About this Journal Submit a Manuscript Table of Contents
Journal of Applied Mathematics
Volume 2012 (2012), Article ID 327021, 16 pages
http://dx.doi.org/10.1155/2012/327021
Research Article

Numerical Study of Hall Thruster Plume and Sputtering Erosion

1School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2Department of Electric Propulsion, Shanghai Institute of Space Propulsion, Shanghai 200233, China

Received 14 August 2012; Accepted 28 October 2012

Academic Editor: Yansheng Liu

Copyright © 2012 Li Yan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. M. Burgasov, G. V. Grigorian, A. A. Izmaelov, et al., “Some results of complex work concerning problems of electric rocket thruster integration with a spacecraft and its subsystems,” in Proceedings of the 2nd European Spacecraft Propulsion Conference, Noordwijk, The Netherlands, 1997.
  2. D. Borie, V. Perrin, S. Khartov, and A. Nadiradze, “The I.S.P. software: calculation of the SPT jet influence,” in Proceedings of the 2nd European Spacecraft Propulsion Conference, Noordwijk, The Netherlands, 1997.
  3. A. B. Nadiradze and S. A. Kharov, “A 3D model calculating sputtering and depositing processes under electric propulsion thruster testing in a vacuum chamber,” in Proceedings of the 29th International Electric Propulsion Conference, Princeton University, 2005.
  4. E. Sommier, M. K. Allis, N. Gascon, and M. A. Cappelli, “Wall erosion in 2D Hall Thruster simulations,” in Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, pp. 3335–3344, Sacramento, Calif, USA, July 2006. View at Scopus
  5. S. Kay, M.-S. Manuel, and B. Oleg, “Integration of a sputtering model into a full PIC hall thruster simulation,” in Proceedings of the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, Ala, USA, 2003.
  6. R. Subrata and B. P. Pandey, “Modeling the effect of plasma-wall interaction in a hall thruster,” in Proceedings of the 41st Aerospace Sciences Meeting and Exhibit, Reno, Nev, USA, 2003.
  7. A. Bernard and M.-S. Manuel, “Computation modeling of plasma plume in a vacuum tank,” in Proceedings of the 26th International Electric Propulsion Conference, Kitakyushu, Japan, 1999.
  8. Q. Zhong, W. Pingyang, D. Zhaohui, and K. Xiaolu, “Study of plume characteristics of a stationary plasma thruster,” Plasma Science and Technology, vol. 10, no. 5, pp. 612–618, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Yamamura and H. Tawara, “Angular dependence of sputtering yelds of monatomic solids,” Institute of Plasma Physics IPPJ-AM-26, Nagoya University, 1996.
  10. N. Matsunami, Y. Yamamura, Y. Itikawa et al., “Energy dependence of the ion-induced sputtering yields of monatomic solids,” Atomic Data and Nuclear Data Tables, vol. 31, no. 1, pp. 1–80, 1984. View at Scopus
  11. Y. Yamamura, Y. Itikawa, and N. Itoh, “Angular dependence of sputtering yields of monatomic solids,” Institute of Plasma Physics IPPJ-AM-26, Nagoya University, 1983.
  12. D. Y. Oh, Computational Modeling of Expanding Plasma Plumes in Space Using a PIC-DSMC Algorithm, Massachusetts Institute of Technology, Cambridge, Mass, USA, 1997.
  13. D. Y. Oh, D. E. Hastings, C. M. Marrese, J. M. Haas, and A. D. Gallimore, “Modeling of stationary plasma thruster-100 thruster plumes and implications for satellite design,” Journal of Propulsion and Power, vol. 15, no. 2, pp. 345–357, 1999. View at Scopus
  14. Y. Choi, M. Keidar, and I. D. Boyd, “Particle simulation of plume flows from an anode-layer hall thruster,” Journal of Propulsion and Power, vol. 24, no. 3, pp. 554–561, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford University Press, New York, NY, USA, 1994.
  16. K. Koura and H. Matsumoto, “Variable soft sphere molecular model for air species,” Physics of Fluids A, vol. 4, no. 5, pp. 1083–1085, 1992. View at Scopus
  17. A. Dalgarno, R. C. McDowell, and A. Williams, “The mobilities of ions in unlike gases,” Philosophical Transactions of the Royal Society A, vol. 250, pp. 411–425, 1958. View at Publisher · View at Google Scholar
  18. S. H. Pullins, Y. Chiu, D. J. Levandier, and R. A. Dressler, “Ion dynamics in Hall effect and ion thrusters-Xe+ + Xe symmetric charge transfer,” in Proceedings of the 38th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nev, USA, 2000.
  19. J. Scott Miller, S. H. Pullins, D. J. Levandier, Y. H. Chiu, and R. A. Dressler, “Xenon charge exchange cross sections for electrostatic thruster models,” Journal of Applied Physics, vol. 91, no. 3, p. 984, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Mitchner and C. H. Kurger, Partially Ionized Gases, Wiley, New York, NY, USA, 1973.
  21. W. M. Ruyten, “Density-conserving shape factors for particle simulations in cylindrical and spherical coordinates,” Journal of Computational Physics, vol. 105, no. 2, pp. 224–232, 1993. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Sigmund, “Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets,” Physical Review Online Archive, vol. 184, pp. 383–416, 1969. View at Publisher · View at Google Scholar
  23. Y. Yamamura, N. Matsunami, and N. Itoh, “Theoretical studies on an empirical formula for sputtering yield at normal incidence,” Radiation Effects Letters, vol. 71, no. 1-2, pp. 65–86, 1983. View at Scopus
  24. J. Lindhard, V. Nielson, M. Scharff, and P. V. Thomsen, “Integral equations governing radiation effects,” Kongelige Danske Videnskabernes Selskab Biologiske Skrifter, vol. 33, no. 10, pp. 1–42, 1963.
  25. J. Lindhard and M. Scharff, “Energy dissipation by ions in the kev region,” Physical Review, vol. 124, no. 1, pp. 128–130, 1961. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Shannon, Computational modeling of hall thruster plasma plume in a vacuum tank [M.S. thesis], Massachusetts Institute of Technology, Boston, Mass, USA, 2003.