About this Journal Submit a Manuscript Table of Contents
Journal of Amino Acids
Volume 2013 (2013), Article ID 979016, 15 pages
http://dx.doi.org/10.1155/2013/979016
Review Article

Urotensin-II Ligands: An Overview from Peptide to Nonpeptide Structures

1Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
2Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy

Received 2 December 2012; Accepted 14 January 2013

Academic Editor: Giuseppe De Rosa

Copyright © 2013 Francesco Merlino et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. A. Bern, D. Pearson, B. A. Larson, and R. S. Nishioka, “Neurohormones from fish tails: the caudal neurosecretory system. I. “Urophysiology” and the caudal neurosecretory system of fishes,” Recent Progress in Hormone Research, vol. 41, pp. 533–552, 1985. View at Scopus
  2. J. M. Conlon, F. O'Harte, D. D. Smith, M. C. Tonon, and H. Vaudry, “Isolation and primary structure of urotensin II from the brain of a tetrapod, the frog Rana ridibunda,” Biochemical and Biophysical Research Communications, vol. 188, no. 2, pp. 578–583, 1992. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. Conlon, N. Chartrel, J. Leprince, C. Suaudeau, J. Costentin, and H. Vaudry, “A proenkephalin A-derived peptide analogous to bovine adrenal peptide E from frog brain: purification, synthesis, and behavioral effects,” Peptides, vol. 17, no. 8, pp. 1291–1296, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Tostivint, I. Lihrmann, C. Bucharles et al., “A second somatostatin gene is expressed in the brain of the frog Rana ridibunda,” Annals of the New York Academy of Sciences, vol. 839, no. 1, pp. 496–497, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. J. M. Conlon, K. Yano, D. Waugh, and N. Hazon, “Distribution and molecular forms of urotensin II and its role in cardiovascular regulation in vertebrates,” Journal of Experimental Zoology, vol. 275, no. 2-3, pp. 226–238, 1996. View at Scopus
  6. A. L. Colton, “Effective thermal parameters for a heterogenous land surface,” Remote Sensing of Environment, vol. 57, no. 3, pp. 143–160, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Brazeau, W. Vale, R. Burgus et al., “Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone,” Science, vol. 179, no. 4068, pp. 77–79, 1973. View at Scopus
  8. S. Ohsako, I. Ishida, T. Ichikawa, and T. Deguchi, “Cloning and sequence analysis of cDNAs encoding precursors of urotensin II-α and -γ,” Journal of Neuroscience, vol. 6, no. 9, pp. 2730–2735, 1986. View at Scopus
  9. D. Pearson, J. E. Shively, B. R. Clark et al., “Urotensin II: a somatostatin-like peptide in the caudal neurosecretory system of fishes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 77, no. 8, pp. 5021–5024, 1980. View at Publisher · View at Google Scholar
  10. R. S. Ames, H. M. Sarau, J. K. Chambers et al., “Human urotensin-II is a potent vasoconstrictor and agonist for the orphan receptor GPR14,” Nature, vol. 401, pp. 282–286, 1999.
  11. H. P. Nothacker, Z. Wang, A. M. McNeill et al., “Identification of the natural ligand of an orphan G-protein-coupled receptor involved in the regulation of vasoconstriction,” Nature Cell Biology, vol. 1, no. 6, pp. 383–385, 1999. View at Scopus
  12. K. Mori, H. Nagao, and Y. Yoshihara, “The olfactory bulb: coding and processing of odor molecule information,” Science, vol. 286, no. 5440, pp. 711–715, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. S. A. Douglas and E. H. Ohlstein, “Human urotensin-II, the most potent mammalian vasoconstrictor identified to date, as a therapeutic target for the management of cardiovascular disease,” Trends in Cardiovascular Medicine, vol. 10, no. 6, pp. 229–237, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. J. J. Maguire, R. E. Kuc, and A. P. Davenport, “Orphan-receptor ligand human urotensin II: receptor localization human tissues and comparison of vasoconstrictor responses with endothelin-1,” British Journal of Pharmacology, vol. 131, no. 3, pp. 441–446, 2000. View at Scopus
  15. M. Matsushita, M. Shichiri, T. Imai et al., “Co-expression of urotensin II and its receptor (GPR14) in human cardiovascular and renal tissues,” Journal of Hypertension, vol. 19, no. 12, pp. 2185–2190, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. J. J. Maguire and A. P. Davenport, “Is urotensin-II the new endothelin?” British Journal of Pharmacology, vol. 137, no. 5, pp. 579–588, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. C. Zhu, Y. Z. Zhu, and P. K. Moore, “The role of urotensin II in cardiovascular and renal physiology and diseases,” British Journal of Pharmacology, vol. 148, pp. 884–901, 2006.
  18. S. Suzuki, Z. Wenyi, M. Hirai et al., “Genetic variations at urotensin II and urotensin II receptor genes and risk of type 2 diabetes mellitus in Japanese,” Peptides, vol. 25, no. 10, pp. 1803–1808, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. O. V. Muravenko, R. Z. Gizatullin, A. N. Al-Amin et al., “Human ALY/BEF gene map position 17q25.3,” Chromosome Research, vol. 8, no. 6, p. 562, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. R. d’Emmanuele di Villa Bianca, E. Mitidieri, F. Fusco et al., “Endogenous urotensin II selectively modulates erectile function through eNOS,” PLoS One, vol. 7, no. 2, Article ID e31019, 2012.
  21. S. A. Douglas and E. H. Ohlstein, “Human urotensin-II, the most potent mammalian vasoconstrictor identified To date, as a therapeutic target for the management of cardiovascular disease,” Trends in Cardiovascular Medicine, vol. 10, no. 6, pp. 229–237, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. S. A. Douglas, D. Naselsky, Z. Ao et al., “Identification and pharmacological characterization of native, functional human urotensin-II receptors in rhabdomyosarcoma cell lines,” British Journal of Pharmacology, vol. 142, no. 6, pp. 921–932, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Bhaskaran and C. Yu, “NMR spectra and restrained molecular dynamics of the mushroom toxin viroisin,” International Journal of Peptide and Protein Research, vol. 43, no. 4, pp. 393–401, 1994. View at Scopus
  24. S. Flohr, M. Kurz, E. Kostenis, A. Brkovich, A. Fournier, and T. Klabunde, “Identification of nonpeptidic urotensin II receptor antagonists by virtual screening based on a pharmacophore model derived from structure-activity relationships and nuclear magnetic resonance studies on urotensin II,” Journal of Medicinal Chemistry, vol. 45, no. 9, pp. 1799–1805, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Grieco, A. Carotenuto, R. Patacchini, C. A. Maggi, E. Novellino, and P. Rovero, “Design, synthesis, conformational analysis, and biological studies of urotensin-II lactam analogues,” Bioorganic and Medicinal Chemistry, vol. 10, no. 12, pp. 3731–3739, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Carotenuto, P. Grieco, P. Campiglia, E. Novellino, and P. Rovero, “Unraveling the active conformation of urotensin II,” Journal of Medicinal Chemistry, vol. 47, no. 7, pp. 1652–1661, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. D. H. Coy, W. J. Rossowski, B. L. Cheng, and J. E. Taylor, “Structural requirements at the N-terminus of urotensin II octapeptides,” Peptides, vol. 23, pp. 2259–2264, 2002. View at Publisher · View at Google Scholar
  28. D. McMaster, Y. Kobayashi, J. Rivier, and K. Lederis, “Characterization of the biologically and antigenically important regions of urotensin II,” Proceedings of the Western Pharmacology Society, vol. 29, pp. 205–208, 1986.
  29. P. Grieco, A. Carotenuto, P. Campiglia, et al., “A new, potent urotensin II receptor peptide agonist containing a Pen residue at the disulfide bridge,” Journal of Medicinal Chemistry, vol. 45, no. 20, pp. 4391–4394, 2002. View at Publisher · View at Google Scholar
  30. S. Foister, L. L. Taylor, J. J. Feng et al., “Design and synthesis of potent cystine-free cyclic hexapeptide agonists at the human urotensin receptor,” Organic Letters, vol. 8, no. 9, pp. 1799–1802, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Lavecchia, S. Cosconati, and E. Novellino, “Architecture of the human urotensin II receptor: comparison of the binding domains of peptide and non-peptide urotensin II agonists,” Journal of Medicinal Chemistry, vol. 48, no. 7, pp. 2480–2492, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. W. A. Kinney, H. R. Almond Jr., J. Qi et al., “Structure-function analysis of urotensin II and its use in the construction of a ligand-receptor working model,” Angewandte Chemie—International Edition, vol. 41, no. 16, pp. 2940–2944, 2002. View at Publisher · View at Google Scholar
  33. R. Guerrini, V. Camarda, E. Marzola et al., “Structure-activity relationship study on human urotensin II,” Journal of Peptide Science, vol. 11, no. 2, pp. 85–90, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Carotenuto, P. Grieco, P. Rovero, and E. Novellino, “Urotensin-II receptor antagonists,” Current Medicinal Chemistry, vol. 13, no. 3, pp. 267–275, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. D. J. Behm, C. L. Herold, E. H. Ohlstein, S. D. Knight, D. Dhanak, and S. A. Douglas, “Pharmacological characterization of SB-710411 (Cpa-c[D-Cys-Pal-D-Trp-Lys-Val-Cys]-Cpa-amide), a novel peptidic urotensin-II receptor antagonist,” British Journal of Pharmacology, vol. 137, no. 4, pp. 449–458, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. D. J. Behm, C. L. Herold, V. Camarda, N. V. Aiyar, and S. A. Douglas, “Differential agonistic and antagonistic effects of the urotensin-II ligand SB-710411 at rodent and primate UT receptors,” European Journal of Pharmacology, vol. 492, no. 2-3, pp. 113–116, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. N. A. Elshourbagy, S. A. Douglas, U. Shabon et al., “Molecular and pharmacological characterization of genes encoding urotensin-II peptides and their cognate G-protein-coupled receptors from the mouse and monkey,” British Journal of Pharmacology, vol. 136, no. 1, pp. 9–22, 2002. View at Scopus
  38. V. Camarda, R. Guerrini, E. Kostenis et al., “A new ligand for the urotensin II receptor,” British Journal of Pharmacology, vol. 137, no. 3, pp. 311–314, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Orbuch, J. E. Taylor, D. H. Coy et al., “Discovery of a novel class of neuromedin B receptor antagonists, substituted somatostatin analogues,” Molecular Pharmacology, vol. 44, no. 4, pp. 841–850, 1993. View at Scopus
  40. C. L. Herold, D. J. Behm, P. T. Buckley et al., “The neuromedin B receptor antagonist, BIM-23127, is a potent antagonist at human and rat urotensin-II receptors,” British Journal of Pharmacology, vol. 139, no. 2, pp. 203–207, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. C. L. Herold, D. J. Behm, P. T. Buckely, J. J. Foley, and S. A. Douglas, “The peptidic somatostatin analogs lanreotide, BIM-23127 and BIM-23042 are urotensin-II receptor ligands,” Pharmacologist, vol. 44, pp. 170–171, 2002.
  42. R. Patacchini, P. Santicioli, S. Giuliani et al., “Urantide: an ultrapotent urotensin II antagonist peptide in the rat aorta,” British Journal of Pharmacology, vol. 140, no. 7, pp. 1155–1158, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Grieco, A. Carotenuto, P. Campiglia et al., “Urotensin-II receptor ligands. From agonist to antagonist activity,” Journal of Medicinal Chemistry, vol. 48, no. 23, pp. 7290–7297, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. V. Camarda, W. Song, E. Marzola et al., “Urantide mimics urotensin-II induced calcium release in cells expressing recombinant UT receptors,” European Journal of Pharmacology, vol. 498, no. 1–3, pp. 83–86, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. V. Camarda, M. Spagnol, W. Song et al., “In vitro and in vivo pharmacological characterization of the novel UT receptor ligand [Pen5,DTrp7,Dab8]urotensin II(4-11) (UFP-803),” British Journal of Pharmacology, vol. 147, no. 1, pp. 92–100, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Sugo, Y. Murakami, Y. Shimomura et al., “Identification of urotensin II-related peptide as the urotensin II-immunoreactive molecule in the rat brain,” Biochemical and Biophysical Research Communications, vol. 310, no. 3, pp. 860–868, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Chatenet, C. Dubessy, J. Leprince et al., “Structure-activity relationships and structural conformation of a novel urotensin II-related peptide,” Peptides, vol. 25, no. 10, pp. 1819–1830, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Chatenet, Q. T. Nguyen, M. Létourneau, J. Dupuis, and A. Fournier, “Urocontrin, a novel UT receptor ligand with a unique pharmacological profile,” Biochemical Pharmacology, vol. 83, no. 5, pp. 608–615, 2012. View at Publisher · View at Google Scholar
  49. M. Jarry, M. Diallo, C. Lecointre et al., “The vasoactive peptides urotensin II and urotensin II-related peptide regulate astrocyte activity through common and distinct mechanisms: involvement in cell proliferation,” Biochemical Journal, vol. 428, no. 1, pp. 113–124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. H. C. G. Prosser, J. Leprince, H. Vaudry, A. M. Richards, M. E. Forster, and C. J. Pemberton, “Cardiovascular effects of native and non-native urotensin II and urotensin II-related peptide on rat and salmon hearts,” Peptides, vol. 27, no. 12, pp. 3261–3268, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Kenakin, “Drug efficacy at G protein-coupled receptors,” Annual Review of Pharmacology and Toxicology, vol. 42, pp. 349–379, 2002. View at Publisher · View at Google Scholar
  52. D. J. Behm, G. Stankus, C. P. A. Doe et al., “The peptidic urotensin-II receptor ligand GSK248451 possesses less intrinsic activity than the low-efficacy partial agonists SB-710411 and urantide in native mammalian tissues and recombinant cell systems,” British Journal of Pharmacology, vol. 148, no. 2, pp. 173–190, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. D. H. Coy, W. J. Rossowski, B. L. Cheng, and J. E. Taylor, “Highly potent heptapeptide antagonists of the vasoactive peptide urotensin II,” in Proceedings of the 225th ACS National Meeting, American Chemical Society, New Orleans, La, USA, March 2003.
  54. N. Aiyar, D. G. Johns, Z. Ao et al., “Cloning and pharmacological characterization of the cat urotensin-II receptor (UT),” Biochemical Pharmacology, vol. 69, no. 7, pp. 1069–1079, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. G. E. Croston, R. Olsson, E. A. Currier et al., “Discovery of the first nonpeptide agonist of the GPR14/Urotensin-II receptor: 3-(4-chlorophenyl)-3-(2-(dimethylamino)ethyl)isochroman-1-one (AC-7954),” Journal of Medicinal Chemistry, vol. 45, no. 23, pp. 4950–4953, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. F. Lehmann, E. A. Currier, R. Olsson, U. Hacksell, and K. Luthman, “Isochromanone-based urotensin-II receptor agonists,” Bioorganic and Medicinal Chemistry, vol. 13, no. 8, pp. 3057–3068, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. F. Lehmann, L. Lake, E. A. Currier, R. Olsson, U. Hacksell, and K. Luthman, “Design, parallel synthesis and SAR of novel urotensin II receptor agonists,” European Journal of Medicinal Chemistry, vol. 42, no. 2, pp. 276–285, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. F. Lehmann, E. A. Currier, B. Clemons et al., “Novel and potent small-molecule urotensin II receptor agonists,” Bioorganic and Medicinal Chemistry, vol. 17, no. 13, pp. 4657–4665, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Clozel, C. Binkert, M. Birker-Robaczewska et al., “Pharmacology of the urotensin-II receptor antagonist palosuran (ACT-058362; 1-[2-(4-benzyl-4-hydroxy-piperidin-1-yl)-ethyl]-3-(2-methyl-quinolin-4-yl)-urea sulfate salt): first demonstration of a pathophysiological role of the urotensin system,” Journal of Pharmacology and Experimental Therapeutics, vol. 311, no. 1, pp. 204–212, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Aissaoui, C. Binkert, M. Clozel et al., “Preparation of 1-(piperazinylalkyl)-3-quinolinylurea derivatives as urotensin II antagonists,” Actelion Pharmaceuticals Ltd., PCT International Application no. WO2004099179, 2004.
  61. H. Aissaoui, C. Binkert, M. Clozel et al., “Preparation of novel piperidine derivatives as urotensin II antagonists,” Actelion Pharmaceutical Ltd., PCT International Application no. WO2004099180, 2004.
  62. H. Aissoui, C. Binkert, M. Clozel et al., “Preparation of 1, 2, 3, 4-tetrahydroisoquinolinyl ureas and related derivatives as urotensin II receptor antagonists,” Actelion Pharmaceuticals Ltd., PCT International Application no. WO2002076979, 2002.
  63. N. Tarui, T. Santo, M. Mori, and H. Watanabe, “Quinoline derivatives as vasoactive agents exhibiting orphanr eceptor GPR14 protein antagonism,” Takeda Chemical Industries, PCT International Application no. WO2001066143, 2001.
  64. D. Dhanak and S. D. Knight, “Preparation of quinolones as urotensin-II receptor antagonists,” Smithkline Beecham Corporation, PCT International Application no. WO2002047456, 2002.
  65. N. Bousette, J. Pottinger, W. Ramli et al., “Urotensin-II receptor blockade with SB-611812 attenuates cardiac remodeling in experimental ischemic heart disease,” Peptides, vol. 27, no. 11, pp. 2919–2926, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. S. A. Douglas, D. J. Behm, N. V. Aiyar et al., “Nonpeptidic urotensin-II receptor antagonists I: in vitro pharmacological characterization of SB-706375,” British Journal of Pharmacology, vol. 145, no. 5, pp. 620–635, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. D. J. Behm, J. J. McAtee, J. W. Dodson et al., “Palosuran inhibits binding to primate UT receptors in cell membranes but demonstrates differential activity in intact cells and vascular tissues,” British Journal of Pharmacology, vol. 155, no. 3, pp. 374–386, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. C. Wu, D. Gao, R. Biediger, J. Chen, and R. V. Market, “Phenylenediamine urotensin-II receptor antagonists and CCR-9 antagonists,” Encysive Pharmaceuticals, Inc., US patent no. 7,288,538 B2, 2007.
  69. J. Jin, D. Dhanak, S. D. Knight et al., “Aminoalkoxybenzyl pyrrolidines as novel human urotensin-II receptor antagonists,” Bioorganic and Medicinal Chemistry Letters, vol. 15, no. 13, pp. 3229–3232, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. N. Tarui, T. Santo, H. Watanabe, K. Aso, T. Miwa, and S. Takekawa, “Preparation of biphenylcarboxamide compounds as GPR14 antagonists or somatostatin receptor regulators,” Takeda Chemical Industries, PCT International Application no. WO2002000606, 2002.
  71. D. K. Luci, S. Ghosh, C. E. Smith et al., “Phenylpiperidine-benzoxazinones as urotensin-II receptor antagonists: synthesis, SAR, and in vivo assessment,” Bioorganic and Medicinal Chemistry Letters, vol. 17, no. 23, pp. 6489–6492, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. E. C. Lawson, D. K. Luci, S. Ghosh et al., “Nonpeptide urotensin-II receptor antagonists: a new ligand class based on piperazino-phthalimide and piperazino-isoindolinone subunits,” Journal of Medicinal Chemistry, vol. 52, no. 23, pp. 7432–7445, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. D. K. Luci, E. C. Lawson, S. Ghosh et al., “Generation of novel, potent urotensin-II receptor antagonists by alkylation-cyclization of isoindolinone C3-carbanions,” Tetrahedron Letters, vol. 50, no. 35, pp. 4958–4961, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. M. A. Hilfiker, D. Zhang, S. E. Dowdell et al., “Aminomethylpiperazines as selective urotensin antagonists,” Bioorganic and Medicinal Chemistry Letters, vol. 18, no. 16, pp. 4470–4473, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Jin, Y. Wang, F. Wang et al., “2-aminomethyl piperidines as novel urotensin-II receptor antagonists,” Bioorganic and Medicinal Chemistry Letters, vol. 18, no. 9, pp. 2860–2864, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. Y. Wang, Z. Wu, B. F. Guida et al., “N-alkyl-5H-pyrido[4,3-b]indol-1-amines and derivatives as novel urotensin-II receptor antagonists,” Bioorganic and Medicinal Chemistry Letters, vol. 18, no. 18, pp. 4936–4939, 2008. View at Publisher · View at Google Scholar · View at Scopus