About this Journal Submit a Manuscript Table of Contents
Journal of Amino Acids
Volume 2013 (2013), Article ID 407616, 7 pages
http://dx.doi.org/10.1155/2013/407616
Research Article

Long-Lasting Effects of Oxy- and Sulfoanalogues of L-Arginine on Enzyme Actions

1Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
2Faculty of Mathematics and Natural Sciences, South-West University “Neofit Rilski”, 2700 Blagoevgrad, Bulgaria
3Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

Received 5 June 2013; Revised 20 August 2013; Accepted 15 September 2013

Academic Editor: Hieronim Jakubowski

Copyright © 2013 Tatyana A. Dzimbova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. P. Mašič, “Arginine mimetic structures in biologically active antagonists and inhibitors,” Current Medicinal Chemistry, vol. 13, no. 30, pp. 3627–3648, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. J. Harms, J. L. Schlessman, G. R. Sue, and E. Bertrand García-Moreno, “Arginine residues at internal positions in a protein are always charged,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 47, pp. 18954–18959, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. G. J. Bartlett, C. T. Porter, N. Borkakoti, and J. M. Thornton, “Analysis of catalytic residues in enzyme active sites,” Journal of Molecular Biology, vol. 324, no. 1, pp. 105–121, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Kim, J. Mao, and M. R. Gunner, “Are acidic and basic groups in buried proteins predicted to be ionized?” Journal of Molecular Biology, vol. 348, no. 5, pp. 1283–1298, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. A. A. Bogan and K. S. Thorn, “Anatomy of hot spots in protein interfaces,” Journal of Molecular Biology, vol. 280, no. 1, pp. 1–9, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. R. L. Cutler, A. M. Davies, S. Creighton et al., “Role of Arginine-38 in regulation of the cytochrome c oxidation-reduction equilibrium,” Biochemistry, vol. 28, no. 8, pp. 3188–3197, 1989. View at Scopus
  7. P. J. Winn, S. K. Lüdemann, R. Gauges, V. Lounnas, and R. C. Wade, “Comparison of the dynamics of substrate access channels in three cytochrome p450s reveals different opening mechanisms and a novel functional role for a buried arginine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 8, pp. 5361–5366, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. J. L. Hansen, A. M. Long, and S. C. Schultz, “Structure of the RNA-dependent RNA polymerase of poliovirus,” Structure, vol. 5, no. 8, pp. 1109–1122, 1997. View at Scopus
  9. R. C. Wade, R. R. Gabdoulline, S. K. Lüdemann, and V. Lounnas, “Electrostatic steering and ionic tethering in enzyme-ligand binding: insights from simulations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 11, pp. 5942–5949, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Jiang, V. Ruta, J. Chen, A. Lee, and R. MacKinnon, “The principle of gating charge movement in a voltage-dependent K+ channel,” Nature, vol. 423, no. 6935, pp. 42–48, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. S. B. Long, E. B. Campbell, and R. MacKinnon, “Voltage sensor of Kv1.2: structural basis of electromechanical coupling,” Science, vol. 309, no. 5736, pp. 903–908, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Tao, A. Lee, W. Limapichat, D. A. Dougherty, and R. MacKinnon, “A gating charge transfer center in voltage sensors,” Science, vol. 328, no. 5974, pp. 67–73, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. N. P. Le, H. Omote, Y. Wada, M. K. Al-Shawi, R. K. Nakamoto, and M. Futai, “Escherichia coli ATP synthase α subunit Arg-376: the catalytic site arginine does not participate in the hydrolysis/synthesis reaction but is required for promotion to the steady state,” Biochemistry, vol. 39, no. 10, pp. 2778–2783, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Rammelsberg, G. Huhn, M. Lübben, and K. Gerwert, “Bacteriorhodopsin's intramolecular proton-release pathway consists of a hydrogen-bonded network,” Biochemistry, vol. 37, no. 14, pp. 5001–5009, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Luecke, H.-T. Richter, and J. K. Lanyi, “Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution,” Science, vol. 280, no. 5371, pp. 1934–1937, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Futaki, T. Suzuki, W. Ohashi et al., “Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery,” Journal of Biological Chemistry, vol. 276, no. 8, pp. 5836–5840, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. H. D. Herce and A. E. Garcia, “Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 52, pp. 20805–20810, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. P. B. Crowley and A. Golovin, “Cation-π interactions in protein-protein interfaces,” Proteins, vol. 59, no. 2, pp. 231–239, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. D. F. Savage, J. D. O'Connell III, L. J. W. Miercke, J. Finer-Moore, and R. M. Stroud, “Structural context shapes the aquaporin selectivity filter,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 40, pp. 17164–17169, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. O. Boudker, R. M. Ryan, D. Yernool, K. Shimamoto, and E. Gouaux, “Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter,” Nature, vol. 445, no. 7126, pp. 387–393, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. R. Stallcup, “Role of protein methylation in chromatin remodeling and transcriptional regulation,” Oncogene, vol. 20, no. 24, pp. 3014–3020, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Walsh, “Enabling the chemistry of life,” Nature, vol. 409, no. 6817, pp. 226–231, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. P. P. Dzeja, K. T. Vitkevicius, M. M. Redfield, J. C. Burnett, and A. Terzic, “Adenylate kinase-catalyzed phosphotransfer in the myocardium: increased contribution in heart failure,” Circulation Research, vol. 84, no. 10, pp. 1137–1143, 1999. View at Scopus
  24. S. P. Bessman and C. L. Carpenter, “The creatine-creatine phosphate energy shuttle,” Annual Review of Biochemistry, vol. 54, pp. 831–862, 1985. View at Scopus
  25. P. P. Dzeja, R. J. Zeleznikar, and N. D. Goldberg, “Adenylate kinase: kinetic behavior in intact cells indicates it is integral to multiple cellular processes,” Molecular and Cellular Biochemistry, vol. 184, no. 1-2, pp. 169–182, 1998. View at Scopus
  26. P. Dzeja, A. Kalvenas, A. Toleikis, and A. Praskevicius, “The effect of adenylate kinase activity on the rate and efficiency of energy transport from mitochondria to hexokinase,” Biochemistry International, vol. 10, no. 2, pp. 259–265, 1985. View at Scopus
  27. S. Kubo and L. H. Noda, “Adenylate kinase of porcine heart,” European Journal of Biochemistry, vol. 48, no. 2, pp. 325–331, 1974. View at Scopus
  28. F. D. Laterveer, K. Nicolay, and F. N. Gellerich, “Experimental evidence for dynamic compartmentation of ADP at the mitochondrial periphery: coupling of mitochondrial adenylate kinase and mitochondrial hexokinase with oxidative phosphorylation under conditions mimicking the intracellular colloid osmotic pressure,” Molecular and Cellular Biochemistry, vol. 174, no. 1-2, pp. 43–51, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. P. P. Dzeja and A. Terzic, “Phosphotransfer reactions in the regulation of ATP-sensitive K+ channels,” FASEB Journal, vol. 12, no. 7, pp. 523–529, 1998. View at Scopus
  30. J. R. Elvir-Mairena, A. Jovanovic, L. A. Gomez, A. E. Alekseev, and A. Terzic, “Reversal of the ATP-liganded state of ATP-sensitive K+ channels by adenylate kinase activity,” Journal of Biological Chemistry, vol. 271, no. 50, pp. 31903–31908, 1996. View at Publisher · View at Google Scholar · View at Scopus
  31. J. A. Gutierrez and L. N. Csonka, “Isolation and characterization of adenylate kinase (adk) mutations in Salmonella typhimurium which block the ability of glycine betaine to function as an osmoprotectant,” Journal of Bacteriology, vol. 177, no. 2, pp. 390–400, 1995. View at Scopus
  32. L. Karl Olson, W. Schroeder, R. Paul Robertson, N. D. Goldberg, and T. F. Walseth, “Suppression of adenylate kinase catalyzed phosphotransfer precedes and is associated with glucose-induced insulin secretion in intact HIT-T15 cells,” Journal of Biological Chemistry, vol. 271, no. 28, pp. 16544–16552, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. W. Bandlow, G. Strobel, C. Zoglowek, U. Oechsner, and V. Magdolen, “Yeast adenylate kinase is active simultaneously in mitochondria and cytoplasm and is required for non-fermentative growth,” European Journal of Biochemistry, vol. 178, no. 2, pp. 451–457, 1988. View at Scopus
  34. http://www.uniprot.org.
  35. B. Delagoutte, D. Moras, and J. Cavarelli, “tRNA aminoacylation by arginyl-tRNA synthetase: induced conformations during substrates binding,” EMBO Journal, vol. 19, no. 21, pp. 5599–5610, 2000. View at Scopus
  36. T. Dzimbova, I. Iliev, K. Georgiev, R. Detcheva, A. Balacheva, and T. Pajpanova, “In vitro assessment of the cytotoxic effects of hydrazide derivatives of unnatural amino acids,” in Peptides: Building Bridges Proceedings of the 22nd American Peptide Symposium, M. Lebl, Ed., pp. 392–393, 2011.
  37. T. Dzimbova, I. Iliev, R. Detcheva, A. Balacheva, and T. Pajpanova, “In vitro assessment of the cytotoxic effects of hydrazide derivatives of sulfoarginines in 3T3 and HepG2 cells,” in Proceedings of the Collection Symposium Series, vol. 13, pp. 34–36, 2011.
  38. T. Dzimbova, E. Miladinova, S. Mohr et al., “Sulfo- and oxy-analogues of arginine: synthesis, analysis and preliminary biological screening,” Croatica Chemica Acta, vol. 84, no. 3, pp. 447–453, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Dzimbova, I. Iliev, K. Georgiev, R. Detcheva, A. Balacheva, and T. Pajpanova, “In vitro assessment of the cytotoxic effects of sulfo-arginine analogues and their hydrazide derivatives in 3T3 and HepG2 cells,” Biotechnology & Biotechnological Equipment, vol. 26, pp. 180–184, 2012.
  40. Molecular Operating Environment (MOE), 2012, 10, Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2012.
  41. G. Jones, P. Willett, R. C. Glen, A. R. Leach, and R. Taylor, “Development and validation of a genetic algorithm for flexible docking,” Journal of Molecular Biology, vol. 267, no. 3, pp. 727–748, 1997. View at Publisher · View at Google Scholar · View at Scopus
  42. http://www.scientificlinux.org.
  43. http://molegro.com/index.php.
  44. R. Thomsen and M. H. Christensen, “MolDock: a new technique for high-accuracy molecular docking,” Journal of Medicinal Chemistry, vol. 49, no. 11, pp. 3315–3321, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. http://www.rcsb.org.
  46. W. D. Cornell, P. Cieplak, C. I. Bayly et al., “A second generation force field for the simulation of proteins, nucleic acids, and organic molecules,” Journal of the American Chemical Society, vol. 117, no. 19, pp. 5179–5197, 1995. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Cavarelli, B. Delagoutte, G. Eriani, J. Gangloff, and D. Moras, “L-arginine recognition by yeast arginyl-tRNA synthetase,” EMBO Journal, vol. 17, no. 18, pp. 5438–5448, 1998. View at Publisher · View at Google Scholar · View at Scopus