasad, M. Hommann, and D. Hörsch, “Receptor PET/CT imaging of neuroendocrine tumors,” Cancer Research, vol. 170, pp. 225–242, 2008. View at Scopus
  52. I. Buchmann, M. Henze, S. Engelbrecht et al., “Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 10, pp. 1617–1626, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Van De Wiele, P. Phonteyne, P. Pauwels et al., “Gastrin-releasing peptide receptor imaging in human breast carcinoma versus immunohistochemistry,” Journal of Nuclear Medicine, vol. 49, no. 2, pp. 260–264, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Zhang, J. Chen, C. Waldherr et al., “Synthesis and evaluation of bombesin derivatives on the basis of pan-bombesin peptides labeled with Indium-111, Lutetium-177, and Yttrium-90 for targeting bombesin receptor-expressing tumors,” Cancer Research, vol. 64, no. 18, pp. 6707–6715, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Ginj, H. Zhang, B. Waser, et al., “Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors,” Proceedings of the National Academy of Sciences, vol. 103, pp. 16436–16441, 2006.
  56. D. Wild, M. Fani, M. Behe, I. Brink, J. E. Rivier, J. C. Reubi, et al., “First clinical evidence that imaging with somatostatin receptor antagonists is feasible,” Journal of Nuclear Medicine, vol. 52, pp. 1412–14217, 2011. View at Publisher · View at Google Scholar
  57. R. A. Henderson, S. Mossman, N. Nairn, and M. A. Cheever, “Cancer vaccines and immunotherapies: emerging perspectives,” Vaccine, vol. 23, pp. 2359–2362, 2005. View at Publisher · View at Google Scholar
  58. J. A. Berzoksky, J. D. Ahlers, and I. M. Belyakov, “Strategies for designing and optimizing new generation vaccines,” Nature, vol. 1, pp. 209–219, 2001.
  59. M. Hareuveni, C. Gautier, M. P. Kieny, D. Wreschner, P. Chambon, and R. Lathe, “Vaccination against tumor cells expressing breast cancer epithelial tumor antigen,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 23, pp. 9498–9502, 1990. View at Publisher · View at Google Scholar · View at Scopus
  60. P. G. Coulie, T. Hanagiri, and M. Takenoyama, “From tumor antigens to immunotherapy,” International Journal of Clinical Oncology, vol. 6, no. 4, pp. 163–170, 2001. View at Scopus
  61. L. Eisenbach, E. Bar-Haim, and K. El-Shami, “Antitumor vaccination using peptide based vaccines,” Immunology Letters, vol. 74, no. 1, pp. 27–34, 2000. View at Publisher · View at Google Scholar · View at Scopus
  62. G. Parmiani, C. Castelli, P. Dalerba et al., “Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going?” Journal of the National Cancer Institute, vol. 94, no. 11, pp. 805–818, 2002. View at Scopus
  63. A. Beck, C. Klinguer-Hamour, M. C. Bussat et al., “Peptides as tools and drugs for immunotherapies,” Journal of Peptide Science, vol. 13, no. 9, pp. 588–602, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. G. F. Gao and B. K. Jakobsen, “Molecular interactions of coreceptor CD8 and MHC class I: the molecular basis for functional coordination with the T-cell receptor,” Immunology Today, vol. 21, no. 12, pp. 630–636, 2000. View at Publisher · View at Google Scholar · View at Scopus
  65. H. I. Cho and E. Celis, “Optimized peptide vaccines eliciting extensive CD8 T-cell responses with therapeutic antitumor effects,” Cancer Research, vol. 69, no. 23, pp. 9012–9019, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. V. Apanius, D. Penn, P. R. Slev, L. R. Ruff, and W. K. Potts, “The nature of selection on the major histocompatibility complex,” Critical Reviews in Immunology, vol. 17, no. 2, pp. 179–224, 1997. View at Scopus
  67. M. Oshima, P. Deitiker, T. Ashizawa, and M. Z. Atassi, “Vaccination with a MHC class II peptide attenuates cellular and humoral responses against tAChR and suppresses clinical EAMG,” Autoimmunity, vol. 35, no. 3, pp. 183–190, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Banchereau, A. K. Palucka, M. Dhodapkar et al., “Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine,” Cancer Research, vol. 61, no. 17, pp. 6451–6458, 2001.
  69. K. L. Knutson, K. Schiffman, and M. L. Disis, “Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients,” Journal of Clinical Investigation, vol. 107, no. 4, pp. 477–484, 2001. View at Scopus
  70. K. Sole, “HER-2/neu peptide vaccine for the prevention of prostate cancer recurrence,” Nature Reviews Urology, vol. 3, p. 6, 2006.
  71. M. T. Hueman, Z. A. Dehqanzada, T. E. Novak et al., “Phase I clinical trial of a HER-2/neu peptide (E75) vaccine for the prevention of prostate-specific antigen recurrence in high-risk prostate cancer patients,” Clinical Cancer Research, vol. 11, no. 20, pp. 7470–7479, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. R. K. Ramanathan, K. M. Lee, J. McKolanis et al., “Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer,” Cancer Immunology, Immunotherapy, vol. 54, no. 3, pp. 254–264, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Yamamoto, T. Ueno, T. Kawaoka et al., “MUC1 peptide vaccination in patients with advanced pancreas or biliary tract cancer,” Anticancer Research, vol. 25, no. 5, pp. 3575–3579, 2005. View at Scopus
  74. Y. Ma, Z. H. Zhu, D. R. Situ, Y. Hu, T. H. Rong, and J. Wang, “Expression and prognostic relevance of tumor carcino-embryonic antigen in stage IB non-small cell lung cancer,” Journal of Thoracic Disease, vol. 4, no. 5, pp. 490–496, 2012.
  75. M. Grunnet and J. B. Sorensen, “Carcinoembryonic antigen (CEA) as tumor marker in lung cancer,” Lung Cancer, vol. 76, no. 2, pp. 138–143, 2012. View at Publisher · View at Google Scholar
  76. J. S. Weber, N. J. Vogelzang, M. S. Ernstoff et al., “A phase 1 study of a vaccine targeting preferentially expressed antigen in melanoma and prostate-specific membrane antigen in patients with advanced solid tumors,” Journal of Immunotherapy, vol. 34, no. 7, pp. 556–567, 2011. View at Publisher · View at Google Scholar
  77. S. Garetto, F. Sizzano, D. Brusa, A. Tizzani, F. Malavasi, and L. Matera, “Binding of prostate-specific membrane antigen to dendritic cells: a critical step in vaccine preparation,” Cytotherapy, vol. 11, no. 8, pp. 1090–1100, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. N. H. Akhtar, O. Pail, A. Saran, L. Tyrell, and S. T. Tagawa, “Prostate-specific membrane antigen-based therapeutics,” Advances in Urology, vol. 2012, Article ID 973820, 9 pages, 2012. View at Publisher · View at Google Scholar
  79. L. Muderspach, S. Wilczynski, L. Roman et al., “A phase I trial of a human papillomavirus (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive,” Clinical Cancer Research, vol. 6, no. 9, pp. 3406–3416, 2000. View at Scopus
  80. S. N. Khleif, S. I. Abrams, J. M. Hamilton et al., “A phase I vaccine trial with peptides reflecting ras oncogene mutations of solid tumors,” Journal of Immunotherapy, vol. 22, no. 2, pp. 155–165, 1999. View at Scopus
  81. M. K. Gjertsen and G. Gaudernack, “Mutated ras peptides as vaccines in immunotherapy of cancer,” Vox Sanguinis, vol. 74, no. 2, pp. 489–495, 1998. View at Scopus
  82. S. I. Abrams, P. H. Hand, K. Y. Tsang, and J. Schlom, “Mutant ras epitopes as targets for cancer vaccines,” Seminars in Oncology, vol. 23, no. 1, pp. 118–134, 1996. View at Scopus
  83. H. L. Kaufman, “Vaccines for melanoma and renal cell carcinoma,” Seminars in Oncology, vol. 39, no. 3, pp. 263–275, 2012.
  84. S. Markowicz, Z. I. Nowecki, P. Rutkowski, et al., “Adjuvant vaccination with melanoma antigen-pulsed dendritic cells in stage III melanoma patients,” Medical Oncology, vol. 29, pp. 2966–2977, 2012.
  85. J. C. Yang, “Melanoma vaccines,” Cancer Journal, vol. 17, no. 5, pp. 277–282, 2011.
  86. P. Nava-Parada and L. A. Emens, “GV-1001, an injectable telomerase peptide vaccine for the treatment of solid cancers,” Current Opinion in Molecular Therapeutics, vol. 9, no. 5, pp. 490–497, 2007. View at Scopus
  87. M. Gotthardt, M. P. Béhé, J. Grass et al., “Added value of gastrin receptor scintigraphy in comparison to somatostatin receptor scintigraphy in patients with carcinoids and other neuroendocrine tumours,” Endocrine-Related Cancer, vol. 13, no. 4, pp. 1203–1211, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. J. C. Reubi, “Targeting CCK receptors in human cancers,” Current Topics in Medicinal Chemistry, vol. 7, pp. 1239–1242, 2007.
  89. A. V. Schally and A. Nagy, “Cancer chemotherapy based on targeting of cytotoxic peptide conjugates to their receptors on tumors,” European Journal of Endocrinology, vol. 141, no. 1, pp. 1–14, 1999. View at Publisher · View at Google Scholar · View at Scopus
  90. A. V. Schally and A. Nagy, “Chemotherapy targeted to cancers through tumoral hormone receptors,” Trends in Endocrinology and Metabolism, vol. 15, no. 7, pp. 300–310, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. A. V. Schally, J. B. Engel, G. Emons, N. L. Block, and J. Pinski, “Use of analogs of peptide hormones conjugated to cytotoxic radicals for chemotherapy targeted to receptors on tumors,” Current Drug Delivery, vol. 8, no. 1, pp. 11–25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. G. Emons, S. Tomov, P. Harter et al., “Phase II study of AEZS-108 (AN-152), a targeted cytotoxic LHRH analog, in patients with LHRH receptor-positive platinum resistant ovarian cancer,” Journal of Clinical Oncology, vol. 28, no. 15, 2010.
  93. J. C. Reubi, “Peptide receptors as molecular targets for cancer diagnosis and therapy,” Endocrine Reviews, vol. 24, no. 4, pp. 389–427, 2003. View at Publisher · View at Google Scholar
  94. K. Szepeshazi, A. V. Schally, G. Halmos et al., “Targeting of cytotoxic somatostatin analog AN-238 to somatostatin receptor subtypes 5 and/or 3 in experimental pancreatic cancers,” Clinical Cancer Research, vol. 7, no. 9, pp. 2854–2861, 2001. View at Scopus
  95. S. Zitzmann, V. Ehemann, and M. Schwab, “Arginine-glycine-aspartic acid (RGD)-peptide binds to both tumor and tumor-endothelial cells in vivo,” Cancer Research, vol. 62, no. 18, pp. 5139–5143, 2002. View at Scopus
  96. K. Temminga, R. M. Schiffelers, G. Molemad, and R. J. Kok, “RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature,” Drug Resistance Updates, vol. 8, pp. 381–402, 2005. View at Publisher · View at Google Scholar
  97. P. Laakkonen and K. Vuorinen, “Homing peptides as targeted delivery vehicles,” Integrative Biology, vol. 2, no. 7-8, pp. 326–337, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. M. A. Burg, R. Pasqualini, W. Arap, E. Ruoslahti, and W. B. Stallcup, “NG2 proteoglycan-binding peptides target tumor neovasculature,” Cancer Research, vol. 59, no. 12, pp. 2869–2874, 1999. View at Scopus
  99. K. Porkka, P. Laakkonen, J. A. Hoffman, M. Bernasconi, and E. Ruoslahti, “A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 11, pp. 7444–7449, 2002. View at Publisher · View at Google Scholar · View at Scopus
  100. L. Zhang, E. Giraudo, J. A. Hoffman, D. Hanahan, and E. Ruoslahti, “Lymphatic zip codes in premalignant lesions and tumors,” Cancer Research, vol. 66, no. 11, pp. 5696–5706, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. P. Laakkonen, K. Porkka, J. A. Hoffman, and E. Ruoslahti, “A tumor-homing peptide with a targeting specificity related to lymphatic vessels,” Nature Medicine, vol. 8, no. 7, pp. 751–755, 2002. View at Publisher · View at Google Scholar · View at Scopus
  102. K. M. Wagstaff and D. A. Jans, “Protein transduction: cell penetrating peptides and their therapeutic applications,” Current Medicinal Chemistry, vol. 13, no. 12, pp. 1371–1387, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. K. Chen and X. Chen, “Integrin targeted delivery of chemotherapeutics,” Theranostics, vol. 1, pp. 189–200, 2011.
  104. E. Garanger, D. Boturyn, and P. Dumy, “Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy of cancers,” Anti-Cancer Agents in Medicinal Chemistry, vol. 7, no. 5, pp. 552–558, 2007. View at Scopus
  105. A. Sacchi, A. Gasparri, C. Gallo-Stampino, S. Toma, F. Curnis, and A. Corti, “Synergistic antitumor activity of cisplatin, paclitaxel, and gemcitabine with tumor vasculature-targeted tumor necrosis factor-α,” Clinical Cancer Research, vol. 12, no. 1, pp. 175–182, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Targeting of drugs and nanoparticles to tumors,” Journal of Cell Biology, vol. 188, no. 6, pp. 759–768, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. E. B. Dickerson, N. Akhtar, H. Steinberg et al., “Enhancement of the antiangiogenic activity of interleukin-12 by peptide targeted delivery of the cytokine to αvβ3 integrin,” Molecular Cancer Research, vol. 2, no. 12, pp. 663–673, 2004. View at Scopus
  108. V. Gregorc, A. Santoro, E. Bennicelli et al., “Phase Ib study of NGR-hTNF, a selective vascular targeting agent, administered at low doses in combination with doxorubicin to patients with advanced solid tumours,” British Journal of Cancer, vol. 101, no. 2, pp. 219–224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. V. Gregorc, F. G. De Braud, T. M. De Pas et al., “Phase I study of NGR-hTNF, a selective vascular targeting agent, in combination with cisplatin in refractory solid tumors,” Clinical Cancer Research, vol. 17, no. 7, pp. 1964–1972, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Santoro, L. Rimassa, A. F. Sobrero et al., “Phase II study of NGR-hTNF, a selective vascular targeting agent, in patients with metastatic colorectal cancer after failure of standard therapy,” European Journal of Cancer, vol. 46, no. 15, pp. 2746–2752, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. Z. J. Li and C. H. Cho, “Peptides as targeting probes against tumor vasculature for diagnosis and drug delivery,” Journal of Translational Medicine, vol. 10, supplement 1, p. S1, 2012. View at Publisher · View at Google Scholar
  112. L. Soroceanu, Y. Gillespie, M. B. Khazaeli, and H. Sontheimer, “Use of chlorotoxin for targeting of primary brain tumors,” Cancer Research, vol. 58, no. 21, pp. 4871–4879, 1998. View at Scopus
  113. E. V. Rosca, J. E. Koskimaki, C. G. Rivera, N. B. Pandey, A. P. Tamiz, and A. S. Popel, “Anti-angiogenic peptides for cancer therapeutics,” Current Pharmaceutical Biotechnology, vol. 12, no. 8, pp. 1101–1116, 2011. View at Publisher · View at Google Scholar · View at Scopus
  114. E. D. Karagiannis and A. S. Popel, “Novel anti-angiogenic peptides derived from ELR-containing CXC chemokines,” Journal of Cellular Biochemistry, vol. 104, no. 4, pp. 1356–1363, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. J. A. Kritzer, O. M. Stephens, D. A. Guarracino, S. K. Reznika, and A. Schepartza, “β-Peptides as inhibitors of protein-protein interactions,” Bioorganic & Medicinal Chemistry, vol. 13, pp. 11–16, 2005.
  116. D. Mochly-Rosen and N. Qvit, “Peptide inhibitors of protein-protein interactions: from rational design to the clinic,” Chimica Oggi, vol. 28, no. 1, pp. 14–16, 2010. View at Scopus
  117. H. Eldar-Finkelman and M. Eisenstein, “Peptide inhibitors targeting protein kinases,” Current Pharmaceutical Design, vol. 15, no. 21, pp. 2463–2470, 2009. View at Publisher · View at Google Scholar · View at Scopus
  118. R. Tonelli, S. Purgato, C. Camerin et al., “Antigene peptide nucleic acid specifically inhibits MYCN expression in human neuroblastoma cells leading to cell growth inhibition and apoptosis,” Molecular Cancer Therapeutics, vol. 4, no. 5, pp. 779–786, 2005. View at Publisher · View at Google Scholar · View at Scopus
  119. D. Kakde, D. Jain, V. Shrivastava, R. Kakde, and A. T. Patil, “Cancer therapeutics-opportunities, challenges and advances in drug delivery,” Journal of Applied Pharmaceutical Science, vol. 1, no. 9, pp. 1–10, 2011.
  120. L. Zheng, Y. Wang, J. Sheng et al., “Antitumor peptides from marine organisms,” Marine Drugs, vol. 9, pp. 1840–1859, 2011. View at Publisher · View at Google Scholar
  121. D. B. Cornelio, R. Roesler, and G. Schwartsmann, “Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy,” Annals of Oncology, vol. 18, no. 9, pp. 1457–1466, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. S. Sotomayor, L. Muñoz-Moreno, M. J. Carmena et al., “Regulation of HER expression and transactivation in human prostate cancer cells by a targeted cytotoxic bombesin analog (AN-215) and a bombesin antagonist (RC-3095),” International Journal of Cancer, vol. 127, no. 8, pp. 1813–1822, 2010. View at Publisher · View at Google Scholar · View at Scopus
  123. R. Smolarczyk, T. Cichoń, K. Graja, J. Hucz, A. Sochanik, and S. Szala, “Antitumor effect of RGD-4C-GG-D(KLAKLAK)2 peptide in mouse B16(F10) melanoma model,” Acta Biochimica Polonica, vol. 53, no. 4, pp. 801–805, 2006. View at Scopus
  124. H. M. Ellerby, W. Arap, L. M. Ellerby et al., “Anti-cancer activity of targeted pro-apoptotic peptides,” Nature Medicine, vol. 5, no. 9, pp. 1032–1038, 1999. View at Publisher · View at Google Scholar · View at Scopus
  125. L. D. Walensky, A. L. Kung, I. Escher et al., “Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix,” Science, vol. 305, no. 5689, pp. 1466–1470, 2004. View at Publisher · View at Google Scholar · View at Scopus
  126. D. R. Soto-Pantoja, J. Menon, P. E. Gallagher, and E. A. Tallant, “Angiotensin-(1-7) inhibits tumor angiogenesis in human lung cancer xenografts with a reduction in vascular endothelial growth factor,” Molecular Cancer Therapeutics, vol. 8, no. 6, pp. 1676–1683, 2009. View at Publisher · View at Google Scholar · View at Scopus
  127. G. C. Alghisi, L. Ponsonnet, and C. Rüegg, “The integrin antagonist cilengitide activates αVβ3, disrupts VE-cadherin localization at cell junctions and enhances permeability in endothelial cells,” PLoS One, vol. 4, no. 2, Article ID e4449, 2009. View at Publisher · View at Google Scholar · View at Scopus
  128. S. Hariharan, D. Gustafson, S. Holden et al., “Assessment of the biological and pharmacological effects of the αvβ3 and αv β5 integrin receptor antagonist, cilengitide (EMD 121974), in patients with advanced solid tumors,” Annals of Oncology, vol. 18, no. 8, pp. 1400–1407, 2007. View at Publisher · View at Google Scholar · View at Scopus
  129. D. A. Reardon, K. L. Fink, T. Mikkelsen et al., “Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme,” Journal of Clinical Oncology, vol. 26, no. 34, pp. 5610–5617, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. K. Park, Y. S. Kim, G. Y. Lee et al., “Tumor endothelial cell targeted cyclic RGD-modified heparin derivative: inhibition of angiogenesis and tumor growth,” Pharmaceutical Research, vol. 25, no. 12, pp. 2786–2798, 2008. View at Publisher · View at Google Scholar · View at Scopus
  131. P. Khalili, A. Arakelian, G. Chen et al., “A non-RGD-based integrin binding peptide (ATN-161) blocks breast cancer growth and metastasis in vivo,” Molecular Cancer Therapeutics, vol. 5, no. 9, pp. 2271–2280, 2006. View at Publisher · View at Google Scholar · View at Scopus
  132. A. Noy, D. T. Scadden, J. Lee et al., “Angiogenesis inhibitor IM862 is ineffective against AIDS-Kaposi's sarcoma in a phase III trial, but demonstrates sustained, potent effect of highly active antiretroviral therapy: from the AIDS malignancy consortium and IM862 study team,” Journal of Clinical Oncology, vol. 23, no. 5, pp. 990–998, 2005. View at Publisher · View at Google Scholar · View at Scopus
  133. G. Deplanque, S. Madhusudan, P. H. Jones et al., “Phase II trial of the antiangiogenic agent IM862 in metastatic renal cell carcinoma,” British Journal of Cancer, vol. 91, no. 9, pp. 1645–1650, 2004. View at Publisher · View at Google Scholar · View at Scopus
  134. A. Stangelberger, A. V. Schally, and B. Djavan, “New treatment approaches for prostate cancer based on peptide analogues,” European Urology, vol. 53, no. 5, pp. 890–900, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. R. Cescato, T. Maina, B. Nock et al., “Bombesin receptor antagonists may be preferable to agonists for tumor targeting,” Journal of Nuclear Medicine, vol. 49, no. 2, pp. 318–326, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. A. M. Bajo, A. V. Schally, M. Krupa, F. Hebert, K. Groot, and K. Szepeshazi, “Bombesin antagonists inhibit growth of MDA-MB-435 estrogen-independent breast cancers and decrease the expression of the ErbB-2/HER-2 oncoprotein and c-jun and c-fos oncogenes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 6, pp. 3836–3841, 2002. View at Publisher · View at Google Scholar · View at Scopus
  137. R. Z. Cai, Y. Qin, T. Ertl, and A. V. Schally, “New pseudononapeptide bombesin antagonists with C-terminal LeuΨ(CH2N)Tac-NH2 show high binding affinity to bombesin/GRP receptors on CFPAC-1 human pancreatic cancer cells,” International Journal of Oncology, vol. 6, no. 6, pp. 1165–1172, 1995. View at Scopus
  138. V. J. Hruby, “Designing peptide receptor agonists and antagonists,” Nature Reviews Drug Discovery, vol. 1, pp. 847–858, 2002.
  139. M. Letsch, A. V. Schally, R. Busto, A. M. Bajo, and J. L. Varga, “Growth hormone-releasing hormone (GHRH) antagonists inhibit the proliferation of androgen-dependent and -independent prostate cancers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 3, pp. 1250–1255, 2003. View at Publisher · View at Google Scholar · View at Scopus
  140. F. Hohla, S. Buchholz, A. V. Schally et al., “GHRH antagonist causes DNA damage leading to p21 mediated cell cycle arrest and apoptosis in human colon cancer cells,” Cell Cycle, vol. 8, no. 19, pp. 3149–3156, 2009. View at Scopus
  141. D. Cardinale, G. Guaitoli, D. Tondi et al., “Protein-protein interface-binding peptides inhibit the cancer therapy target human thymidylate synthase,” Proceedings of the National Academy of Sciences, vol. 108, no. 34, pp. 542–549, 2011. View at Publisher · View at Google Scholar
  142. L. Gaviglio, A. Gross, N. Metzler-Nolte, and M. Ravera, “Synthesis and in vitro cytotoxicity of cis, cis, trans-diamminedichloridodisuccinatoplatinum(IV)-peptide bioconjugates,” Metallomics, vol. 4, no. 3, pp. 260–266, 2012.
  143. J. C. Mai, Z. Mi, S. H. Kim, B. Ng, and P. D. Robbins, “A proapoptotic peptide for the treatment of solid tumors,” Cancer Research, vol. 61, no. 21, pp. 7709–7712, 2001. View at Scopus
  144. P. Laakkonen, M. E. Åkerman, H. Biliran et al., “Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 25, pp. 9381–9386, 2004. View at Publisher · View at Google Scholar · View at Scopus
  145. S. T. Nawrocki, J. S. Carew, M. S. Pino et al., “Bortezomib sensitizes pancreatic cancer cells to endoplasmic reticulum stress-mediated apoptosis,” Cancer Research, vol. 65, no. 24, pp. 11658–11666, 2005. View at Publisher · View at Google Scholar
  146. D. Chen, M. Frezza, S. Schmitt, J. Kanwar, and Q. P. Dou, “Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives,” Current Cancer Drug Targets, vol. 11, no. 3, pp. 239–253, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. P. A. Meyers, “Muramyl tripeptide (mifamurtide) for the treatment of osteosarcoma,” Expert Review of Anticancer Therapy, vol. 9, no. 8, pp. 1035–1049, 2009. View at Publisher · View at Google Scholar · View at Scopus
  148. N. Inohara, Y. Ogura, A. Fontalba et al., “Host recognition of bacterial muramyl dipeptide mediated through NOD2: implications for Crohn's disease,” Journal of Biological Chemistry, vol. 278, no. 8, pp. 5509–5512, 2003. View at Publisher · View at Google Scholar · View at Scopus
  149. J. A. Francisco, C. G. Cerveny, D. L. Meyer et al., “cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity,” Blood, vol. 102, no. 4, pp. 1458–1465, 2003. View at Publisher · View at Google Scholar · View at Scopus
  150. P. D. Senter, “The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma,” Nature Biotechnology, vol. 30, pp. 631–637, 2012. View at Publisher · View at Google Scholar
  151. K. C. Foy, M. J. Miller, N. Moldovan, W. E. Carson III, and P. T. Kaumaya, “Combined vaccination with HER-2 peptide followed by therapy with VEGF peptide mimics exerts effective anti-tumor and anti-angiogenic effects in vitro and in vivo,” OncoImmunology, vol. 1, pp. 1048–1060, 2012. View at Publisher · View at Google Scholar
  152. R. Stupp, M. E. Hegi, B. Neyns et al., “Phase I/IIa study of cilengitide and temozolomide with concomitant radiotherapy followed by cilengitide and temozolomide maintenance therapy in patients with newly diagnosed glioblastoma,” Journal of Clinical Oncology, vol. 28, no. 16, pp. 2712–2718, 2010. View at Publisher · View at Google Scholar · View at Scopus
  153. A. S. Retter, W. D. Figg, and W. L. Dahut, “The combination of antiangiogenic and cytotoxic agents in the treatment of prostate cancer,” Clinical Prostate Cancer, vol. 2, no. 3, pp. 153–159, 2003. View at Scopus
  154. M. H. Andersen, N. Junker, E. Ellebaek, I. M. Svane, and P. T. Straten, “Therapeutic cancer vaccines in combination with conventional therapy,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 237623, 10 pages, 2010. View at Publisher · View at Google Scholar
  155. F. G. Rick, S. Buchholz, A. V. Schally et al., “Combination of gastrin-releasing peptide antagonist with cytotoxic agents produces synergistic inhibition of growth of human experimental colon cancers,” Cell Cycle, vol. 11, no. 13, pp. 2518–2525, 2012. View at Publisher · View at Google Scholar