About this Journal Submit a Manuscript Table of Contents
Journal of Applied Mathematics
Volume 2012 (2012), Article ID 205376, 13 pages
http://dx.doi.org/10.1155/2012/205376
Research Article

Iteration Coupling Simulation of Random Waves and Wave-Induced Currents

1State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
2College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China
3Department of Civil Engineering, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia

Received 18 June 2012; Accepted 20 August 2012

Academic Editor: Kai Diethelm

Copyright © 2012 Jinhai Zheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. T. Kirby, “Boussinesq models and applications to nearshore wave propagation, surf zone processes and wave-induced currents,” in Advances in Coastal Modeling, pp. 1–41, Elsevier Press, Amsteram, The Netherland, 2003.
  2. O. Nwogu and Z. Demirbilek, “BOUSS-2D: boussinesq wave model for coastal regions and harbors,” Technical Report ERDC/CHL TR-01-25, Coastal and Hydraulics Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, Miss, USA, 2001.
  3. Z. Demirbilek and V. Panchang, “CGWAVE: a coastal surface water wave model of the mild slope equation,” Technical Report ERDC/CHL TR-98-26, Coastal and Hydraulics Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, Miss, USA, 1998.
  4. L. Lin, Z. Demirbilek, R. Thomas, and J. Rosati, “Verification and validation of the coastal modeling system, report 2: CMS-wave,” Technical Report ERDC/CHL TR-11-10, Coastal and Hydraulics Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, Miss, USA, 2011.
  5. L. Lin, Z. Demirbilek, H. Mase, J. H. Zheng, and F. Yamada, “CMS-Wave: a nearshore spectral wave processes model for coastal inlets and navigation projects,” Technical Report ERDC/CHL TR-08-13, Coastal and Hydraulics Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, Miss, USA, 2008.
  6. N. Booij, R. C. Ris, and L. H. Holthuijsen, “A third-generation wave model for coastal regions 1. Model description and validation,” Journal of Geophysical Research C, vol. 104, no. 4, pp. 7649–7666, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. J. M. Smith, D. T. Resio, and A. K. Zundel, “STWAVE: steady state spectral wave model,” Technical Report, US Army Engineer Waterways Experiment Station, Vicksburg, Miss, USA, 1999.
  8. H. Mase, “Multi-directional random wave transformation model based on energy balance equation,” Coastal Engineering Journal, vol. 43, no. 4, pp. 317–337, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Zheng, H. Mase, Z. Demirbilek, and L. Lin, “Implementation and evaluation of alternative wave breaking formulas in a coastal spectral wave model,” Ocean Engineering, vol. 35, no. 11-12, pp. 1090–1101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. H. Zheng and Y. Tang, “Numerical simulation of spatial lag between wave breaking point and location of maximum wave-induced current,” China Ocean Engineering, vol. 23, no. 1, pp. 59–71, 2009. View at Scopus
  11. X. W. Chen, J. H. Zheng, C. Zhang, and Q. Yang, “Evaluation of diffraction predictability in two phase averaged wave models,” China Ocean Engineering, vol. 24, no. 2, pp. 235–244, 2010. View at Scopus
  12. J. H. Zheng, N. V. Thanh, and C. Zhang, “Spectral wave transformation model for simulating refraction-diffraction with strongly reflecting coastal structures,” Acta Oceanologica Sinica, vol. 30, no. 2, pp. 25–32, 2011.
  13. J. Zheng, “Depth-dependent expression of obliquely incident wave induced radiation stress,” Progress in Natural Science, vol. 17, no. 9, pp. 1067–1073, 2007. View at Scopus
  14. I. A. Svendsen, K. A. Haas, and Q. Zhao, “Quasi-3D nearshore circulation model SHORECIRC,” Technical Report, University of Delaware, Newark, Del, USA, 2002.
  15. J. C. Warner, C. R. Sherwood, R. P. Signell, C. K. Harris, and H. G. Arango, “Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model,” Computers and Geosciences, vol. 34, no. 10, pp. 1284–1306, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. K. A. Haas and J. C. Warner, “Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS,” Ocean Modelling, vol. 26, no. 1-2, pp. 91–103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Kumar, G. Voulgaris, and J. C. Warner, “Implementation and modification of a three-dimensional radiation stress formulation for surf zone and rip-current applications,” Coastal Engineering, vol. 58, no. 12, pp. 1097–1117, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. J. H. Wang and Y. M. Shen, “Development and validation of a three-dimensional, wave-current coupled model on unstructured meshes,” Science China, vol. 54, no. 1, pp. 42–58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. A. C. Bennis, F. Ardhuin, and F. Dumas, “On the coupling of wave and three-dimensional circulation models: choice of theoretical framework, practical implementation and adiabatic tests,” Ocean Modelling, vol. 40, no. 3-4, pp. 260–272, 2011.
  20. M. Xie, “Establishment, validation and discussions of a three dimensional wave-induced current model,” Ocean Modelling, vol. 38, no. 3-4, pp. 230–243, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. S. B. Yoon, Y. S. Cho, and C. Lee, “Effects of breaking-induced currents on refraction-diffraction of irregular waves over submerged shoal,” Ocean Engineering, vol. 31, no. 5-6, pp. 633–652, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Choi, C. H. Lim, J. I. Lee, and S. B. Yoon, “Evolution of waves and currents over a submerged laboratory shoal,” Coastal Engineering, vol. 56, no. 3, pp. 297–312, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Zhang, Y. G. Wang, and J. H. Zheng, “Numerical study on vertical structures of undertow inside and outside the surf zone,” Acta Oceanologica Sinica, vol. 28, no. 5, pp. 103–111, 2009.
  24. C. L. Vincent and M. J. Briggs, “Refraction - diffraction of irregular waves over a mound,” Journal of Waterway, Port, Coastal and Ocean Engineering, vol. 115, no. 2, pp. 269–284, 1989. View at Publisher · View at Google Scholar · View at Scopus
  25. J. A. Battjes and J. P. F. M. Janssen, “Energy loss and set-up due to breaking of random waves,” in Proceedings of the 16th Conference on Coastal Engineering, pp. 569–587, Hamburg, Germany, September 1978. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Larson and N. C. Kraus, “Numerical model of longshore current for bar and trough beaches,” Journal of Waterway, Port, Coastal and Ocean Engineering, vol. 117, no. 4, pp. 326–347, 1991. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Tsuchiya, T. Yamashita, and M. Uemoto, “A model of undertow in the surf zone,” Annual Journal of Coastal Engineering, vol. 33, pp. 31–35, 1986 (Japanese).
  28. J. Fredsøe and R. Deigaard, Mechanics of Coastal Sediment Transport, World Scientific, London, UK, 1998.
  29. W. R. Dally and C. A. Brown, “A modeling investigation of the breaking wave roller with application to cross-shore currents,” Journal of Geophysical Research, vol. 100, no. C12, pp. 24–873, 1995. View at Scopus