Abstract

We introduce an iterative algorithm for finding a common element of the set of solutions of a system of mixed equilibrium problems, the set of solutions of a general system of variational inequalities for Lipschitz continuous and relaxed cocoercive mappings, the set of common fixed points for nonexpansive semigroups, and the set of common fixed points for an infinite family of strictly pseudocontractive mappings in Hilbert spaces. Furthermore, we prove a strong convergence theorem of the iterative sequence generated by the proposed iterative algorithm under some suitable conditions which solves some optimization problems. Our results extend and improve the recent results of Chang et al. (2010) and many others.

1. Introduction

Let ๐ป be a real Hilbert space with inner product โŸจโ‹…,โ‹…โŸฉ and norm โ€–โ‹…โ€–. Let ๐ถ be a nonempty closed convex subset of ๐ป. Recall that a mapping ๐‘‡โˆถ๐ถโ†’๐ถ is nonexpansive if โ€–๐‘‡๐‘ฅโˆ’๐‘‡๐‘ฆโ€–โ‰คโ€–๐‘ฅโˆ’๐‘ฆโ€–,โˆ€๐‘ฅ,๐‘ฆโˆˆ๐ถ.(1.1) We denote the set of fixed points of ๐‘‡ by ๐น(๐‘‡), that is ๐น(๐‘‡)={๐‘ฅโˆˆ๐ถโˆถ๐‘ฅ=๐‘‡๐‘ฅ}. A mapping ๐‘“โˆถ๐ถโ†’๐ถ is said to be an ๐›ผ-contraction if there exists a coefficient ๐›ผโˆˆ(0,1) such that โ€–๐‘“(๐‘ฅ)โˆ’๐‘“(๐‘ฆ)โ€–โ‰ค๐›ผโ€–๐‘ฅโˆ’๐‘ฆโ€–,โˆ€๐‘ฅ,๐‘ฆโˆˆ๐ถ.(1.2) Let ๐ตโˆถ๐ถโ†’๐ป be a mapping. Then ๐ต is called:(1)monotone if โŸจ๐ต๐‘ฅโˆ’๐ต๐‘ฆ,๐‘ฅโˆ’๐‘ฆโŸฉโ‰ฅ0,โˆ€๐‘ฅ,๐‘ฆโˆˆ๐ถ;(1.3)(2)๐‘‘-strongly monotone if there exists a positive real number ๐‘‘ such that โŸจ๐ต๐‘ฅโˆ’๐ต๐‘ฆ,๐‘ฅโˆ’๐‘ฆโŸฉโ‰ฅ๐‘‘โ€–๐‘ฅโˆ’๐‘ฆโ€–2,โˆ€๐‘ฅ,๐‘ฆโˆˆ๐ถ,(1.4) for constant ๐‘‘>0, this implies that โ€–๐ต๐‘ฅโˆ’๐ต๐‘ฆโ€–โ‰ฅ๐‘‘โ€–๐‘ฅโˆ’๐‘ฆโ€–,(1.5) that is, ๐ต is ๐‘‘-expansive and when ๐‘‘=1, it is expansive;(3)๐ฟ-Lipschitz continuous if there exists a positive real number ๐ฟ such thatโ€–๐ต๐‘ฅโˆ’๐ต๐‘ฆโ€–โ‰ค๐ฟโ€–๐‘ฅโˆ’๐‘ฆโ€–,โˆ€๐‘ฅ,๐‘ฆโˆˆ๐ถ;(1.6)(4)๐‘-cocoercive [1, 2] if there exists a positive real number ๐‘ such that โŸจ๐ต๐‘ฅโˆ’๐ต๐‘ฆ,๐‘ฅโˆ’๐‘ฆโŸฉโ‰ฅ๐‘โ€–๐ต๐‘ฅโˆ’๐ต๐‘ฆโ€–2,โˆ€๐‘ฅ,๐‘ฆโˆˆ๐ถ,(1.7) Clearly, every ๐‘-cocoercive map ๐ต is (1/๐‘)-Lipschitz continuous;(5)relaxed ๐‘-cocoercive, if there exists a positive real number ๐‘ such that โŸจ๐ต๐‘ฅโˆ’๐ต๐‘ฆ,๐‘ฅโˆ’๐‘ฆโŸฉโ‰ฅ(โˆ’๐‘)โ€–๐ต๐‘ฅโˆ’๐ต๐‘ฆโ€–2,โˆ€๐‘ฅ,๐‘ฆโˆˆ๐ถ;(1.8)(6)relaxed (๐‘,๐‘‘)-cocoercive, if there exists a positive real number ๐‘,๐‘‘ such that โŸจ๐ต๐‘ฅโˆ’๐ต๐‘ฆ,๐‘ฅโˆ’๐‘ฆโŸฉโ‰ฅ(โˆ’๐‘)โ€–๐ต๐‘ฅโˆ’๐ต๐‘ฆโ€–2+๐‘‘โ€–๐‘ฅโˆ’๐‘ฆโ€–2,โˆ€๐‘ฅ,๐‘ฆโˆˆ๐ถ,(1.9) for ๐‘=0, ๐ต is ๐‘‘-strongly monotone. This class of mapping is more general than the class of strongly monotone mapping. It is easy to see that we have the following implication: ๐‘‘-strongly monotonicity implying relaxed (๐‘,๐‘‘)-cocoercivity,(7)๐‘˜-strictly pseudocontractive, if there exists a constant ๐‘˜โˆˆ[0,1) such that โ€–๐ต๐‘ฅโˆ’๐ต๐‘ฆโ€–2โ‰คโ€–๐‘ฅโˆ’๐‘ฆโ€–2โ€–+๐‘˜โ€–(๐ผโˆ’๐ต)๐‘ฅโˆ’(๐ผโˆ’๐ต)๐‘ฆ2,โˆ€๐‘ฅ,๐‘ฆโˆˆ๐ถ.(1.10)

Remark 1.1 (see [3, Remarkโ€‰โ€‰1.1 pages 135-136]). If ๐ตโˆถ๐ถโ†’๐ป is a ๐ฟ๐ต-Lipschitz continuous and relaxed (๐‘,๐‘‘)-cocoercive mapping with ๐‘‘>๐‘๐ฟ2๐ต and 0<๐œ<2(๐‘‘โˆ’๐‘๐ฟ2๐ต)/๐ฟ2๐ต, then ๐ผโˆ’๐œ๐ต satisfies the following: โ€–(๐ผโˆ’๐œ๐ต)๐‘ฅโˆ’(๐ผโˆ’๐œ๐ต)๐‘ฆโ€–โ‰ค(1โˆ’๐œ๐œ‰)โ€–๐‘ฅโˆ’๐‘ฆโ€–,โˆ€๐‘ฅ,๐‘ฆโˆˆ๐ถ,(1.11) where ๐œ‰=(๐ฟ2๐ต/2)[2(๐‘‘โˆ’๐‘๐ฟ2๐ต)/๐ฟ2๐ตโˆ’๐œ].
Similarly, if ๐ทโˆถ๐ถโ†’๐ปis๐ฟ๐ท-Lipschitz continuous and relaxed (๐‘โ€ฒ,๐‘‘โ€ฒ)-cocoercive mapping with ๐‘‘โ€ฒ>๐‘โ€ฒ๐ฟ2๐ท and 0<๐›ฟ<2(๐‘‘โ€ฒโˆ’๐‘โ€ฒ๐ฟ2๐ท)/๐ฟ2๐ท, then the mapping ๐ผโˆ’๐›ฟ๐ท satisfies the following: โ€–๎€ท(๐ผโˆ’๐›ฟ๐ท)๐‘ฅโˆ’(๐ผโˆ’๐›ฟ๐ท)๐‘ฆโ€–โ‰ค1โˆ’๐›ฟ๐œ‰๎…ž๎€ธโ€–๐‘ฅโˆ’๐‘ฆโ€–,(1.12) where ๐œ‰โ€ฒ=(๐ฟ2๐ท/2)[2(๐‘‘โ€ฒโˆ’๐‘โ€ฒ๐ฟ2๐ท)/๐ฟ2๐ทโˆ’๐›ฟ].

Let ๐ด be a strongly positive linear bounded operator on ๐ป if there is a constant ๐›พ>0 with the property โŸจ๐ด๐‘ฅ,๐‘ฅโŸฉโ‰ฅ๐›พโ€–๐‘ฅโ€–2,โˆ€๐‘ฅโˆˆ๐ป.(1.13) We recall optimization problem (for short, OP) as the following min๐‘ฅโˆˆ๐น๐œ‡21โŸจ๐ด๐‘ฅ,๐‘ฅโŸฉ+2โ€–๐‘ฅโˆ’๐‘ขโ€–2โˆ’โ„Ž(๐‘ฅ),(1.14) where ๐น=โˆฉโˆž๐‘›=1๐ถ๐‘›,๐ถ1,๐ถ2,โ€ฆ are infinitely closed convex subsets of ๐ป such that โˆฉโˆž๐‘›=1๐ถ๐‘›โ‰ โˆ…, ๐‘ขโˆˆ๐ป, ๐œ‡โ‰ฅ0 is a real number, ๐ด is a strongly positive linear bounded operator on ๐ป, and โ„Ž is a potential function for ๐›พ๐‘“ (i.e., โ„Žโ€ฒ(๐‘ฅ)=๐›พ๐‘“(๐‘ฅ) for ๐‘ฅโˆˆ๐ป). This kind of optimization problem has been studied extensively by many authors, see, for example, [4โ€“7] when ๐น=โˆฉโˆž๐‘›=1๐ถ๐‘› and โ„Ž(๐‘ฅ)=โŸจ๐‘ฅ,๐‘โŸฉ, where ๐‘ is a given point in ๐ป.

On the other hand, a family ๐’ฎ={๐‘†(๐‘ )โˆถ0โ‰ค๐‘ <โˆž} of mappings of ๐ถ into itself is called a nonexpansive semigroup on ๐ถ if it satisfies the following conditions:(i)๐‘†(0)๐‘ฅ=๐‘ฅ for all ๐‘ฅโˆˆ๐ถ;(ii)๐‘†(๐‘ +๐‘ก)=๐‘†(๐‘ )๐‘†(๐‘ก) for all ๐‘ ,๐‘กโ‰ฅ0;(iii)โ€–๐‘†(๐‘ )๐‘ฅโˆ’๐‘†(๐‘ )๐‘ฆโ€–โ‰คโ€–๐‘ฅโˆ’๐‘ฆโ€– for all ๐‘ฅ,๐‘ฆโˆˆ๐ถ and ๐‘ โ‰ฅ0;(iv)for all ๐‘ฅโˆˆ๐ถ,๐‘ โ†ฆ๐‘†(๐‘ )๐‘ฅ is continuous.

We denote by ๐น(๐’ฎ) the set of all common fixed points of ๐’ฎ={๐‘†(๐‘ )โˆถ๐‘ โ‰ฅ0}, that is, ๐น(๐’ฎ)=โˆฉ๐‘ โ‰ฅ0๐น(๐‘†(๐‘ )). It is known that ๐น(๐’ฎ) is closed and convex.

Let ๐œ™โˆถ๐ถโ†’โ„ be a real-valued function and let {ฮ˜๐‘˜โˆถ๐ถร—๐ถโ†’โ„,๐‘˜=1,2,โ€ฆ,๐‘} be a finite family of equilibrium functions, that is, ฮ˜๐‘˜(๐‘ข,๐‘ข)=0 for each ๐‘ขโˆˆ๐ถ. The system of mixed equilibrium problems (for short, SMEP) for function (ฮ˜1,ฮ˜2,โ€ฆ,ฮ˜๐‘,๐œ™) is to find ๐‘งโˆˆ๐ถ such that ฮ˜1ฮ˜(๐‘ง,๐‘ฆ)+๐œ™(๐‘ฆ)โˆ’๐œ™(๐‘ง)โ‰ฅ0,โˆ€๐‘ฆโˆˆ๐ถ,2โ‹ฎฮ˜(๐‘ง,๐‘ฆ)+๐œ™(๐‘ฆ)โˆ’๐œ™(๐‘ง)โ‰ฅ0,โˆ€๐‘ฆโˆˆ๐ถ,๐‘(๐‘ง,๐‘ฆ)+๐œ™(๐‘ฆ)โˆ’๐œ™(๐‘ง)โ‰ฅ0,โˆ€๐‘ฆโˆˆ๐ถ.(1.15) The set of solutions of (1.15) is denoted by โˆฉ๐‘๐‘˜=1MEP(ฮ˜๐‘˜,๐œ™), where MEP(ฮ˜๐‘˜,๐œ™) is the set of solutions of the mixed equilibrium problem (for short, MEP), which is to find ๐‘งโˆˆ๐ถ such that ฮ˜๐‘˜(๐‘ง,๐‘ฆ)+๐œ™(๐‘ฆ)โˆ’๐œ™(๐‘ง)โ‰ฅ0,โˆ€๐‘ฆโˆˆ๐ถ.(1.16) In particular, if ๐œ™โ‰ก0, and ๐‘=1, then the problem (1.15) reduces to the equilibrium problem (for short, EP), which is to find ๐‘งโˆˆ๐ถ such that ฮ˜(๐‘ง,๐‘ฆ)โ‰ฅ0,โˆ€๐‘ฆโˆˆ๐ถ.(1.17) It is well known that the SMEP includes fixed point problem, optimization problem, variational inequality problem, and Nash equilibrium problem as its special cases (see [8โ€“13] for more details).

For solving the solutions of a nonexpansive semigroup and the solutions of the system of mixed equilibrium problems were studied by many authors see [14โ€“23] and reference therein. In 2010, Chang et al. [24] studied the following approximation method: ฮ˜1๎‚€๐‘ข๐‘›(1)๎‚๎‚€๐‘ข,๐‘ฅ+๐œ™(๐‘ฅ)โˆ’๐œ™๐‘›(1)๎‚+1๐‘Ÿ1๎‚ฌ๐พ๎…ž๎‚€๐‘ข๐‘›(1)๎‚โˆ’๐พ๎…ž๎€ท๐‘ฅ๐‘›๎€ธ๎‚€,๐œ‚๐‘ฅ,๐‘ข๐‘›(1)ฮ˜๎‚๎‚ญโ‰ฅ0,โˆ€๐‘ฅโˆˆ๐ถ,2๎‚€๐‘ข๐‘›(2)๎‚๎‚€๐‘ข,๐‘ฅ+๐œ™(๐‘ฅ)โˆ’๐œ™๐‘›(2)๎‚+1๐‘Ÿ2๎‚ฌ๐พ๎…ž๎‚€๐‘ข๐‘›(2)๎‚โˆ’๐พ๎…ž๎€ท๐‘ฅ๐‘›๎€ธ๎‚€,๐œ‚๐‘ฅ,๐‘ข๐‘›(2)โ‹ฎฮ˜๎‚๎‚ญโ‰ฅ0,โˆ€๐‘ฅโˆˆ๐ถ,๐‘๎‚€๐‘ข๐‘›(๐‘)๎‚๎‚€๐‘ข,๐‘ฅ+๐œ™(๐‘ฅ)โˆ’๐œ™๐‘›(๐‘)๎‚+1๐‘Ÿ๐‘๎‚ฌ๐พ๎…ž๎‚€๐‘ข๐‘›(๐‘)๎‚โˆ’๐พ๎…ž๎€ท๐‘ฅ๐‘›๎€ธ๎‚€,๐œ‚๐‘ฅ,๐‘ข๐‘›(๐‘)๐‘ฅ๎‚๎‚ญโ‰ฅ0,โˆ€๐‘ฅโˆˆ๐ถ,๐‘›+1=๐›ผ๐‘›๐‘“๎€ท๐‘Š๐‘›๐‘ฅ๐‘›๎€ธ+๐›ฝ๐‘›๐‘ฅ๐‘›+๐›พ๐‘›1๐‘ก๐‘›๎€œ๐‘ก๐‘›0๐‘†(๐‘ )๐‘Š๐‘›๐‘ข๐‘›(๐‘)๐‘‘๐‘ ,(1.18) where ๐‘ข๐‘›(1)=๐ฝฮ˜1๐‘Ÿ1๐‘ฅ๐‘›,๐‘ข๐‘›(๐‘˜)=๐ฝฮ˜๐‘˜๐‘Ÿ๐‘˜๐‘ข๐‘›(๐‘˜โˆ’1)=๐ฝฮ˜๐‘˜๐‘Ÿ๐‘˜๐ฝฮ˜๐‘˜โˆ’1๐‘Ÿ๐‘˜โˆ’1๐‘ข๐‘›(๐‘˜โˆ’2)=๐ฝฮ˜๐‘˜๐‘Ÿ๐‘˜โ‹ฏ๐ฝฮ˜2๐‘Ÿ2๐‘ข๐‘›(1),=๐ฝฮ˜๐‘˜๐‘Ÿ๐‘˜โ‹ฏ๐ฝฮ˜2๐‘Ÿ2๐ฝฮ˜1๐‘Ÿ1๐‘ฅ๐‘›,๐‘˜=2,3,โ€ฆ,๐‘,(1.19)๐ฝฮ˜๐‘˜๐‘Ÿ๐‘˜โˆถ๐ถโ†’๐ถ,๐‘˜=1,2,โ€ฆ,๐‘ is the mapping defined by (2.22) below, ๐‘Š๐‘› is the mapping defined by (2.12), and ๐’ฎ={๐‘†(๐‘ )โˆถ0โ‰ค๐‘ <โˆž} is a nonexpansive semigroup. They proved that {๐‘ฅ๐‘›} converges strongly to a fixed point of ๐น(๐’ฎ)โˆฉ๐น(๐‘Š)โˆฉ(โˆฉ๐‘๐‘˜=1MEP(ฮ˜๐‘˜,๐œ™)) under control conditions on the parameters.

Let ๐ต,๐ทโˆถ๐ถโ†’๐ป be two mappings. The general system of variational inequalities problem (see [25]) is to find (๐‘ฅโˆ—,๐‘ฆโˆ—)โˆˆ๐ถร—๐ถ such that โŸจ๐œ๐ต๐‘ฆโˆ—+๐‘ฅโˆ—โˆ’๐‘ฆโˆ—,๐‘ฅโˆ’๐‘ฅโˆ—โŸฉโ‰ฅ0,โˆ€๐‘ฅโˆˆ๐ถ,โŸจ๐›ฟ๐ท๐‘ฅโˆ—+๐‘ฆโˆ—โˆ’๐‘ฅโˆ—,๐‘ฅโˆ’๐‘ฆโˆ—โŸฉโ‰ฅ0,โˆ€๐‘ฅโˆˆ๐ถ,(1.20) where ๐œ and ๐›ฟ are two positive real numbers. The set of solutions of the general system of variational inequalities problem is denoted by SVI(๐ถ,๐ต,๐ท). In particular, if ๐ต=๐ท, then the problem (1.20) reduces to the following equation: โŸจ๐œ๐ต๐‘ฆโˆ—+๐‘ฅโˆ—โˆ’๐‘ฆโˆ—,๐‘ฅโˆ’๐‘ฅโˆ—โŸฉโ‰ฅ0,โˆ€๐‘ฅโˆˆ๐ถ,โŸจ๐›ฟ๐ต๐‘ฅโˆ—+๐‘ฆโˆ—โˆ’๐‘ฅโˆ—,๐‘ฅโˆ’๐‘ฆโˆ—โŸฉโ‰ฅ0,โˆ€๐‘ฅโˆˆ๐ถ,(1.21) which is defined by Verma [26] (see also Verma [27]), and is called the new system of variational inequalities. Further, if we set ๐ท=0, then problem (1.20) reduces to the classical variational inequality is to find ๐‘ฅโˆ—โˆˆ๐ถ such that โŸจ๐ต๐‘ฅโˆ—,๐‘ฅโˆ’๐‘ฅโˆ—โŸฉโ‰ฅ0,โˆ€๐‘ฅโˆˆ๐ถ.(1.22) We denoted by VI(๐ถ,๐ต) the set of solutions of the variational inequality problem. The variational inequality problem has been extensively studied in literature, see, for example, [28โ€“31] and references therein. In order to find the solutions of the general system of variational inequality problem (1.20), Wangkeeree and Kamraksa [32] considered the following iterative algorithm: ฮ˜๎€ท๐‘ข๐‘›๎€ธ๎€ท๐‘ข,๐‘ฅ+๐œ™(๐‘ฅ)โˆ’๐œ™๐‘›๎€ธ+1๐‘Ÿ๎ซ๐พ๎…ž๎€ท๐‘ข๐‘›๎€ธโˆ’๐พ๎…ž๎€ท๐‘ฅ๐‘›๎€ธ๎€ท,๐œ‚๐‘ฅ,๐‘ข๐‘›๐‘ง๎€ธ๎ฌโ‰ฅ0,โˆ€๐‘ฅโˆˆ๐ถ,๐‘›=๐‘ƒ๐ถ๎€ท๐‘ข๐‘›โˆ’๐›ฟ๐ท๐‘ข๐‘›๎€ธ,๐‘ฅ๐‘›+1=๐›ผ๐‘›๎€ท๐‘ฅ๐›พ๐‘“๐‘›๎€ธ+๐›ฝ๐‘›๐‘ฅ๐‘›+๎€บ๎€ท1โˆ’๐›ฝ๐‘›๎€ธ๐ผโˆ’๐›ผ๐‘›๐ด๐‘Š๎€ธ๎€ป๐‘›๐‘ƒ๐ถ๎€ท๐‘ง๐‘›โˆ’๐œ๐ต๐‘ง๐‘›๎€ธ,(1.23) where ๐ต,๐ทโˆถ๐ถโ†’๐ป is a ๐ฟ๐ต-Lipschitz continuous and relaxed (๐‘,๐‘‘)-cocoercive mapping and ๐ฟ๐ท-Lipschitz continuous and relaxed (๐‘โ€ฒ,๐‘‘โ€ฒ)-cocoercive mapping, respectively. They proved that {๐‘ฅ๐‘›} converges strongly to a fixed point of ๐น(๐‘Š๐‘›)โˆฉMEP(ฮ˜,๐œ™)โˆฉSVI(๐ถ,๐ต,๐ท) which is a solution of general system of variational inequality (1.20). Very recently, Jaiboon and Kumam [33] studied a new general iterative method for finding a common element of the set of solution of a mixed equilibrium problem, the set of fixed points of an infinite family of nonexpansive mappings, and the set of solutions of variational inequalities for an inverse-strongly monotone mapping in Hilbert spaces, which solves some optimization problems.

Inspired and motivated by Chang et al. [24], Jaiboon and Kumam [33], Kumam and Jaiboon [34] and Wangkeeree and Kamraksa [32], the purpose of this paper is to introduce an iterative algorithm for finding a common element of the set of solutions of (1.15), the set of solutions of (1.20) for Lipschitz continuous and relaxed cocoercive mappings, the set of common fixed points for nonexpansive semigroup, and the set of common fixed points for an infinite family of strictly pseudocontractive mappings. Consequently, we prove the strong convergence theorem in Hilbert spaces under control conditions on the parameters. Furthermore, we can apply our results for solving some optimization problems. Our results extend and improve the corresponding results in Chang et al. [24], Kumam and Jaiboon [34], Wangkeeree and Kamraksa [32], and many others.

2. Preliminaries

Let ๐ป a real Hilbert space and ๐ถ a nonempty closed convex subset of ๐ป. We denote strong convergence (weak convergence) by notation โ†’(โ‡€). In a real Hilbert space ๐ป, it is well known that โ€–๐‘ฅโˆ’๐‘ฆโ€–2=โ€–๐‘ฅโ€–2โˆ’โ€–๐‘ฆโ€–2โˆ’2โŸจ๐‘ฅโˆ’๐‘ฆ,๐‘ฆโŸฉ,(2.1)โ€–๐‘ฅ+๐‘ฆโ€–2โ‰คโ€–๐‘ฅโ€–2+2โŸจ๐‘ฆ,๐‘ฅ+๐‘ฆโŸฉ,(2.2)โ€–๐‘ฅ+๐‘ฆโ€–2โ‰ฅโ€–๐‘ฅโ€–2+2โŸจ๐‘ฆ,๐‘ฅโŸฉ,(2.3)โ€–๐œ†๐‘ฅ+(1โˆ’๐œ†)๐‘ฆโ€–2=๐œ†โ€–๐‘ฅโ€–2+(1โˆ’๐œ†)โ€–๐‘ฆโ€–2โˆ’๐œ†(1โˆ’๐œ†)โ€–๐‘ฅโˆ’๐‘ฆโ€–2(2.4) for all ๐‘ฅ,๐‘ฆโˆˆ๐ป and ๐œ†โˆˆโ„.

Recall that for every point ๐‘ฅโˆˆ๐ป, there exists a unique nearest point in ๐ถ, denoted by ๐‘ƒ๐ถ๐‘ฅ, such that โ€–โ€–๐‘ฅโˆ’๐‘ƒ๐ถ๐‘ฅโ€–โ€–โ‰คโ€–๐‘ฅโˆ’๐‘ฆโ€–,โˆ€๐‘ฆโˆˆ๐ถ.(2.5)๐‘ƒ๐ถ is called the metric projection of ๐ป onto ๐ถ. It is well known that ๐‘ƒ๐ถ is a nonexpansive mapping of ๐ป onto ๐ถ and satisfies โŸจ๐‘ฅโˆ’๐‘ฆ,๐‘ƒ๐ถ๐‘ฅโˆ’๐‘ƒ๐ถโ€–โ€–๐‘ƒ๐‘ฆโŸฉโ‰ฅ๐ถ๐‘ฅโˆ’๐‘ƒ๐ถ๐‘ฆโ€–โ€–2(2.6) for every ๐‘ฅ,๐‘ฆโˆˆ๐ป. Obviously, this immediately implies that โ€–โ€–๎€ท๐‘ƒ(๐‘ฅโˆ’๐‘ฆ)โˆ’๐ถ๐‘ฅโˆ’๐‘ƒ๐ถ๐‘ฆ๎€ธโ€–โ€–2โ‰คโ€–๐‘ฅโˆ’๐‘ฆโ€–2โˆ’โ€–โ€–๐‘ƒ๐ถ๐‘ฅโˆ’๐‘ƒ๐ถ๐‘ฆโ€–โ€–2,โˆ€๐‘ฅ,๐‘ฆโˆˆ๐ป.(2.7) Moreover, ๐‘ƒ๐ถ๐‘ฅ is characterized by the following properties: ๐‘ƒ๐ถ๐‘ฅโˆˆ๐ถ and โŸจ๐‘ฅโˆ’๐‘ƒ๐ถ๐‘ฅ,๐‘ฆโˆ’๐‘ƒ๐ถ๐‘ฅโŸฉโ‰ค0,โ€–๐‘ฅโˆ’๐‘ฆโ€–2โ‰ฅโ€–โ€–๐‘ฅโˆ’๐‘ƒ๐ถ๐‘ฅโ€–โ€–2+โ€–โ€–๐‘ฆโˆ’๐‘ƒ๐ถ๐‘ฅโ€–โ€–2(2.8) for all ๐‘ฅโˆˆ๐ป,๐‘ฆโˆˆ๐ถ.

In order to prove our main results, we need the following lemmas.

Lemma 2.1 (see [35]). Let ๐‘‰โˆถ๐ถโ†’๐ป be a k-strict pseudo-contraction, then(1)the fixed point set ๐น(๐‘‰) of ๐‘‰ is closed convex so that the projection ๐‘ƒ๐น(๐‘‰) is well defined;(2)define a mapping ๐‘‡โˆถ๐ถโ†’๐ป by ๐‘‡๐‘ฅ=๐‘ก๐‘ฅ+(1โˆ’๐‘ก)๐‘‰๐‘ฅ,โˆ€๐‘ฅโˆˆ๐ถ.(2.9) If ๐‘กโˆˆ[๐‘˜,1), then ๐‘‡ is a nonexpansive mapping such that ๐น(๐‘‰)=๐น(๐‘‡).

A family of mappings {๐‘‰๐‘–โˆถ๐ถโ†’๐ป}โˆž๐‘–=1 is called a family of uniformly ๐‘˜-strict pseudo-contractions, if there exists a constant ๐‘˜โˆˆ[0,1) such that โ€–โ€–๐‘‰๐‘–๐‘ฅโˆ’๐‘‰๐‘–๐‘ฆโ€–โ€–2โ‰คโ€–๐‘ฅโˆ’๐‘ฆโ€–2โ€–โ€–๎€ท+๐‘˜๐ผโˆ’๐‘‰๐‘–๎€ธ๎€ท๐‘ฅโˆ’๐ผโˆ’๐‘‰๐‘–๎€ธ๐‘ฆโ€–โ€–2,โˆ€๐‘ฅ,๐‘ฆโˆˆ๐ถ,โˆ€๐‘–โ‰ฅ1.(2.10) Let {๐‘‰๐‘–โˆถ๐ถโ†’๐ถ}โˆž๐‘–=1 be a countable family of uniformly ๐‘˜-strict pseudo-contractions. Let {๐‘‡๐‘–โˆถ๐ถโ†’๐ถ}โˆž๐‘–=1 be the sequence of nonexpansive mappings defined by (2.9), that is, ๐‘‡๐‘–๐‘ฅ=๐‘ก๐‘ฅ+(1โˆ’๐‘ก)๐‘‰๐‘–[๐‘ฅ,โˆ€๐‘ฅโˆˆ๐ถ,โˆ€๐‘–โ‰ฅ1,๐‘กโˆˆ๐‘˜,1).(2.11)

Let {๐‘‡๐‘–} be a sequence of nonexpansive mappings of ๐ถ into itself defined by (2.11) and let {๐œ‡๐‘–} be a sequence of nonnegative numbers in [0,1]. For each ๐‘›โ‰ฅ1, define a mapping ๐‘Š๐‘› of ๐ถ into itself as follows: ๐‘ˆ๐‘›,๐‘›+1๐‘ˆ=๐ผ,๐‘›,๐‘›=๐œ‡๐‘›๐‘‡๐‘›๐‘ˆ๐‘›,๐‘›+1+๎€ท1โˆ’๐œ‡๐‘›๎€ธ๐‘ˆ๐ผ,๐‘›,๐‘›โˆ’1=๐œ‡๐‘›โˆ’1๐‘‡๐‘›โˆ’1๐‘ˆ๐‘›,๐‘›+๎€ท1โˆ’๐œ‡๐‘›โˆ’1๎€ธโ‹ฎ๐‘ˆ๐ผ,๐‘›,๐‘˜=๐œ‡๐‘˜๐‘‡๐‘˜๐‘ˆ๐‘›,๐‘˜+1+๎€ท1โˆ’๐œ‡๐‘˜๎€ธ๐‘ˆ๐ผ,๐‘›,๐‘˜โˆ’1=๐œ‡๐‘˜โˆ’1๐‘‡๐‘˜โˆ’1๐‘ˆ๐‘›,๐‘˜+๎€ท1โˆ’๐œ‡๐‘˜โˆ’1๎€ธโ‹ฎ๐‘ˆ๐ผ,๐‘›,2=๐œ‡2๐‘‡2๐‘ˆ๐‘›,3+๎€ท1โˆ’๐œ‡2๎€ธ๐‘Š๐ผ,๐‘›=๐‘ˆ๐‘›,1=๐œ‡1๐‘‡1๐‘ˆ๐‘›,2+๎€ท1โˆ’๐œ‡1๎€ธ๐ผ.(2.12) Such a mapping ๐‘Š๐‘› is nonexpansive from ๐ถ to ๐ถ and it is called the ๐‘Š-mapping generated by ๐‘‡1,๐‘‡2,โ€ฆ,๐‘‡๐‘› and ๐œ‡1,๐œ‡2,โ€ฆ,๐œ‡๐‘›.

For each ๐‘›,๐‘˜โˆˆโ„•, let the mapping ๐‘ˆ๐‘›,๐‘˜ be defined by (2.12). Then we can have the following crucial conclusions concerning ๐‘Š๐‘›. You can find them in [36]. Now we only need the following similar version in Hilbert spaces.

Lemma 2.2 (see [36]). Let ๐ถ be a nonempty closed convex subset of a real Hilbert space ๐ป. Let ๐‘‡1,๐‘‡2,โ€ฆ be nonexpansive mappings of ๐ถ into itself such that โˆฉโˆž๐‘›=1๐น(๐‘‡๐‘›) is nonempty, let ๐œ‡1,๐œ‡2,โ€ฆ be real numbers such that 0โ‰ค๐œ‡๐‘›โ‰ค๐‘<1 for every ๐‘›โ‰ฅ1. Then,(1)๐‘Š๐‘› is nonexpansive and ๐น(๐‘Š๐‘›)=โˆฉ๐‘›๐‘–=1๐น(๐‘‡๐‘–), for all ๐‘›โ‰ฅ1;(2)for every ๐‘ฅโˆˆ๐ถ and ๐‘˜โˆˆโ„•, the limit lim๐‘›โ†’โˆž๐‘ˆ๐‘›,๐‘˜๐‘ฅ exists;(3)a mapping ๐‘Šโˆถ๐ถโ†’๐ถ defined by ๐‘Š๐‘ฅโˆถ=lim๐‘›โ†’โˆž๐‘Š๐‘›๐‘ฅ=lim๐‘›โ†’โˆž๐‘ˆ๐‘›,1๐‘ฅ,โˆ€๐‘ฅโˆˆ๐ถ(2.13) is a nonexpansive mapping satisfying ๐น(๐‘Š)=โˆฉโˆž๐‘–=1๐น(๐‘‡๐‘–) and it is called the ๐‘Š-mapping generated by ๐‘‡1,๐‘‡2,โ€ฆ and ๐œ‡1,๐œ‡2,โ€ฆ.

Lemma 2.3 (see [37]). Let ๐ถ be a nonempty closed convex subset of a Hilbert space ๐ป, {๐‘‡๐‘–โˆถ๐ถโ†’๐ถ} a countable family of nonexpansive mappings with โˆฉโˆž๐‘–=1๐น(๐‘‡๐‘–)โ‰ โˆ…, {๐œ‡๐‘–} a real sequence such that 0<๐œ‡๐‘–โ‰ค๐‘<1,forall๐‘–โ‰ฅ1. If ๐ท is any bounded subset of ๐ถ, then lim๐‘›โ†’โˆžsup๐‘ฅโˆˆ๐ทโ€–โ€–๐‘Š๐‘ฅโˆ’๐‘Š๐‘›๐‘ฅโ€–โ€–=0.(2.14)

Lemma 2.4 (see [38]). Each Hilbert space ๐ป satisfies Opialโ€™s condition, that is, for any sequence {๐‘ฅ๐‘›}โŠ‚๐ป with ๐‘ฅ๐‘›โ‡€๐‘ฅ, the inequality liminf๐‘›โ†’โˆžโ€–โ€–๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘ฅ<liminf๐‘›โ†’โˆžโ€–โ€–๐‘ฅ๐‘›โ€–โ€–โˆ’๐‘ฆ(2.15) holds for each ๐‘ฆโˆˆ๐ป with ๐‘ฆโ‰ ๐‘ฅ.

Lemma 2.5 (see [39]). Assume ๐ด is a strongly positive linear bounded operator on ๐ป with coefficient ๐›พ>0 and 0<๐œŒโ‰คโ€–๐ดโ€–โˆ’1. Then, โ€–๐ผโˆ’๐œŒ๐ดโ€–โ‰ค1โˆ’๐œŒ๐›พ.

For solving the system of mixed equilibrium problems (1.15), let us assume that function ฮ˜๐‘˜โˆถ๐ปร—๐ปโ†’โ„,๐‘˜=1,2,โ€ฆ,๐‘ satisfies the following conditions:(H1)ฮ˜๐‘˜ is monotone, that is, ฮ˜๐‘˜(๐‘ฅ,๐‘ฆ)+ฮ˜๐‘˜(๐‘ฆ,๐‘ฅ)โ‰ค0, for all ๐‘ฅ,๐‘ฆโˆˆ๐ป;(H2) for each fixed ๐‘ฆโˆˆ๐ป, ๐‘ฅโ†ฆฮ˜๐‘˜(๐‘ฅ,๐‘ฆ) is convex and upper semicontinuous;(H3) for each ๐‘ฅโˆˆ๐ป,๐‘ฆโ†ฆฮ˜๐‘˜(๐‘ฅ,๐‘ฆ) is convex.

Let ๐œ‚โˆถ๐ปร—๐ปโ†’๐ป and ๐ตโˆถ๐ปโ†’๐ป be two mappings. ๐ต is said to be(1)monotone if โŸจ๐ต๐‘ฅโˆ’๐ต๐‘ฆ,๐œ‚(๐‘ฅ,๐‘ฆ)โŸฉโ‰ฅ0,โˆ€๐‘ฅ,๐‘ฆโˆˆ๐ป;(2.16)(2)๐‘‘-strongly monotone if there exists a positive real number ๐‘‘ such that โŸจ๐ต๐‘ฅโˆ’๐ต๐‘ฆ,๐œ‚(๐‘ฅ,๐‘ฆ)โŸฉโ‰ฅ๐‘‘โ€–๐‘ฅโˆ’๐‘ฆโ€–2,โˆ€๐‘ฅ,๐‘ฆโˆˆ๐ป;(2.17)(3)๐ฟ-Lipschitz continuous if there exists a constant ๐ฟ>0 such that โ€–๐œ‚(๐‘ฅ,๐‘ฆ)โ€–โ‰ค๐ฟโ€–๐‘ฅโˆ’๐‘ฆโ€–,โˆ€๐‘ฅ,๐‘ฆโˆˆ๐ป.(2.18)

Let ๐พโˆถ๐ปโ†’โ„ be a differentiable functional on ๐ป, which is called:(1)๐œ‚-convex [40] if ๐พ๎ซ๐พ(๐‘ฆ)โˆ’๐พ(๐‘ฅ)โ‰ฅ๎…ž๎ฌ(๐‘ฅ),๐œ‚(๐‘ฆ,๐‘ฅ),โˆ€๐‘ฅ,๐‘ฆโˆˆ๐ป,(2.19) where ๐พ๎…ž(๐‘ฅ) is the Frรฉchet derivative of ๐พ at ๐‘ฅ;(2)๐œ‚-strongly convex [41] if there exists a constant ๐œŽ>0 such that ๎ซ๐พ๐พ(๐‘ฆ)โˆ’๐พ(๐‘ฅ)โˆ’๎…ž๎ฌโ‰ฅ๐œŽ(๐‘ฅ),๐œ‚(๐‘ฆ,๐‘ฅ)2โ€–๐‘ฅโˆ’๐‘ฆโ€–2,โˆ€๐‘ฅ,๐‘ฆโˆˆ๐ป.(2.20)

In particular, if ๐œ‚(๐‘ฅ,๐‘ฆ)=๐‘ฅโˆ’๐‘ฆ for all ๐‘ฅ,๐‘ฆโˆˆ๐ป, then ๐พ is said to be strongly convex.

Lemma 2.6 (see [42]). Let ๐ป be a real Hilbert space and let ๐œ™ be a lower semicontinuous and convex functional from ๐ป to โ„. Let ฮ˜ be a bifunction from ๐ปร—๐ป to โ„ satisfying (H1)โ€“(H3). Assume that(i)๐œ‚โˆถ๐ปร—๐ปโ†’๐ป is ๐œ†-Lipschitz continuous with constant ๐œ†>0 such that(a)๐œ‚(๐‘ฅ,๐‘ฆ)+๐œ‚(๐‘ฆ,๐‘ฅ)=0,forall๐‘ฅ,๐‘ฆโˆˆ๐ป, (b)๐œ‚(โ‹…,โ‹…) is affine in the first variable,(c)for each fixed ๐‘ฅโˆˆ๐ป, ๐‘ฆโ†ฆ๐œ‚(๐‘ฅ,๐‘ฆ) is sequentially continuous from the weak topology to the weak topology;(ii)๐พโˆถ๐ปโ†’โ„ is ๐œ‚-strongly convex with constant ๐œŽ>0 and its derivative ๐พ๎…ž is sequentially continuous from the weak topology to the strong topology;(iii)for each ๐‘ฅโˆˆ๐ป, there exist bounded subsets ๐ธ๐‘ฅโŠ‚๐ป and ๐‘ง๐‘ฅโˆˆ๐ป such that for any ๐‘ฆโˆˆ๐ปโงต๐ธ๐‘ฅ, ฮ˜๎€ท๐‘ฆ,๐‘ง๐‘ฅ๎€ธ๎€ท๐‘ง+๐œ™๐‘ฅ๎€ธ1โˆ’๐œ™(๐‘ฆ)+๐‘Ÿ๎ซ๐พ๎…ž(๐‘ฆ)โˆ’๐พ๎…ž๎€ท๐‘ง(๐‘ฅ),๐œ‚๐‘ฅ,๐‘ฆ๎€ธ๎ฌ<0.(2.21) For given ๐‘Ÿ>0, let ๐ฝฮ˜๐‘Ÿโˆถ๐ปโ†’๐ป be the mapping defined by ๐ฝฮ˜๐‘Ÿ๎‚†1(๐‘ฅ)=๐‘ฆโˆˆ๐ปโˆถฮ˜(๐‘ฆ,๐‘ง)+๐œ™(๐‘ง)โˆ’๐œ™(๐‘ฆ)+๐‘Ÿ๎ซ๐พ๎…ž(๐‘ฆ)โˆ’๐พ๎…ž๎ฌ๎‚‡(๐‘ฅ),๐œ‚(๐‘ง,๐‘ฆ)โ‰ฅ0,โˆ€๐‘งโˆˆ๐ป(2.22)for all ๐‘ฅโˆˆ๐ป. Then(1)๐ฝฮ˜๐‘Ÿ is single-valued.(2)๐น(๐ฝฮ˜๐‘Ÿ)=MEP(ฮ˜,๐œ™), where MEP(ฮ˜,๐œ™) is the set of solution of the mixed equilibrium problem, ฮ˜(๐‘ฅ,๐‘ฆ)+๐œ™(๐‘ฆ)โˆ’๐œ™(๐‘ฅ)โ‰ฅ0,โˆ€๐‘ฆโˆˆ๐ป.(2.23)(3)MEP(ฮ˜,๐œ™) is closed and convex.

Lemma 2.7 (see [43]). Let {๐‘ฅ๐‘›} and {๐‘ฃ๐‘›} be bounded sequences in a Banach space ๐‘‹ and let {๐›ฝ๐‘›} be a sequence in [0,1] with 0<liminf๐‘›โ†’โˆž๐›ฝ๐‘›โ‰คlimsup๐‘›โ†’โˆž๐›ฝ๐‘›<1. Suppose ๐‘ฅ๐‘›+1=(1โˆ’๐›ฝ๐‘›)๐‘ฃ๐‘›+๐›ฝ๐‘›๐‘ฅ๐‘› for all integers ๐‘›โ‰ฅ0 and limsup๐‘›โ†’โˆž(โ€–๐‘ฃ๐‘›+1โˆ’๐‘ฃ๐‘›โ€–โˆ’โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅ๐‘›โ€–)โ‰ค0. Then, lim๐‘›โ†’โˆžโ€–๐‘ฃ๐‘›โˆ’๐‘ฅ๐‘›โ€–=0.

Lemma 2.8 (see [44]). Assume {๐‘ฅ๐‘›} is a sequence of nonnegative real numbers such that ๐‘ฅ๐‘›+1โ‰ค๎€ท1โˆ’๐‘Ž๐‘›๎€ธ๐‘ฅ๐‘›+๐‘๐‘›,โˆ€๐‘›โ‰ฅ0,(2.24) where {๐‘Ž๐‘›} is a sequence in (0,1) and {๐‘๐‘›} is a sequence in โ„ such that(1)โˆ‘โˆž๐‘›=1๐‘Ž๐‘›=โˆž, (2)limsup๐‘›โ†’โˆž(๐‘๐‘›/๐‘Ž๐‘›)โ‰ค0 or โˆ‘โˆž๐‘›=1|๐‘๐‘›|<โˆž.Then, lim๐‘›โ†’โˆž๐‘ฅ๐‘›=0.

Lemma 2.9 (see [45]). Let ๐ถ be a nonempty closed convex subset of a real Hilbert space ๐ป and ๐‘”โˆถ๐ถโ†’โ„โˆช{โˆž} a proper lower-semicontinuous differentiable convex function. If ๐‘ง is a solution to the minimization problem ๐‘”(๐‘ง)=inf๐‘ฅโˆˆ๐ถ๐‘”(๐‘ฅ),(2.25) then ๎ซ๐‘”๎…ž๎ฌ(๐‘ฅ),๐‘ฅโˆ’๐‘งโ‰ฅ0,๐‘ฅโˆˆ๐ถ.(2.26) In particular, if ๐‘ง solves problem ๐‘‚๐‘ƒ, then []โŸจ๐‘ข+๐›พ๐‘“โˆ’(๐ผ+๐œ‡๐ด)๐‘ง,๐‘ฅโˆ’๐‘งโŸฉโ‰ค0.(2.27)

Lemma 2.10 (see [46]). Let ๐ถ be a nonempty bounded closed convex subset of a Hilbert space ๐ป and let ๐’ฎ={๐‘†(๐‘ )โˆถ0โ‰ค๐‘ <โˆž} be a nonexpansive semigroup on ๐ถ, then for any โ„Žโ‰ฅ0, lim๐‘กโ†’โˆžsup๐‘ฅโˆˆ๐ถโ€–โ€–โ€–1๐‘ก๎€œ๐‘ก0๎‚ต1๐‘‡(๐‘ )๐‘ฅ๐‘‘๐‘ โˆ’๐‘‡(โ„Ž)๐‘ก๎€œ๐‘ก0๎‚ถโ€–โ€–โ€–๐‘‡(๐‘ )๐‘ฅ๐‘‘๐‘ =0.(2.28)

Lemma 2.11 (see [47]). Let C be a nonempty bounded closed convex subset of ๐ป, {๐‘ฅ๐‘›} a sequence in C, and ๐’ฎ={๐‘†(๐‘ )โˆถ0โ‰ค๐‘ <โˆž} a nonexpansive semigroup on ๐ถ. If the following conditions are satisfied:(i)๐‘ฅ๐‘›โ‡€๐‘ง;(ii)limsup๐‘ โ†’โˆžlimsup๐‘›โ†’โˆžโ€–๐‘†(๐‘ )๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›โ€–=0, then ๐‘งโˆˆ๐’ฎ.

Lemma 2.12 (see [25]). For given ๐‘ฅโˆ—,๐‘ฆโˆ—โˆˆ๐ถ and (๐‘ฅโˆ—,๐‘ฆโˆ—) is a solution of the problem (1.20) if and only if ๐‘ฅโˆ— is a fixed point of the mapping ๐บโˆถ๐ถโ†’๐ถ is defined by ๐บ(๐‘ฅ)=๐‘ƒ๐ถ๎€บ๐‘ƒ๐ถ(๐‘ฅโˆ’๐›ฟ๐ท๐‘ฅ)โˆ’๐œ๐ต๐‘ƒ๐ถ๎€ป(๐‘ฅโˆ’๐›ฟ๐ท๐‘ฅ),โˆ€๐‘ฅโˆˆ๐ป,(2.29) where ๐‘ฆโˆ—=๐‘ƒ๐ถ(๐‘ฅโˆ’๐›ฟ๐ท๐‘ฅ), ๐›ฟ and ๐œ are positive constants and ๐ต,๐ทโˆถ๐ปโ†’๐ป are two mappings.

Throughout this paper, the set of fixed points of the mapping ๐บ is denoted by SVI(๐ถ,๐ต,๐ท).

Lemma 2.13 (see [32]). Let ๐บโˆถ๐ถโ†’๐ถ be defined in Lemma 2.12. If ๐ตโˆถ๐ปโ†’๐ป is a ๐ฟ๐ต-Lipschitzian and relaxed (๐‘,๐‘‘)-cocoercive mapping and ๐ทโˆถ๐ปโ†’๐ป is a ๐ฟ๐ท-Lipschitz and relaxed (๐‘โ€ฒ,๐‘‘โ€ฒ)-cocoercive mapping where ๐œโ‰ค2(๐‘‘โˆ’๐‘๐ฟ2๐ต)/๐ฟ2๐ต and ๐›ฟโ‰ค2(๐‘‘โ€ฒโˆ’๐‘โ€ฒ๐ฟ2๐ท)/๐ฟ2๐ท, then G is nonexpansive.

Lemma 2.14 (demiclosedness principle [48]). Assume that ๐‘† is a nonexpansive self-mapping of a nonempty closed convex subset ๐ถ of a real Hilbert space ๐ป. If ๐‘† has a fixed point, then ๐ผโˆ’๐‘† is demiclosed; that is, whenever {๐‘ฅ๐‘›} is a sequence in ๐ถ converging weakly to some ๐‘ฅโˆˆ๐ถ (for short, ๐‘ฅ๐‘›โ‡€๐‘ฅโˆˆ๐ถ), and the sequence {(๐ผโˆ’๐‘†)๐‘ฅ๐‘›} converges strongly to some ๐‘ฆ (for short, (๐ผโˆ’๐‘†)๐‘ฅ๐‘›โ†’๐‘ฆ), it follows that (๐ผโˆ’๐‘†)๐‘ฅ=๐‘ฆ. Here ๐ผ is the identity operator of ๐ป.

3. Main Results

In this section, we prove a strong convergence theorem of an iterative algorithm (3.1) for finding the solutions of a common element of the set of solutions of (1.15), the set of solutions of (1.20) for Lipschitz continuous and relaxed cocoercive mappings, the set of common fixed points for nonexpansive semigroups, and the set of common fixed points for an infinite family of strictly pseudocontractive mappings in a real Hilbert space.

Theorem 3.1. Let ๐ถ be a nonempty closed convex subset of a real Hilbert space ๐ป which ๐ถ+๐ถโŠ‚๐ถ and let ๐‘“ be a contraction of ๐ถ into itself with ๐›ผโˆˆ(0,1). Let ๐œ™ be a lower semicontinuous and convex functional from ๐ป to โ„ and let {ฮ˜๐‘˜โˆถ๐ปร—๐ปโ†’โ„,๐‘˜=1,2,โ€ฆ,๐‘} be a finite family of equilibrium functions satisfying conditions (H1)โ€“(H3). Let ๐’ฎ={๐‘†(๐‘ )โˆถ0โ‰ค๐‘ <โˆž} be a nonexpansive semigroup on ๐ถ and let {๐‘ก๐‘›} be a positive real divergent sequence. Let {๐‘‰๐‘–โˆถ๐ถโ†’๐ถ}โˆž๐‘–=1 be a countable family of uniformly ๐‘˜-strict pseudo-contractions, let {๐‘‡๐‘–โˆถ๐ถโ†’๐ถ}โˆž๐‘–=1 be the countable family of nonexpansive mappings defined by ๐‘‡๐‘–๐‘ฅ=๐‘ก๐‘ฅ+(1โˆ’๐‘ก)๐‘‰๐‘–๐‘ฅ,forall๐‘ฅโˆˆ๐ถ,forall๐‘–โ‰ฅ1,๐‘กโˆˆ[๐‘˜,1), let ๐‘Š๐‘› be the ๐‘Š-mapping defined by (2.12), and let ๐‘Š be a mapping defined by (2.13) with ๐น(๐‘Š)โ‰ โˆ…. Let ๐ด be a strongly positive linear bounded operator on ๐ป with coefficient ๐›พ>0 and let 0<๐›พ<(1+๐œ‡๐›พ)/๐›ผ, ๐ตโˆถ๐ปโ†’๐ป be a ๐ฟ๐ต-Lipschitz continuous and relaxed (๐‘,๐‘‘)-cocoercive mapping with ๐‘‘>๐‘๐ฟ2๐ต, and let ๐ทโˆถ๐ปโ†’๐ป be a ๐ฟ๐ท-Lipschitz continuous and relaxed (๐‘โ€ฒ,๐‘‘โ€ฒ)-cocoercive mapping with ๐‘‘โ€ฒ>๐‘โ€ฒ๐ฟ2๐ท. Suppose that ฮฉโˆถ=๐น(๐’ฎ)โˆฉ๐น(๐‘Š)โˆฉ๐”‰โˆฉSVI(๐ถ,๐ต,๐ท)โ‰ โˆ…, where ๐”‰=(โˆฉ๐‘๐‘˜=1MEP(ฮ˜๐‘˜,๐œ™)). Let ๐œ‡>0, ๐›พ>0 and ๐‘Ÿ๐‘˜>0,๐‘˜=1,2,โ€ฆ,๐‘, which are constants. For given ๐‘ฅ1โˆˆ๐ป arbitrarily and fixed ๐‘ขโˆˆ๐ป, suppose {๐‘ฅ๐‘›}, {๐‘ฆ๐‘›}, {๐‘ง๐‘›} and {๐‘ข๐‘›(๐‘˜)},๐‘˜=1,2,โ€ฆ,๐‘ are the sequences generated iteratively by ฮ˜1๎‚€๐‘ข๐‘›(1)๎‚๎‚€๐‘ข,๐‘ฅ+๐œ™(๐‘ฅ)โˆ’๐œ™๐‘›(1)๎‚+1๐‘Ÿ1๎‚ฌ๐พ๎…ž๎‚€๐‘ข๐‘›(1)๎‚โˆ’๐พ๎…ž๎€ท๐‘ฅ๐‘›๎€ธ๎‚€,๐œ‚๐‘ฅ,๐‘ข๐‘›(1)ฮ˜๎‚๎‚ญโ‰ฅ0,โˆ€๐‘ฅโˆˆ๐ป,2๎‚€๐‘ข๐‘›(2)๎‚๎‚€๐‘ข,๐‘ฅ+๐œ™(๐‘ฅ)โˆ’๐œ™๐‘›(2)๎‚+1๐‘Ÿ2๎‚ฌ๐พ๎…ž๎‚€๐‘ข๐‘›(2)๎‚โˆ’๐พ๎…ž๎€ท๐‘ฅ๐‘›๎€ธ๎‚€,๐œ‚๐‘ฅ,๐‘ข๐‘›(2)โ‹ฎฮ˜๎‚๎‚ญโ‰ฅ0,โˆ€๐‘ฅโˆˆ๐ป,๐‘๎‚€๐‘ข๐‘›(๐‘)๎‚๎‚€๐‘ข,๐‘ฅ+๐œ™(๐‘ฅ)โˆ’๐œ™๐‘›(๐‘)๎‚+1๐‘Ÿ๐‘๎‚ฌ๐พ๎…ž๎‚€๐‘ข๐‘›(๐‘)๎‚โˆ’๐พ๎…ž๎€ท๐‘ฅ๐‘›๎€ธ๎‚€,๐œ‚๐‘ฅ,๐‘ข๐‘›(๐‘)๐‘ง๎‚๎‚ญโ‰ฅ0,โˆ€๐‘ฅโˆˆ๐ป,๐‘›=๐‘ƒ๐ถ๎‚€๐‘ข๐‘›(๐‘)โˆ’๐›ฟ๐ท๐‘ข๐‘›(๐‘)๎‚,๐‘ฆ๐‘›=๐‘ƒ๐ถ๎€ท๐‘ง๐‘›โˆ’๐œ๐ต๐‘ง๐‘›๎€ธ,๐‘ฅ๐‘›+1=๐›ผ๐‘›๎€บ๎€ท๐‘Š๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธ๎€ป+๐›ฝ๐‘›๐‘ฅ๐‘›+๎€บ๎€ท1โˆ’๐›ฝ๐‘›๎€ธ๐ผโˆ’๐›ผ๐‘›๎€ป1(๐ผ+๐œ‡๐ด)๐‘ก๐‘›๎€œ๐‘ก๐‘›0๐‘†(๐‘ )๐‘Š๐‘›๐‘ฆ๐‘›๐‘‘๐‘ ,(3.1) where ๐‘ข๐‘›(1)=๐ฝฮ˜1๐‘Ÿ1๐‘ฅ๐‘›,๐‘ข๐‘›(๐‘˜)=๐ฝฮ˜๐‘˜๐‘Ÿ๐‘˜๐‘ข๐‘›(๐‘˜โˆ’1)=๐ฝฮ˜๐‘˜๐‘Ÿ๐‘˜๐ฝฮ˜๐‘˜โˆ’1๐‘Ÿ๐‘˜โˆ’1๐‘ข๐‘›(๐‘˜โˆ’2)=๐ฝฮ˜๐‘˜๐‘Ÿ๐‘˜โ‹ฏ๐ฝฮ˜2๐‘Ÿ2๐‘ข๐‘›(1),=๐ฝฮ˜๐‘˜๐‘Ÿ๐‘˜โ‹ฏ๐ฝฮ˜2๐‘Ÿ2๐ฝฮ˜1๐‘Ÿ1๐‘ฅ๐‘›,๐‘˜=2,3,โ€ฆ,๐‘,(3.2)๐ฝฮ˜๐‘˜๐‘Ÿ๐‘˜โˆถ๐ปโ†’๐ป,๐‘˜=1,2,โ€ฆ,๐‘ is the mapping defined by (2.22) and {๐›ผ๐‘›} and {๐›ฝ๐‘›} are two sequences in (0,1) for all ๐‘›โˆˆโ„•. Assume the following conditions are satisfied:(C1)๐œ‚โˆถ๐ปร—๐ปโ†’๐ป is ๐œ†-Lipschitz continuous with constant ๐œ†>0 such that(a)๐œ‚(๐‘ฅ,๐‘ฆ)+๐œ‚(๐‘ฆ,๐‘ฅ)=0,forall๐‘ฅ,๐‘ฆโˆˆ๐ป, (b)๐‘ฅโ†ฆ๐œ‚(๐‘ฅ,๐‘ฆ) is affine,(c)for each fixed ๐‘ฆโˆˆ๐ป, ๐‘ฆโ†ฆ๐œ‚(๐‘ฅ,๐‘ฆ) is sequentially continuous from the weak topology to the weak topology;(C2)๐พโˆถ๐ปโ†’โ„ is ๐œ‚-strongly convex with constant ๐œŽ>0 and its derivative ๐พ๎…ž is not only sequentially continuous from the weak topology to the strong topology but also Lipschitz continuous with a Lipschitz constant ๐œˆ>0 such that ๐œŽ>๐œ†๐œˆ;(C3) for each ๐‘˜โˆˆ{1,2,โ€ฆ,๐‘} and for all ๐‘ฅโˆˆ๐ป, there exist bounded subsets ๐ธ๐‘ฅโŠ‚๐ป and ๐‘ง๐‘ฅโˆˆ๐ป such that for any ๐‘ฆโˆˆ๐ปโงต๐ธ๐‘ฅ, ฮ˜๐‘˜๎€ท๐‘ฆ,๐‘ง๐‘ฅ๎€ธ๎€ท๐‘ง+๐œ™๐‘ฅ๎€ธ1โˆ’๐œ™(๐‘ฆ)+๐‘Ÿ๐‘˜๎ซ๐พ๎…ž(๐‘ฆ)โˆ’๐พ๎…ž๎€ท๐‘ง(๐‘ฅ),๐œ‚๐‘ฅ,๐‘ฆ๎€ธ๎ฌ<0;(3.3)(C4)lim๐‘›โ†’โˆž๐›ผ๐‘›=0 and โˆ‘โˆž๐‘›=1๐›ผ๐‘›=โˆž;(C5)0<liminf๐‘›โ†’โˆž๐›ฝ๐‘›โ‰คlimsup๐‘›โ†’โˆž๐›ฝ๐‘›<1; (C6)0<๐œ<2(๐‘‘โˆ’๐‘๐ฟ2๐ต)/๐ฟ2๐ต and 0<๐›ฟ<2(๐‘‘โ€ฒโˆ’๐‘โ€ฒ๐ฟ2๐ท)/๐ฟ2๐ท.Then, {๐‘ฅ๐‘›} converges strongly to ๐‘ฅโˆ—โˆˆฮฉ, which solves the following optimization problem (OP): min๐‘ฅโˆ—โˆˆฮฉ๐œ‡2โŸจ๐ด๐‘ฅโˆ—,๐‘ฅโˆ—1โŸฉ+2โ€–๐‘ฅโˆ—โ€–โˆ’๐‘ข2๎€ท๐‘ฅโˆ’โ„Žโˆ—๎€ธ,(3.4) and (๐‘ฅโˆ—,๐‘ฆโˆ—) is a solution of the general system of variational inequality problem (1.20) such that ๐‘ฆโˆ—=๐‘ƒ๐ถ(๐‘ฅโˆ—โˆ’๐›ฟ๐ท๐‘ฅโˆ—).

Proof. By the condition (C4) and (C5), we may assume, without loss of generality, that ๐›ผ๐‘›โ‰ค(1โˆ’๐›ฝ๐‘›)(1+๐œ‡โ€–๐ดโ€–)โˆ’1 for all ๐‘›โˆˆโ„•. Indeed, ๐ด is a strongly positive bounded linear operator on ๐ป, we have ๎€ฝ||||๎€พโ€–๐ดโ€–=supโŸจ๐ด๐‘ฅ,๐‘ฅโŸฉโˆถ๐‘ฅโˆˆ๐ป,โ€–๐‘ฅโ€–=1.(3.5) Observe that ๎ซ๎€ท๎€ท1โˆ’๐›ฝ๐‘›๎€ธ๐ผโˆ’๐›ผ๐‘›๎€ธ๎ฌ(๐ผ+๐œ‡๐ด)๐‘ฅ,๐‘ฅ=1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡โŸจ๐ด๐‘ฅ,๐‘ฅโŸฉโ‰ฅ1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡โ€–๐ดโ€–โ‰ฅ0,(3.6) so this shows that (1โˆ’๐›ฝ๐‘›)๐ผโˆ’๐›ผ๐‘›(๐ผ+๐œ‡๐ด) is positive. It follows that โ€–โ€–๎€ท1โˆ’๐›ฝ๐‘›๎€ธ๐ผโˆ’๐›ผ๐‘›โ€–โ€–๎€ฝ||(๐ผ+๐œ‡๐ด)=sup๎ซ๎€ท๎€ท1โˆ’๐›ฝ๐‘›๎€ธ๐ผโˆ’๐›ผ๐‘›๎€ธ๎ฌ||๎€พ๎€ฝ(๐ผ+๐œ‡๐ด)๐‘ฅ,๐‘ฅโˆถ๐‘ฅโˆˆ๐ป,โ€–๐‘ฅโ€–=1=sup1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๎€พ๐œ‡โŸจ๐ด๐‘ฅ,๐‘ฅโŸฉโˆถ๐‘ฅโˆˆ๐ป,โ€–๐‘ฅโ€–=1โ‰ค1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ.(3.7) We shall divide the proofs into several steps.Step 1. We show that {๐‘ฅ๐‘›} is bounded.
Let ๐‘ฅโˆ—โˆˆฮฉโˆถ=๐น(๐’ฎ)โˆฉ๐น(๐‘Š)โˆฉ(โˆฉ๐‘๐‘˜=1MEP(ฮ˜๐‘˜,๐œ™))โˆฉSVI(๐ถ,๐ต,๐ท). In fact, by the assumption that for each ๐‘˜โˆˆ{1,2,โ€ฆ,๐‘}, ๐ฝฮ˜๐‘˜๐‘Ÿ๐‘˜ is nonexpansive. Let ๐’œ๐‘โˆถ=๐ฝฮ˜๐‘๐‘Ÿ๐‘โ‹ฏ๐ฝฮ˜2๐‘Ÿ2๐ฝฮ˜1๐‘Ÿ1 and ๐’œ0=๐ผ. Then, we have ๐‘ฅโˆ—=๐’œ๐‘๐‘ฅโˆ— and ๐‘ข๐‘›(๐‘)=๐’œ๐‘๐‘ฅ๐‘›. Since ๐‘ฅโˆ—โˆˆSVI(๐ถ,๐ต,๐ท), then ๐‘ฅโˆ—=๐‘ƒ๐ถ๎€บ๐‘ƒ๐ถ๎€ท๐‘ฅโˆ—โˆ’๐›ฟ๐ท๐‘ฅโˆ—๎€ธโˆ’๐œ๐ต๐‘ƒ๐ถ๎€ท๐‘ฅโˆ—โˆ’๐›ฟ๐ท๐‘ฅโˆ—๎€ธ๎€ป=๐‘ƒ๐ถ๎€บ๐‘ƒ๐ถ(๐ผโˆ’๐›ฟ๐ท)๐’œ๐‘๐‘ฅโˆ—โˆ’๐œ๐ต๐‘ƒ๐ถ(๐ผโˆ’๐›ฟ๐ท)๐’œ๐‘๐‘ฅโˆ—๎€ป.(3.8) Putting ๐‘ฆโˆ—=๐‘ƒ๐ถ(๐‘ฅโˆ—โˆ’๐›ฟ๐ท๐‘ฅโˆ—)=๐‘ƒ๐ถ(๐ผโˆ’๐›ฟ๐ท)๐’œ๐‘๐‘ฅโˆ—, we have ๐‘ฅโˆ—=๐‘ƒ๐ถ(๐‘ฆโˆ—โˆ’๐œ๐ต๐‘ฆโˆ—). Since ๐‘ฅโˆ—=๐‘†(๐‘ )๐‘ฅโˆ—,forall๐‘ โ‰ฅ0 and ๐‘ฅโˆ—=๐‘Š๐‘›๐‘ฅโˆ—,forall๐‘›โ‰ฅ1, therefore, we have ๐‘ฅโˆ—=๐’œ๐‘๐‘ฅโˆ—=๐‘ƒ๐ถ๎€ท๐‘ฆโˆ—โˆ’๐œ๐ต๐‘ฆโˆ—๎€ธ=๐‘Š๐‘›๐‘ƒ๐ถ๎€ท๐‘ฆโˆ—โˆ’๐œ๐ต๐‘ฆโˆ—๎€ธ=๐‘†(๐‘ )๐‘Š๐‘›๐‘ƒ๐ถ๎€ท๐‘ฆโˆ—โˆ’๐œ๐ต๐‘ฆโˆ—๎€ธ.(3.9) Because ๐‘ƒ๐ถ and ๐’œ๐‘ are nonexpansive mappings and from Remark 1.1, we have โ€–โ€–๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–=โ€–โ€–๐‘ƒ๐ถ๎€ท๐‘ง๐‘›โˆ’๐œ๐ต๐‘ง๐‘›๎€ธโˆ’๐‘ƒ๐ถ๎€ท๐‘ฆโˆ—โˆ’๐œ๐ต๐‘ฆโˆ—๎€ธโ€–โ€–โ‰คโ€–โ€–(๐ผโˆ’๐œ๐ต)๐‘ง๐‘›โˆ’(๐ผโˆ’๐œ๐ต)๐‘ฆโˆ—โ€–โ€–โ‰คโ€–โ€–๐‘ง๐‘›โˆ’๐‘ฆโˆ—โ€–โ€–=โ€–โ€–๐‘ƒ๐ถ๎‚€๐‘ข๐‘›(๐‘)โˆ’๐›ฟ๐ท๐‘ข๐‘›(๐‘)๎‚โˆ’๐‘ƒ๐ถ๎€ท๐‘ฅโˆ—โˆ’๐›ฟ๐ท๐‘ฅโˆ—๎€ธโ€–โ€–โ‰คโ€–โ€–(๐ผโˆ’๐›ฟ๐ท)๐‘ข๐‘›(๐‘)โˆ’(๐ผโˆ’๐›ฟ๐ท)๐‘ฅโˆ—โ€–โ€–โ‰คโ€–โ€–๐‘ข๐‘›(๐‘)โˆ’๐‘ฅโˆ—โ€–โ€–=โ€–โ€–๐’œ๐‘๐‘ฅ๐‘›โˆ’๐’œ๐‘๐‘ฅโˆ—โ€–โ€–โ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–(3.10) which yields that โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅโˆ—โ€–โ€–=โ€–โ€–โ€–๐›ผ๐‘›๐‘ข+๐›ผ๐‘›๎€ท๎€ท๐‘Š๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎€ธ+๐›ฝ๐‘›๎€ท๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—๎€ธ+๎€ท๎€ท1โˆ’๐›ฝ๐‘›๎€ธ๐ผโˆ’๐›ผ๐‘›(๎€ธ๎‚ต1๐ผ+๐œ‡๐ด)๐‘ก๐‘›๎€œ๐‘ก๐‘›0๐‘†(๐‘ )๐‘Š๐‘›๐‘ฆ๐‘›๐‘‘๐‘ โˆ’๐‘ฅโˆ—๎‚ถโ€–โ€–โ€–โ‰ค๐›ผ๐‘›โ€–๐‘ขโ€–+๐›ผ๐‘›โ€–โ€–๎€ท๐‘Š๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—โ€–โ€–+๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–+๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›๎€ท1+๐œ‡๐›พโ€–โ€–๐‘ฅ๎€ธ๎€ธ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–โ‰ค๐›ผ๐‘›โ€–๐‘ขโ€–+๐›ผ๐‘›โ€–โ€–๎€ท๐‘Š๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธ๎€ท๐‘ฅโˆ’๐›พ๐‘“โˆ—๎€ธโ€–โ€–+๐›ผ๐‘›โ€–โ€–๎€ท๐‘ฅ๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—โ€–โ€–+๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–+๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›๎€ท1+๐œ‡๐›พโ€–โ€–๐‘ฅ๎€ธ๎€ธ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–โ‰ค๐›ผ๐‘›โ€–๐‘ขโ€–+๐›ผ๐‘›โ€–โ€–๐‘ฅ๐›พ๐›ผ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–+๐›ผ๐‘›โ€–โ€–๎€ท๐‘ฅ๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—โ€–โ€–+๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–+๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›๎€ท1+๐œ‡๐›พโ€–โ€–๐‘ฅ๎€ธ๎€ธ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–=๐›ผ๐‘›๎€ทโ€–โ€–๎€ท๐‘ฅโ€–๐‘ขโ€–+๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—โ€–โ€–๎€ธ+๎€ท1โˆ’๐›ผ๐‘›๎€ท1+๐œ‡๐›พ๎€ธ+๐›ผ๐‘›๎€ธโ€–โ€–๐‘ฅ๐›พ๐›ผ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–=๎€ท1โˆ’๐›ผ๐‘›๎€ท๎€ท1+๐œ‡๐›พ๎€ธโ€–โ€–๐‘ฅโˆ’๐›พ๐›ผ๎€ธ๎€ธ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–+๐›ผ๐‘›๎€ท๎€ท1+๐œ‡๐›พ๎€ธ๎€ธโ€–โ€–๎€ท๐‘ฅโˆ’๐›พ๐›ผโ€–๐‘ขโ€–+๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—โ€–โ€–๎€ท1+๐œ‡๐›พ๎€ธ.โˆ’๐›พ๐›ผ(3.11) It follows from (3.11) and induction that โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–๎ƒฏโ€–โ€–๐‘ฅโ‰คmax1โ€–โ€–,โ€–โ€–๎€ท๐‘ฅโˆ’๐‘โ€–๐‘ขโ€–+๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—โ€–โ€–๎€ท1+๐œ‡๐›พ๎€ธ๎ƒฐโˆ’๐›พ๐›ผ,๐‘›โ‰ฅ1.(3.12) Hence, {๐‘ฅ๐‘›} is bounded, so are {๐‘ฆ๐‘›}, {๐‘ง๐‘›}, {๐‘Š๐‘›๐‘ฅ๐‘›}, {๐‘“(๐‘Š๐‘›๐‘ฅ๐‘›)}, {๐‘ข๐‘›(๐‘˜)} for all ๐‘˜=1,2,โ€ฆ,๐‘ and {๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›}, where ๐พ๐‘›=(1/๐‘ก๐‘›)โˆซ๐‘ก๐‘›0๐‘†(๐‘ )๐‘‘๐‘ .
Step 2. We prove that lim๐‘›โ†’โˆžโ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅ๐‘›โ€–=0 and lim๐‘›โ†’โˆžโ€–๐‘ข(๐‘)๐‘›+1โˆ’๐‘ข๐‘›(๐‘)โ€–=0.
Again, from Remark 1.1, we have the following estimates: โ€–โ€–๐‘ฆ๐‘›+1โˆ’๐‘ฆ๐‘›โ€–โ€–=โ€–โ€–๐‘ƒ๐ถ๎€ท๐‘ง๐‘›+1โˆ’๐œ๐ต๐‘ง๐‘›+1๎€ธโˆ’๐‘ƒ๐ถ๎€ท๐‘ง๐‘›โˆ’๐œ๐ต๐‘ง๐‘›๎€ธโ€–โ€–โ‰คโ€–โ€–๎€ท๐‘ง๐‘›+1โˆ’๐œ๐ต๐‘ง๐‘›+1๎€ธโˆ’๎€ท๐‘ง๐‘›โˆ’๐œ๐ต๐‘ง๐‘›๎€ธโ€–โ€–โ‰คโ€–โ€–๐‘ง๐‘›+1โˆ’๐‘ง๐‘›โ€–โ€–=โ€–โ€–๐‘ƒ๐ถ๎‚€๐‘ข(๐‘)๐‘›+1โˆ’๐›ฟ๐ท๐‘ข(๐‘)๐‘›+1๎‚โˆ’๐‘ƒ๐ถ๎‚€๐‘ข๐‘›(๐‘)โˆ’๐›ฟ๐ท๐‘ข๐‘›(๐‘)๎‚โ€–โ€–โ‰คโ€–โ€–๎‚€๐‘ข(๐‘)๐‘›+1โˆ’๐›ฟ๐ท๐‘ข(๐‘)๐‘›+1๎‚โˆ’๎‚€๐‘ข๐‘›(๐‘)โˆ’๐›ฟ๐ท๐‘ข๐‘›(๐‘)๎‚โ€–โ€–โ‰คโ€–โ€–๐‘ข(๐‘)๐‘›+1โˆ’๐‘ข๐‘›(๐‘)โ€–โ€–=โ€–โ€–๐’œ๐‘๐‘ฅ๐‘›+1โˆ’๐’œ๐‘๐‘ฅ๐‘›โ€–โ€–โ‰คโ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅ๐‘›โ€–โ€–.(3.13) On the other hand, since ๐‘‡๐‘– and ๐‘ˆ๐‘›,๐‘– are nonexpansive, we have โ€–โ€–๐‘Š๐‘›+1๐‘ฆ๐‘›โˆ’๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–=โ€–โ€–๐œ‡1๐‘‡1๐‘ˆ๐‘›+1,2๐‘ฆ๐‘›โˆ’๐œ‡1๐‘‡1๐‘ˆ๐‘›,2๐‘ฆ๐‘›โ€–โ€–โ‰ค๐œ‡1โ€–โ€–๐‘ˆ๐‘›+1,2๐‘ฆ๐‘›โˆ’๐‘ˆ๐‘›,2๐‘ฆ๐‘›โ€–โ€–=๐œ‡1โ€–โ€–๐œ‡2๐‘‡2๐‘ˆ๐‘›+1,3๐‘ฆ๐‘›โˆ’๐œ‡2๐‘‡2๐‘ˆ๐‘›,3๐‘ฆ๐‘›โ€–โ€–โ‰ค๐œ‡1๐œ‡2โ€–โ€–๐‘ˆ๐‘›+1,3๐‘ฆ๐‘›โˆ’๐‘ˆ๐‘›,3๐‘ฆ๐‘›โ€–โ€–โ‹ฎโ‰ค๐œ‡1๐œ‡2โ‹ฏ๐œ‡๐‘›โ€–โ€–๐‘ˆ๐‘›+1,๐‘›+1๐‘ฆ๐‘›โˆ’๐‘ˆ๐‘›,๐‘›+1๐‘ฆ๐‘›โ€–โ€–โ‰ค๐‘€1๐‘›๎‘๐‘–=1๐œ‡๐‘–,(3.14) where ๐‘€1โ‰ฅ0 is a constant such that โ€–๐‘ˆ๐‘›+1,๐‘›+1๐‘ฆ๐‘›โˆ’๐‘ˆ๐‘›,๐‘›+1๐‘ฆ๐‘›โ€–โ‰ค๐‘€1 for all ๐‘›โ‰ฅ0. It follows from (3.13) and (3.14) that we have โ€–โ€–๐‘Š๐‘›+1๐‘ฆ๐‘›+1โˆ’๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–โ‰คโ€–โ€–๐‘Š๐‘›+1๐‘ฆ๐‘›+1โˆ’๐‘Š๐‘›+1๐‘ฆ๐‘›โ€–โ€–+โ€–โ€–๐‘Š๐‘›+1๐‘ฆ๐‘›โˆ’๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–โ‰คโ€–โ€–๐‘ฆ๐‘›+1โˆ’๐‘ฆ๐‘›โ€–โ€–+๐‘€1๐‘›๎‘๐‘–=1๐œ‡๐‘–โ‰คโ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅ๐‘›โ€–โ€–+๐‘€1๐‘›๎‘๐‘–=1๐œ‡๐‘–.(3.15) It follows that โ€–โ€–๐พ๐‘›+1๐‘Š๐‘›+1๐‘ฆ๐‘›+1โˆ’๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–=โ€–โ€–โ€–1๐‘ก๐‘›+1๎€œ๐‘ก๐‘›+10๐‘†(๐‘ )๐‘Š๐‘›+1๐‘ฆ๐‘›+11๐‘‘๐‘ โˆ’๐‘ก๐‘›๎€œ๐‘ก๐‘›0๐‘†(๐‘ )๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–โ€–โ‰ค1๐‘‘๐‘ ๐‘ก๐‘›+1๎€œ๐‘ก๐‘›+10โ€–โ€–๐‘†(๐‘ )๐‘Š๐‘›+1๐‘ฆ๐‘›+1โˆ’๐‘†(๐‘ )๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–+โ€–โ€–โ€–1๐‘‘๐‘ ๐‘ก๐‘›+1๎€œ๐‘ก๐‘›+10๐‘†(๐‘ )๐‘Š๐‘›๐‘ฆ๐‘›1๐‘‘๐‘ โˆ’๐‘ก๐‘›๎€œ๐‘ก๐‘›0๐‘†(๐‘ )๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–โ€–โ‰คโ€–โ€–๐‘Š๐‘‘๐‘ ๐‘›+1๐‘ฆ๐‘›+1โˆ’๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–+โ€–โ€–โ€–1๐‘ก๐‘›+1๎€œ๐‘ก๐‘›+1๐‘ก๐‘›๐‘†(๐‘ )๐‘Š๐‘›๐‘ฆ๐‘›1๐‘‘๐‘ +๐‘ก๐‘›+1๎€œ๐‘ก๐‘›0๐‘†(๐‘ )๐‘Š๐‘›๐‘ฆ๐‘›1๐‘‘๐‘ โˆ’๐‘ก๐‘›๎€œ๐‘ก๐‘›0๐‘†(๐‘ )๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–โ€–โ‰คโ€–โ€–๐‘Š๐‘‘๐‘ ๐‘›+1๐‘ฆ๐‘›+1โˆ’๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–+1๐‘ก๐‘›+1๎€œ๐‘ก๐‘›+1๐‘ก๐‘›โ€–โ€–๐‘†(๐‘ )๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–+||||1๐‘‘๐‘ ๐‘ก๐‘›+1โˆ’1๐‘ก๐‘›||||๎€œ๐‘ก๐‘›0โ€–โ€–๐‘†(๐‘ )๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–โ‰คโ€–โ€–๐‘Š๐‘‘๐‘ ๐‘›+1๐‘ฆ๐‘›+1โˆ’๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–๎‚ต๐‘ก+21โˆ’๐‘›๐‘ก๐‘›+1๎‚ถ๐‘€2โ‰คโ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅ๐‘›โ€–โ€–+๐‘€1๐‘›๎‘๐‘–=1๐œ‡๐‘–๎‚ต๐‘ก+21โˆ’๐‘›๐‘ก๐‘›+1๎‚ถ๐‘€2,(3.16) where ๐‘€2=max{โ€–๐‘†(๐‘ )๐‘Š๐‘›๐‘ฆ๐‘›โ€–}.
Setting ๐‘ฅ๐‘›+1=(1โˆ’๐›ฝ๐‘›)๐‘ฃ๐‘›+๐›ฝ๐‘›๐‘ฅ๐‘›, for all ๐‘›โ‰ฅ1, we have ๐‘ฃ๐‘›=๐‘ฅ๐‘›+1โˆ’๐›ฝ๐‘›๐‘ฅ๐‘›1โˆ’๐›ฝ๐‘›=๐›ผ๐‘›๎€ท๎€ท๐‘Š๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›+๎€ธ๎€ธ๎€ท๎€ท1โˆ’๐›ฝ๐‘›๎€ธ๐ผโˆ’๐›ผ๐‘›๎€ธ๐พ(๐ผ+๐œ‡๐ด)๐‘›๐‘Š๐‘›๐‘ฆ๐‘›1โˆ’๐›ฝ๐‘›.(3.17) Then, we obtain ๐‘ฃ๐‘›+1โˆ’๐‘ฃ๐‘›=๐›ผ๐‘›+1๎€ท๎€ท๐‘Š๐‘ข+๐›พ๐‘“๐‘›+1๐‘ฅ๐‘›+1+๎€ธ๎€ธ๎€ท๎€ท1โˆ’๐›ฝ๐‘›+1๎€ธ๐ผโˆ’๐›ผ๐‘›+1๎€ธ๐พ(๐ผ+๐œ‡๐ด)๐‘›+1๐‘Š๐‘›+1๐‘ฆ๐‘›+11โˆ’๐›ฝ๐‘›+1โˆ’๐›ผ๐‘›๎€ท๎€ท๐‘Š๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›+๎€ธ๎€ธ๎€ท๎€ท1โˆ’๐›ฝ๐‘›๎€ธ๐ผโˆ’๐›ผ๐‘›(๎€ธ๐พ๐ผ+๐œ‡๐ด)๐‘›๐‘Š๐‘›๐‘ฆ๐‘›1โˆ’๐›ฝ๐‘›=๐›ผ๐‘›+11โˆ’๐›ฝ๐‘›+1๎€ท๎€ท๐‘Š๐‘ข+๐›พ๐‘“๐‘›+1๐‘ฅ๐‘›+1โˆ’๐›ผ๎€ธ๎€ธ๐‘›1โˆ’๐›ฝ๐‘›๎€ท๎€ท๐‘Š๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธ๎€ธ+๐พ๐‘›+1๐‘Š๐‘›+1๐‘ฆ๐‘›+1โˆ’๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›+๐›ผ๐‘›1โˆ’๐›ฝ๐‘›(๐ผ+๐œ‡๐ด)๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐›ผ๐‘›+11โˆ’๐›ฝ๐‘›+1(๐ผ+๐œ‡๐ด)๐พ๐‘›+1๐‘Š๐‘›+1๐‘ฆ๐‘›+1=๐›ผ๐‘›+11โˆ’๐›ฝ๐‘›+1๎€ท๐‘Š๎€ท๎€ท๐‘ข+๐›พ๐‘“๐‘›+1๐‘ฅ๐‘›+1๎€ธ๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐พ๐‘›+1๐‘Š๐‘›+1๐‘ฆ๐‘›+1๎€ธ+๐›ผ๐‘›1โˆ’๐›ฝ๐‘›๎€ท(๐ผ+๐œ‡๐ด)๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›๎€ท๐‘Šโˆ’๐‘ขโˆ’๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธ๎€ธ+๐พ๐‘›+1๐‘Š๐‘›+1๐‘ฆ๐‘›+1โˆ’๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›.(3.18) It follows from (3.16) and (3.18) that โ€–โ€–๐‘ฃ๐‘›+1โˆ’๐‘ฃ๐‘›โ€–โ€–โˆ’โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅ๐‘›โ€–โ€–โ‰ค๐›ผ๐‘›+11โˆ’๐›ฝ๐‘›+1๎€ทโ€–โ€–๎€ท๐‘Šโ€–๐‘ขโ€–+๐›พ๐‘“๐‘›+1๐‘ฅ๐‘›+1๎€ธโ€–โ€–+โ€–โ€–(๐ผ+๐œ‡๐ด)๐พ๐‘›+1๐‘Š๐‘›+1๐‘ฆ๐‘›+1โ€–โ€–๎€ธ+๐›ผ๐‘›1โˆ’๐›ฝ๐‘›๎€ทโ€–โ€–(๐ผ+๐œ‡๐ด)๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–โ€–โ€–๎€ท๐‘Š+โ€–๐‘ขโ€–+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธโ€–โ€–๎€ธ+๐‘€1๐‘›๎‘๐‘–=1๐œ‡๐‘–๎‚ต๐‘ก+21โˆ’๐‘›๐‘ก๐‘›+1๎‚ถ๐‘€2.(3.19) By the conditions (C4), (C5) and from ๐‘ก๐‘›โˆˆ(0,โˆž), ๐‘ก๐‘›โ†’โˆž and 0<๐œ‡๐‘–โ‰ค๐‘<1,forall๐‘–โ‰ฅ1, we have limsup๐‘›โ†’โˆž๎€ทโ€–โ€–๐‘ฃ๐‘›+1โˆ’๐‘ฃ๐‘›โ€–โ€–โˆ’โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅ๐‘›โ€–โ€–๎€ธโ‰ค0.(3.20) Hence, by Lemma 2.7, we obtain lim๐‘›โ†’โˆžโ€–โ€–๐‘ฃ๐‘›โˆ’๐‘ฅ๐‘›โ€–โ€–=0.(3.21) It follows that lim๐‘›โ†’โˆžโ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅ๐‘›โ€–โ€–=lim๐‘›โ†’โˆž๎€ท1โˆ’๐›ฝ๐‘›๎€ธโ€–โ€–๐‘ฃ๐‘›โˆ’๐‘ฅ๐‘›โ€–โ€–=0.(3.22) Applying (3.22) into (3.13), we obtain that lim๐‘›โ†’โˆžโ€–โ€–๐‘ฆ๐‘›+1โˆ’๐‘ฆ๐‘›โ€–โ€–=lim๐‘›โ†’โˆžโ€–โ€–๐‘ง๐‘›+1โˆ’๐‘ง๐‘›โ€–โ€–=lim๐‘›โ†’โˆžโ€–โ€–๐‘ข(๐‘)๐‘›+1โˆ’๐‘ข๐‘›(๐‘)โ€–โ€–=0.(3.23)
Step 3. We show that lim๐‘›โ†’โˆžโ€–๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฆ๐‘›โ€–=0, lim๐‘›โ†’โˆžโ€–๐‘ฆ๐‘›โˆ’๐‘†(๐‘ )๐‘ฆ๐‘›โ€–=0, and lim๐‘›โ†’โˆžโ€–๐‘ข๐‘›(๐‘˜+1)โˆ’๐‘ข๐‘›(๐‘˜)โ€–=0, where ๐พ๐‘›=(1/๐‘ก๐‘›)โˆซ๐‘ก๐‘›0๐‘†(๐‘ )๐‘‘๐‘ .
Since ๐‘ฅ๐‘›+1=๐›ผ๐‘›(๐‘ข+๐›พ๐‘“(๐‘Š๐‘›๐‘ฅ๐‘›))+๐›ฝ๐‘›๐‘ฅ๐‘›+((1โˆ’๐›ฝ๐‘›)๐ผโˆ’๐›ผ๐‘›(๐ผ+๐œ‡๐ด))๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›, we have โ€–โ€–๐‘ฅ๐‘›โˆ’๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–โ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›+1โ€–โ€–+โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–=โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›+1โ€–โ€–+โ€–โ€–๐›ผ๐‘›๎€ท๎€ท๐‘Š๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธ๎€ธ+๐›ฝ๐‘›๐‘ฅ๐‘›+๎€ท๎€ท1โˆ’๐›ฝ๐‘›๎€ธ๐ผโˆ’๐›ผ๐‘›๎€ธ๐พ(๐ผ+๐œ‡๐ด)๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–=โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›+1โ€–โ€–+โ€–โ€–๐›ผ๐‘›๎€ท๐‘Š๎€ท๎€ท๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธ๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›๎€ธ+๐›ฝ๐‘›๎€ท๐‘ฅ๐‘›โˆ’๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›๎€ธโ€–โ€–โ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›+1โ€–โ€–+๐›ผ๐‘›๎€ทโ€–โ€–๎€ท๐‘Šโ€–๐‘ขโ€–+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธโ€–โ€–+โ€–โ€–(๐ผ+๐œ‡๐ด)๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–๎€ธ+๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–,(3.24) that is โ€–โ€–๐‘ฅ๐‘›โˆ’๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–โ‰ค11โˆ’๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›+1โ€–โ€–+๐›ผ๐‘›1โˆ’๐›ฝ๐‘›๎€ทโ€–โ€–๎€ท๐‘Šโ€–๐‘ขโ€–+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธโ€–โ€–+โ€–โ€–(๐ผ+๐œ‡๐ด)๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–๎€ธ.(3.25) By (C4), (C5), and (3.22) it follows that lim๐‘›โ†’โˆžโ€–โ€–๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅ๐‘›โ€–โ€–=0.(3.26)
Since ๐ฝฮ˜๐‘๐‘Ÿ๐‘โˆถ๐ถโ†’๐ถ is firmly nonexpansive, ๐‘ข๐‘›(๐‘)=๐’œ๐‘๐‘ฅ๐‘›, where ๐’œ๐‘โˆถ=๐ฝฮ˜๐‘๐‘Ÿ๐‘โ‹ฏ๐ฝฮ˜2๐‘Ÿ2๐ฝฮ˜1๐‘Ÿ1 and ๐‘ฅโˆ—โˆˆฮฉ, we have โ€–โ€–๐‘ข๐‘›(๐‘)โˆ’๐‘ฅโˆ—โ€–โ€–2=โ€–โ€–๐’œ๐‘๐‘ฅ๐‘›โˆ’๐’œ๐‘๐‘ฅโˆ—โ€–โ€–2โ‰ค๎ซ๐’œ๐‘๐‘ฅ๐‘›โˆ’๐’œ๐‘๐‘ฅโˆ—,๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—๎ฌ=๎‚ฌ๐‘ข๐‘›(๐‘)โˆ’๐‘ฅโˆ—,๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—๎‚ญ=12๎‚€โ€–โ€–๐‘ข๐‘›(๐‘)โˆ’๐‘ฅโˆ—โ€–โ€–2+โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2โˆ’โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ข๐‘›(๐‘)โ€–โ€–2๎‚,(3.27) and hence โ€–โ€–๐‘ข๐‘›(๐‘)โˆ’๐‘ฅโˆ—โ€–โ€–2โ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2โˆ’โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ข๐‘›(๐‘)โ€–โ€–2.(3.28) Observe that โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅโˆ—โ€–โ€–2=โ€–โ€–๎€ท๎€ท1โˆ’๐›ฝ๐‘›๎€ธ๐ผโˆ’๐›ผ๐‘›๐พ(๐ผ+๐œ‡๐ด)๎€ธ๎€ท๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ธ+๐›ฝ๐‘›๎€ท๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—๎€ธ+๐›ผ๐‘›๎€ท๎€ท๐‘Š๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎€ธโ€–โ€–2=โ€–โ€–๎€ท๎€ท1โˆ’๐›ฝ๐‘›๎€ธ๐ผโˆ’๐›ผ๐‘›๐พ(๐ผ+๐œ‡๐ด)๎€ธ๎€ท๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ธ+๐›ฝ๐‘›๎€ท๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—๎€ธโ€–โ€–2+๐›ผ2๐‘›โ€–โ€–๎€ท๐‘Š๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—โ€–โ€–2+2๐›ฝ๐‘›๐›ผ๐‘›๎ซ๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—๎€ท๐‘Š,๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎ฌ+2๐›ผ๐‘›๎ซ๎€ท๎€ท1โˆ’๐›ฝ๐‘›๎€ธ๐ผโˆ’๐›ผ๐‘›๐พ(๐ผ+๐œ‡๐ด)๎€ธ๎€ท๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ธ๎€ท๐‘Š,๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎ฌโ‰ค๎€บ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธโ€–โ€–๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–+๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–๎€ป2+๐›ผ2๐‘›โ€–โ€–๎€ท๐‘Š๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—โ€–โ€–2+2๐›ฝ๐‘›๐›ผ๐‘›๎ซ๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—๎€ท๐‘Š,๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎ฌ+2๐›ผ๐‘›๎ซ๎€ท๎€ท1โˆ’๐›ฝ๐‘›๎€ธ๐ผโˆ’๐›ผ๐‘›๐พ(๐ผ+๐œ‡๐ด)๎€ธ๎€ท๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ธ๎€ท๐‘Š,๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎ฌ=๎€บ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธโ€–โ€–๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–+๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–๎€ป2+๐‘๐‘›โ‰ค๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ2โ€–โ€–๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๐›ฝ2๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2๎€ท+21โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๐›ฝ๐‘›โ€–โ€–๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–+๐‘๐‘›โ‰ค๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ2โ€–โ€–๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๐›ฝ2๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๐›ฝ๐‘›๎‚ƒโ€–โ€–๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2๎‚„+๐‘๐‘›=๎‚ƒ๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ2๎€ทโˆ’21โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๐›ฝ๐‘›+๐›ฝ2๐‘›๎‚„โ€–โ€–๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๐›ฝ2๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๎€บ๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๐›ฝ๐‘›โˆ’๐›ฝ2๐‘›๎€ป๎‚ƒโ€–โ€–๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2๎‚„+๐‘๐‘›=๎‚ƒ๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ2โˆ’๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๐›ฝ๐‘›๎‚„โ€–โ€–๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๐‘๐‘›โ‰ค๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธโ€–โ€–๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๐‘๐‘›,(3.29) where ๐‘๐‘›=๐›ผ2๐‘›โ€–โ€–๐‘ข+๐›พ๐‘“(๐‘Š๐‘›๐‘ฅ๐‘›)โˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—โ€–โ€–2+2๐›ฝ๐‘›๐›ผ๐‘›๎ซ๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—๎€ท๐‘Š,๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎ฌ+2๐›ผ๐‘›๎ซ๎€ท๎€ท1โˆ’๐›ฝ๐‘›๎€ธ๐ผโˆ’๐›ผ๐‘›๐พ(๐ผ+๐œ‡๐ด)๎€ธ๎€ท๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ธ๎€ท๐‘Š,๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎ฌ.(3.30) It follows from condition (C4) that lim๐‘›โ†’โˆž๐‘๐‘›=0.(3.31) Putting (3.28) into (3.29) and using also (3.10), we have โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅโˆ—โ€–โ€–2โ‰ค๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธโ€–โ€–๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๐‘๐‘›โ‰ค๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธโ€–โ€–๐‘ข๐‘›(๐‘)โˆ’๐‘ฅโˆ—โ€–โ€–2+๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๐‘๐‘›โ‰ค๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎‚†โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2โˆ’โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ข๐‘›(๐‘)โ€–โ€–2๎‚‡+๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๐‘๐‘›=๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ2โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2โˆ’๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ข๐‘›(๐‘)โ€–โ€–2+๐‘๐‘›โ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2โˆ’๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ข๐‘›(๐‘)โ€–โ€–2+๐‘๐‘›.(3.32) It follows that ๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ข๐‘›(๐‘)โ€–โ€–2โ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2โˆ’โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅโˆ—โ€–โ€–2+๐‘๐‘›โ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›+1โ€–โ€–๎€ทโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–+โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅโˆ—โ€–โ€–๎€ธ+๐‘๐‘›.(3.33) Therefore, by (3.22) and (3.31), we get lim๐‘›โ†’โˆžโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ข๐‘›(๐‘)โ€–โ€–=0.(3.34) Since โ€–โ€–๐‘ข๐‘›(๐‘)โˆ’๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–โ‰คโ€–โ€–๐‘ข๐‘›(๐‘)โˆ’๐‘ฅ๐‘›โ€–โ€–+โ€–โ€–๐‘ฅ๐‘›โˆ’๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–,(3.35) and by (3.26) and (3.70), we have lim๐‘›โ†’โˆžโ€–โ€–๐‘ข๐‘›(๐‘)โˆ’๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–=0.(3.36) Since ๐ต is a ๐ฟ๐ต-Lipschitz continuous and relaxed (๐‘,๐‘‘)-cocoercive mapping on ๐ต and 0<๐œ<2(๐‘‘โˆ’๐‘๐ฟ2๐ต)/๐ฟ2๐ต for any ๐‘ฅโˆ—โˆˆฮฉ, we have โ€–โ€–๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2=โ€–โ€–๐‘ƒ๐ถ๎€ท๐‘ง๐‘›โˆ’๐œ๐ต๐‘ง๐‘›๎€ธโˆ’๐‘ƒ๐ถ๎€ท๐‘ฆโˆ—โˆ’๐œ๐ต๐‘ฆโˆ—๎€ธโ€–โ€–2โ‰คโ€–โ€–๎€ท๐‘ง๐‘›โˆ’๐‘ฆโˆ—๎€ธ๎€ทโˆ’๐œ๐ต๐‘ง๐‘›โˆ’๐ต๐‘ฆโˆ—๎€ธโ€–โ€–2=โ€–โ€–๐‘ง๐‘›โˆ’๐‘ฆโˆ—โ€–โ€–2โˆ’2๐œโŸจ๐‘ง๐‘›โˆ’๐‘ฆโˆ—,๐ต๐‘ง๐‘›โˆ’๐ต๐‘ฆโˆ—โŸฉ+๐œ2โ€–โ€–๐ต๐‘ง๐‘›โˆ’๐ต๐‘ฆโˆ—โ€–โ€–2โ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2๎‚†โ€–โ€–โˆ’2๐œโˆ’๐‘๐ต๐‘ง๐‘›โˆ’๐ต๐‘ฆโˆ—โ€–โ€–2โ€–โ€–๐‘ง+๐‘‘๐‘›โˆ’๐‘ฆโˆ—โ€–โ€–2๎‚‡+๐œ2โ€–โ€–๐ต๐‘ง๐‘›โˆ’๐ต๐‘ฆโˆ—โ€–โ€–2=โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2โ€–โ€–+2๐œ๐‘๐ต๐‘ง๐‘›โˆ’๐ต๐‘ฆโˆ—โ€–โ€–2โ€–โ€–๐‘งโˆ’2๐œ๐‘‘๐‘›โˆ’๐‘ฆโˆ—โ€–โ€–2+๐œ2โ€–โ€–๐ต๐‘ง๐‘›โˆ’๐ต๐‘ฆโˆ—โ€–โ€–2โ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2โ€–โ€–+2๐œ๐‘๐ต๐‘ง๐‘›โˆ’๐ต๐‘ฆโˆ—โ€–โ€–2โˆ’2๐œ๐‘‘๐ฟ2๐ตโ€–โ€–๐ต๐‘ง๐‘›โˆ’๐ต๐‘ฆโˆ—โ€–โ€–2+๐œ2โ€–โ€–๐ต๐‘ฆ๐‘›โ€–โ€–โˆ’๐ต๐‘2=โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๎ƒฉ2๐œ๐‘+๐œ2โˆ’2๐œ๐‘‘๐ฟ2๐ต๎ƒชโ€–โ€–๐ต๐‘ง๐‘›โˆ’๐ต๐‘ฆโˆ—โ€–โ€–2.(3.37) Similarly, since ๐ท is a ๐ฟ๐ท-Lipschitz continuous and relaxed (๐‘โ€ฒ,๐‘‘โ€ฒ)-cocoercive mapping on ๐ท and 0<๐›ฟ<2(๐‘‘โ€ฒโˆ’๐‘โ€ฒ๐ฟ2๐ท)/๐ฟ2๐ท, we also have โ€–โ€–๐‘ง๐‘›โˆ’๐‘ฆโˆ—โ€–โ€–2โ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๎ƒฉ2๐›ฟ๐‘๎…ž+๐›ฟ2โˆ’2๐›ฟ๐‘‘๎…ž๐ฟ2๐ท๎ƒชโ€–โ€–๐ท๐‘ข๐‘›(๐‘)โˆ’๐ท๐‘ฅโˆ—โ€–โ€–2.(3.38) Substituting (3.37) into (3.29), we have โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅโˆ—โ€–โ€–2โ‰ค๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธร—๎ƒฏโ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–2+๎ƒฉ2๐œ๐‘+๐œ2โˆ’2๐œ๐‘‘๐ฟ2๐ต๎ƒชโ€–โ€–๐ต๐‘ง๐‘›โˆ’๐ต๐‘ฆโˆ—โ€–โ€–2๎ƒฐ+๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๐‘๐‘›=๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ2โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎ƒฉ2๐œ๐‘+๐œ2โˆ’2๐œ๐‘‘๐ฟ2๐ต๎ƒชโ€–โ€–๐ต๐‘ง๐‘›โˆ’๐ต๐‘ฆโˆ—โ€–โ€–2+๐‘๐‘›โ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๎ƒฉ2๐œ๐‘+๐œ2โˆ’2๐œ๐‘‘๐ฟ2๐ต๎ƒชโ€–โ€–๐ต๐‘ง๐‘›โˆ’๐ต๐‘ฆโˆ—โ€–โ€–2+๐‘๐‘›.(3.39) Again, substituting (3.38) into (3.29) and using also (3.10), we get โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅโˆ—โ€–โ€–2โ‰ค๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธโ€–โ€–๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๐‘๐‘›โ‰ค๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธโ€–โ€–๐‘ง๐‘›โˆ’๐‘ฆโˆ—โ€–โ€–2+๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๐‘๐‘›โ‰ค๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธร—๎ƒฏโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๎ƒฉ2๐›ฟ๐‘๎…ž+๐›ฟ2โˆ’2๐›ฟ๐‘‘๎…ž๐ฟ2๐ท๎ƒชโ€–โ€–๐ท๐‘ข๐‘›(๐‘)โˆ’๐ท๐‘ฅโˆ—โ€–โ€–2๎ƒฐ+๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๐‘๐‘›=๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ2โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธร—๎ƒฉ2๐›ฟ๐‘๎…ž+๐›ฟ2โˆ’2๐›ฟ๐‘‘๎…ž๐ฟ2๐ท๎ƒชโ€–โ€–๐ท๐‘ข๐‘›(๐‘)โˆ’๐ท๐‘ฅโˆ—โ€–โ€–2+๐‘๐‘›โ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๎ƒฉ2๐›ฟ๐‘๎…ž+๐›ฟ2โˆ’2๐›ฟ๐‘‘๎…ž๐ฟ2๐ท๎ƒชโ€–โ€–๐ท๐‘ข๐‘›(๐‘)โˆ’๐ท๐‘ฅโˆ—โ€–โ€–2+๐‘๐‘›.(3.40) Therefore, by (3.39) and (3.40), we have ๎ƒฉ2๐œ๐‘‘๐ฟ2๐ตโˆ’2๐œ๐‘โˆ’๐œ2๎ƒชโ€–โ€–๐ต๐‘ง๐‘›โˆ’๐ต๐‘ฆโˆ—โ€–โ€–2โ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2โˆ’โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅโˆ—โ€–โ€–2+๐‘๐‘›โ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›+1โ€–โ€–๎€ทโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–+โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅโˆ—โ€–โ€–๎€ธ+๐‘๐‘›,๎ƒฉ2๐›ฟ๐‘‘๎…ž๐ฟ2๐ทโˆ’2๐›ฟ๐‘๎…žโˆ’๐›ฟ2๎ƒชโ€–โ€–๐ท๐‘ข๐‘›(๐‘)โˆ’๐ท๐‘ฅโˆ—โ€–โ€–2โ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2โˆ’โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅโˆ—โ€–โ€–2+๐‘๐‘›โ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›+1โ€–โ€–๎€ทโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–+โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅโˆ—โ€–โ€–๎€ธ+๐‘๐‘›.(3.41) It follows from (3.22) and (3.31) that we obtain lim๐‘›โ†’โˆžโ€–โ€–๐ต๐‘ง๐‘›โˆ’๐ต๐‘ฆโˆ—โ€–โ€–=0,(3.42)lim๐‘›โ†’โˆžโ€–โ€–๐ท๐‘ข๐‘›(๐‘)โˆ’๐ท๐‘ฅโˆ—โ€–โ€–=0.(3.43) From (2.6), we have โ€–โ€–๐‘ง๐‘›โˆ’๐‘ฆโˆ—โ€–โ€–2=โ€–โ€–๐‘ƒ๐ถ๎‚€๐‘ข๐‘›(๐‘)โˆ’๐›ฟ๐ท๐‘ข๐‘›(๐‘)๎‚โˆ’๐‘ƒ๐ถ๎€ท๐‘ฅโˆ—โˆ’๐›ฟ๐ท๐‘ฅโˆ—๎€ธโ€–โ€–2โ‰ค๐‘ข๎‚ฌ๎‚€๐‘›(๐‘)โˆ’๐›ฟ๐ท๐‘ข๐‘›(๐‘)๎‚โˆ’๎€ท๐‘ฅโˆ—โˆ’๐›ฟ๐ท๐‘ฅโˆ—๎€ธ,๐‘ง๐‘›โˆ’๐‘ฆโˆ—๎‚ญ=12๎‚ปโ€–โ€–๎‚€๐‘ข๐‘›(๐‘)โˆ’๐›ฟ๐ท๐‘ข๐‘›(๐‘)๎‚โˆ’๎€ท๐‘ฅโˆ—โˆ’๐›ฟ๐ท๐‘ฅโˆ—๎€ธโ€–โ€–2+โ€–โ€–๐‘ง๐‘›โˆ’๐‘ฆโˆ—โ€–โ€–2โˆ’โ€–โ€–๐‘ข๎‚ƒ๎‚€๐‘›(๐‘)โˆ’๐›ฟ๐ท๐‘ข๐‘›(๐‘)๎‚โˆ’๎€ท๐‘ฅโˆ—โˆ’๐›ฟ๐ท๐‘ฅโˆ—๎€ธ๎‚„โˆ’๎€ท๐‘ง๐‘›โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–2๎‚ผโ‰ค12๎‚ปโ€–โ€–๐‘ข๐‘›(๐‘)โˆ’๐‘ฅโˆ—โ€–โ€–2+โ€–โ€–๐‘ง๐‘›โˆ’๐‘ฆโˆ—โ€–โ€–2โˆ’โ€–โ€–๎‚€๐‘ข๐‘›(๐‘)โˆ’๐‘ง๐‘›๎‚โˆ’๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธ๎‚€โˆ’๐›ฟ๐ท๐‘ข๐‘›(๐‘)โˆ’๐ท๐‘ฅโˆ—๎‚โ€–โ€–2๎‚ผ=12๎‚ปโ€–โ€–๐‘ข๐‘›(๐‘)โˆ’๐‘ฅโˆ—โ€–โ€–2+โ€–โ€–๐‘ง๐‘›โˆ’๐‘ฆโˆ—โ€–โ€–2โˆ’โ€–โ€–๎‚€๐‘ข๐‘›(๐‘)โˆ’๐‘ง๐‘›๎‚โˆ’๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–2๐‘ข+2๐›ฟ๎‚ฌ๎‚€๐‘›(๐‘)โˆ’๐‘ง๐‘›๎‚โˆ’๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธ,๐ท๐‘ข๐‘›(๐‘)โˆ’๐ท๐‘ฅโˆ—๎‚ญโˆ’๐›ฟ2โ€–โ€–๐ท๐‘ข๐‘›(๐‘)โˆ’๐ท๐‘ฅโˆ—โ€–โ€–2๎‚‡โ‰ค12๎‚ปโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+โ€–โ€–๐‘ง๐‘›โˆ’๐‘ฆโˆ—โ€–โ€–2โˆ’โ€–โ€–๎‚€๐‘ข๐‘›(๐‘)โˆ’๐‘ง๐‘›๎‚โˆ’๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–2โ€–โ€–๎‚€๐‘ข+2๐›ฟ๐‘›(๐‘)โˆ’๐‘ง๐‘›๎‚โˆ’๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–โ€–โ€–๐ท๐‘ข๐‘›(๐‘)โˆ’๐ท๐‘ฅโˆ—โ€–โ€–โˆ’๐›ฟ2โ€–โ€–๐ท๐‘ข๐‘›(๐‘)โˆ’๐ท๐‘ฅโˆ—โ€–โ€–2๎‚‡.(3.44) So, we obtain โ€–โ€–๐‘ง๐‘›โˆ’๐‘ฆโˆ—โ€–โ€–2โ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2โˆ’โ€–โ€–๎‚€๐‘ข๐‘›(๐‘)โˆ’๐‘ง๐‘›๎‚โˆ’๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–2โ€–โ€–๎‚€๐‘ข+2๐›ฟ๐‘›(๐‘)โˆ’๐‘ง๐‘›๎‚โˆ’๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–โ€–โ€–๐ท๐‘ข๐‘›(๐‘)โˆ’๐ท๐‘ฅโˆ—โ€–โ€–โˆ’๐›ฟ2โ€–โ€–๐ท๐‘ข๐‘›(๐‘)โˆ’๐ท๐‘ฅโˆ—โ€–โ€–2.(3.45) By (3.29), we get โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅโˆ—โ€–โ€–2โ‰ค๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธโ€–โ€–๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๐‘๐‘›โ‰ค๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธโ€–โ€–๐‘ง๐‘›โˆ’๐‘ฆโˆ—โ€–โ€–2+๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๐‘๐‘›โ‰ค๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธร—๎‚ปโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2โˆ’โ€–โ€–๎‚€๐‘ข๐‘›(๐‘)โˆ’๐‘ง๐‘›๎‚โˆ’๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–2โ€–โ€–๎‚€๐‘ข+2๐›ฟ๐‘›(๐‘)โˆ’๐‘ง๐‘›๎‚โˆ’๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–โ€–โ€–๐ท๐‘ข๐‘›(๐‘)โˆ’๐ท๐‘ฅโˆ—โ€–โ€–โˆ’๐›ฟ2โ€–โ€–๐ท๐‘ข๐‘›(๐‘)โˆ’๐ท๐‘ฅโˆ—โ€–โ€–2๎‚‡+๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๐‘๐‘›=๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ2โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธร—๎‚ปโˆ’โ€–โ€–๎‚€๐‘ข๐‘›(๐‘)โˆ’๐‘ง๐‘›๎‚โˆ’๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–2โ€–โ€–๎‚€๐‘ข+2๐›ฟ๐‘›(๐‘)โˆ’๐‘ง๐‘›๎‚โˆ’๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–โ€–โ€–๐ท๐‘ข๐‘›(๐‘)โˆ’๐ท๐‘ฅโˆ—โ€–โ€–โˆ’๐›ฟ2โ€–โ€–๐ท๐‘ข๐‘›(๐‘)โˆ’๐ท๐‘ฅโˆ—โ€–โ€–2๎‚‡+๐‘๐‘›โ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2โˆ’๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธโ€–โ€–๎‚€๐‘ข๐‘›(๐‘)โˆ’๐‘ง๐‘›๎‚โˆ’๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–2โ€–โ€–๎‚€๐‘ข+2๐›ฟ๐‘›(๐‘)โˆ’๐‘ง๐‘›๎‚โˆ’๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–โ€–โ€–๐ท๐‘ข๐‘›(๐‘)โˆ’๐ท๐‘ฅโˆ—โ€–โ€–โˆ’๐›ฟ2๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธโ€–โ€–๐ท๐‘ข๐‘›(๐‘)โˆ’๐ท๐‘ฅโˆ—โ€–โ€–2+๐‘๐‘›(3.46) which implies that ๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธโ€–โ€–๎‚€๐‘ข๐‘›(๐‘)โˆ’๐‘ง๐‘›๎‚โˆ’๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–2โ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2โˆ’โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅโˆ—โ€–โ€–2โ€–โ€–๎‚€๐‘ข+2๐›ฟ๐‘›(๐‘)โˆ’๐‘ง๐‘›๎‚โˆ’๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–โ€–โ€–๐ท๐‘ข๐‘›(๐‘)โˆ’๐ท๐‘ฅโˆ—โ€–โ€–โˆ’๐›ฟ2๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธโ€–โ€–๐ท๐‘ข๐‘›(๐‘)โˆ’๐ท๐‘ฅโˆ—โ€–โ€–2+๐‘๐‘›โ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›+1โ€–โ€–๎€ทโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–+โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅโˆ—โ€–โ€–๎€ธโ€–โ€–๎‚€๐‘ข+2๐›ฟ๐‘›(๐‘)โˆ’๐‘ง๐‘›๎‚โˆ’๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–โ€–โ€–๐ท๐‘ข๐‘›(๐‘)โˆ’๐ท๐‘ฅโˆ—โ€–โ€–โˆ’๐›ฟ2๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธโ€–โ€–๐ท๐‘ข๐‘›(๐‘)โˆ’๐ท๐‘ฅโˆ—โ€–โ€–2+๐‘๐‘›.(3.47) From (3.22), (3.31), and (3.43), we have lim๐‘›โ†’โˆžโ€–โ€–๎‚€๐‘ข๐‘›(๐‘)โˆ’๐‘ง๐‘›๎‚โˆ’๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–=0.(3.48) Now, from (2.2) and (2.7), we observe that โ€–โ€–๎€ท๐‘ง๐‘›โˆ’๐‘ฆ๐‘›๎€ธ+๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–2=โ€–โ€–๎€ท๐‘ง๐‘›โˆ’๐œ๐ต๐‘ง๐‘›๎€ธโˆ’๎€ท๐‘ฆโˆ—โˆ’๐œ๐ต๐‘ฆโˆ—๎€ธโˆ’๎€บ๐‘ƒ๐ถ๎€ท๐‘ง๐‘›โˆ’๐œ๐ต๐‘ง๐‘›๎€ธโˆ’๐‘ƒ๐ถ๎€ท๐‘ฆโˆ—โˆ’๐œ๐ต๐‘ฆโˆ—๎€ท๎€ธ๎€ป+๐œ๐ต๐‘ง๐‘›โˆ’๐ต๐‘ฆโˆ—๎€ธโ€–โ€–2โ‰คโ€–โ€–๎€ท๐‘ง๐‘›โˆ’๐œ๐ต๐‘ง๐‘›๎€ธโˆ’๎€ท๐‘ฆโˆ—โˆ’๐œ๐ต๐‘ฆโˆ—๎€ธโˆ’๎€บ๐‘ƒ๐ถ๎€ท๐‘ง๐‘›โˆ’๐œ๐ต๐‘ง๐‘›๎€ธโˆ’๐‘ƒ๐ถ๎€ท๐‘ฆโˆ—โˆ’๐œ๐ต๐‘ฆโˆ—โ€–โ€–๎€ธ๎€ป2๎ซ+2๐œ๐ต๐‘ง๐‘›โˆ’๐ต๐‘ฆโˆ—,๎€ท๐‘ง๐‘›โˆ’๐‘ฆ๐‘›๎€ธ+๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—โ‰คโ€–โ€–๎€ท๐‘ง๎€ธ๎ฌ๐‘›โˆ’๐œ๐ต๐‘ง๐‘›๎€ธโˆ’๎€ท๐‘ฆโˆ—โˆ’๐œ๐ต๐‘ฆโˆ—๎€ธโ€–โ€–2โˆ’โ€–โ€–๐‘ƒ๐ถ๎€ท๐‘ง๐‘›โˆ’๐œ๐ต๐‘ง๐‘›๎€ธโˆ’๐‘ƒ๐ถ๎€ท๐‘ฆโˆ—โˆ’๐œ๐ต๐‘ฆโˆ—๎€ธโ€–โ€–2โ€–โ€–+2๐œ๐ต๐‘ง๐‘›โˆ’๐ต๐‘ฆโˆ—โ€–โ€–โ€–โ€–๎€ท๐‘ง๐‘›โˆ’๐‘ฆ๐‘›๎€ธ+๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–โ‰คโ€–โ€–๎€ท๐‘ง๐‘›โˆ’๐œ๐ต๐‘ง๐‘›๎€ธโˆ’๎€ท๐‘ฆโˆ—โˆ’๐œ๐ต๐‘ฆโˆ—๎€ธโ€–โ€–2โˆ’โ€–โ€–๐พ๐‘›๐‘Š๐‘›๐‘ƒ๐ถ๎€ท๐‘ง๐‘›โˆ’๐œ๐ต๐‘ง๐‘›๎€ธโˆ’๐พ๐‘›๐‘Š๐‘›๐‘ƒ๐ถ๎€ท๐‘ฆโˆ—โˆ’๐œ๐ต๐‘ฆโˆ—๎€ธโ€–โ€–2โ€–โ€–+2๐œ๐ต๐‘ง๐‘›โˆ’๐ต๐‘ฆโˆ—โ€–โ€–โ€–โ€–๎€ท๐‘ง๐‘›โˆ’๐‘ฆ๐‘›๎€ธ+๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–=โ€–โ€–๎€ท๐‘ง๐‘›โˆ’๐œ๐ต๐‘ง๐‘›๎€ธโˆ’๎€ท๐‘ฆโˆ—โˆ’๐œ๐ต๐‘ฆโˆ—๎€ธโ€–โ€–2โˆ’โ€–โ€–๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐พ๐‘›๐‘Š๐‘›๐‘ฅโˆ—โ€–โ€–2โ€–โ€–+2๐œ๐ต๐‘ง๐‘›โˆ’๐ต๐‘ฆโˆ—โ€–โ€–โ€–โ€–๎€ท๐‘ง๐‘›โˆ’๐‘ฆ๐‘›๎€ธ+๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–=๎€ทโ€–โ€–๎€ท๐‘ง๐‘›โˆ’๐œ๐ต๐‘ง๐‘›๎€ธโˆ’๎€ท๐‘ฆโˆ—โˆ’๐œ๐ต๐‘ฆโˆ—๎€ธโ€–โ€–โˆ’โ€–โ€–๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–๎€ธร—๎€ทโ€–โ€–๎€ท๐‘ง๐‘›โˆ’๐œ๐ต๐‘ง๐‘›๎€ธโˆ’๎€ท๐‘ฆโˆ—โˆ’๐œ๐ต๐‘ฆโˆ—๎€ธโ€–โ€–+โ€–โ€–๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–๎€ธโ€–โ€–+2๐œ๐ต๐‘ง๐‘›โˆ’๐ต๐‘ฆโˆ—โ€–โ€–โ€–โ€–๎€ท๐‘ง๐‘›โˆ’๐‘ฆ๐‘›๎€ธ+๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–โ‰คโ€–โ€–๎€ท๐‘ง๐‘›โˆ’๐œ๐ต๐‘ง๐‘›๎€ธโˆ’๎€ท๐‘ฆโˆ—โˆ’๐œ๐ต๐‘ฆโˆ—๎€ธโˆ’๎€ท๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ธโ€–โ€–ร—๎€ทโ€–โ€–๎€ท๐‘ง๐‘›โˆ’๐œ๐ต๐‘ง๐‘›๎€ธโˆ’๎€ท๐‘ฆโˆ—โˆ’๐œ๐ต๐‘ฆโˆ—๎€ธโ€–โ€–+โ€–โ€–๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–๎€ธโ€–โ€–+2๐œ๐ต๐‘ง๐‘›โˆ’๐ต๐‘ฆโˆ—โ€–โ€–โ€–โ€–๎€ท๐‘ง๐‘›โˆ’๐‘ฆ๐‘›๎€ธ+๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–=โ€–โ€–๎‚€๐‘ข๐‘›(๐‘)โˆ’๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›๎‚+๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโˆ’๎‚€๐‘ข๐‘›(๐‘)โˆ’๐‘ง๐‘›๎‚๎€ทโˆ’๐œ๐ต๐‘ง๐‘›โˆ’๐ต๐‘ฆโˆ—๎€ธโ€–โ€–ร—๎€ทโ€–โ€–๎€ท๐‘ง๐‘›โˆ’๐œ๐ต๐‘ง๐‘›๎€ธโˆ’๎€ท๐‘ฆโˆ—โˆ’๐œ๐ต๐‘ฆโˆ—๎€ธโ€–โ€–+โ€–โ€–๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–๎€ธโ€–โ€–+2๐œ๐ต๐‘ง๐‘›โˆ’๐ต๐‘ฆโˆ—โ€–โ€–โ€–โ€–๎€ท๐‘ง๐‘›โˆ’๐‘ฆ๐‘›๎€ธ+๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–.(3.49) It follows from (3.36), (3.42), and (3.48) that we have lim๐‘›โ†’โˆžโ€–โ€–๎€ท๐‘ง๐‘›โˆ’๐‘ฆ๐‘›๎€ธ+๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–=0,(3.50) since โ€–โ€–๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฆ๐‘›โ€–โ€–โ‰คโ€–โ€–๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ข๐‘›(๐‘)โ€–โ€–+โ€–โ€–๎‚€๐‘ข๐‘›(๐‘)โˆ’๐‘ง๐‘›๎‚โˆ’๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–+โ€–โ€–๎€ท๐‘ง๐‘›โˆ’๐‘ฆ๐‘›๎€ธ+๎€ท๐‘ฅโˆ—โˆ’๐‘ฆโˆ—๎€ธโ€–โ€–.(3.51) It follows from (3.36), (3.48) and (3.50), we get lim๐‘›โ†’โˆžโ€–โ€–๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฆ๐‘›โ€–โ€–=0,(3.52) and from (3.26), and (3.52) that we have lim๐‘›โ†’โˆžโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฆ๐‘›โ€–โ€–=0.(3.53) Since {๐‘Š๐‘›๐‘ฆ๐‘›} is a bounded sequence in ๐ถ, from Lemma 2.10 for all ๐‘ โ‰ฅ0, we have lim๐‘›โ†’โˆžโ€–โ€–๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘†(๐‘ )๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–=lim๐‘›โ†’โˆžโ€–โ€–โ€–1๐‘ก๐‘›๎€œ๐‘ก๐‘›0๐‘†(๐‘ )๐‘Š๐‘›๐‘ฆ๐‘›๎‚ต1๐‘‘๐‘ โˆ’๐‘†(๐‘ )๐‘ก๐‘›๎€œ๐‘ก๐‘›0๐‘†(๐‘ )๐‘Š๐‘›๐‘ฆ๐‘›๎‚ถโ€–โ€–โ€–๐‘‘๐‘ =0,(3.54) and since โ€–โ€–๐‘ฆ๐‘›โˆ’๐‘†(๐‘ )๐‘ฆ๐‘›โ€–โ€–โ‰คโ€–โ€–๐‘ฆ๐‘›โˆ’๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–+โ€–โ€–๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘†(๐‘ )๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–+โ€–โ€–๐‘†(๐‘ )๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘†(๐‘ )๐‘ฆ๐‘›โ€–โ€–โ€–โ€–๐‘ฆโ‰ค2๐‘›โˆ’๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–+โ€–โ€–๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘†(๐‘ )๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–,(3.55) it follows from (3.52) and (3.54) that we get lim๐‘›โ†’โˆžโ€–โ€–๐‘ฆ๐‘›โˆ’๐‘†(๐‘ )๐‘ฆ๐‘›โ€–โ€–=0.(3.56)
On the other hand, since ๐ฝฮ˜๐‘˜๐‘Ÿ๐‘˜โˆถ๐ปโ†’๐ป is firmly nonexpansive, ๐’œ๐‘˜โˆถ=๐ฝฮ˜๐‘˜๐‘Ÿ๐‘˜โ‹ฏ๐ฝฮ˜2๐‘Ÿ2๐ฝฮ˜1๐‘Ÿ1,๐‘˜=1,2,โ€ฆ,๐‘ and ๐‘ฅโˆ—โˆˆฮฉ, we have โ€–โ€–๐’œ๐‘˜+1๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2=โ€–โ€–๐ฝฮ˜๐‘˜+1๐‘Ÿ๐‘˜+1๐’œ๐‘˜๐‘ฅ๐‘›โˆ’๐ฝฮ˜๐‘˜+1๐‘Ÿ๐‘˜+1๐‘ฅโˆ—โ€–โ€–2โ‰ค๎‚ฌ๐ฝฮ˜๐‘˜+1๐‘Ÿ๐‘˜+1๐’œ๐‘˜๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—,๐’œ๐‘˜๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—๎‚ญ=12๎‚€โ€–โ€–๐ฝฮ˜๐‘˜+1๐‘Ÿ๐‘˜+1๐’œ๐‘˜๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+โ€–โ€–๐’œ๐‘˜๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2โˆ’โ€–โ€–๐ฝฮ˜๐‘˜+1๐‘Ÿ๐‘˜+1๐’œ๐‘˜๐‘ฅ๐‘›โˆ’๐’œ๐‘˜๐‘ฅ๐‘›โ€–โ€–2๎‚,(3.57) and hence โ€–โ€–๐’œ๐‘˜+1๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2โ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2โˆ’โ€–โ€–๐’œ๐‘˜+1๐‘ฅ๐‘›โˆ’๐’œ๐‘˜๐‘ฅ๐‘›โ€–โ€–2.(3.58) From (3.10), (3.29), and (3.58), for each ๐‘˜=1,2,โ€ฆ,๐‘โˆ’1, we have โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅโˆ—โ€–โ€–2โ‰ค๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธโ€–โ€–๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๐‘๐‘›โ‰ค๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธโ€–โ€–๐’œ๐‘˜๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๐‘๐‘›โ‰ค๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธโ€–โ€–๐’œ๐‘˜+1๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๐‘๐‘›โ‰ค๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎‚†โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2โˆ’โ€–โ€–๐’œ๐‘˜+1๐‘ฅ๐‘›โˆ’๐’œ๐‘˜๐‘ฅ๐‘›โ€–โ€–2๎‚‡+๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๐‘๐‘›=๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ2โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2โˆ’๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธโ€–โ€–๐’œ๐‘˜+1๐‘ฅ๐‘›โˆ’๐’œ๐‘˜๐‘ฅ๐‘›โ€–โ€–2+๐‘๐‘›โ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2โˆ’๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธโ€–โ€–๐’œ๐‘˜+1๐‘ฅ๐‘›โˆ’๐’œ๐‘˜๐‘ฅ๐‘›โ€–โ€–2+๐‘๐‘›.(3.59) It follows that ๎€ท1โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›โˆ’๐›ผ๐‘›๐œ‡๐›พ๎€ธโ€–โ€–๐’œ๐‘˜+1๐‘ฅ๐‘›โˆ’๐’œ๐‘˜๐‘ฅ๐‘›โ€–โ€–2โ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2โˆ’โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅโˆ—โ€–โ€–2+๐‘๐‘›โ‰คโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›+1โ€–โ€–๎€ทโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–+โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅโˆ—โ€–โ€–๎€ธ+๐‘๐‘›.(3.60) Therefore, by (3.22) and (3.31), we get lim๐‘›โ†’โˆžโ€–โ€–๐’œ๐‘˜+1๐‘ฅ๐‘›โˆ’๐’œ๐‘˜๐‘ฅ๐‘›โ€–โ€–=0thatislim๐‘›โ†’โˆžโ€–โ€–๐‘ข๐‘›(๐‘˜+1)โˆ’๐‘ข๐‘›(๐‘˜)โ€–โ€–=0.(3.61)
Step 4. We prove that limsup๐‘›โ†’โˆž[]๐‘ฅโŸจ๐‘ข+๐›พ๐‘“โˆ’(๐ผ+๐œ‡๐ด)โˆ—,๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โŸฉโ‰ค0,(3.62) where ๐‘ฅโˆ— is a solution of the optimization problem: min๐‘ฅโˆˆฮฉ๐œ‡2โŸจ๐ด๐‘ฅโˆ—,๐‘ฅโˆ—1โŸฉ+2โ€–๐‘ฅโˆ—โ€–โˆ’๐‘ข2๎€ท๐‘ฅโˆ’โ„Žโˆ—๎€ธ.(3.63) To show this inequality, we can choose a subsequence {๐‘ฆ๐‘›๐‘–} of {๐‘ฆ๐‘›} such that lim๐‘–โ†’โˆž๎ซ[]๐‘ฅ๐‘ข+๐›พ๐‘“โˆ’(๐ผ+๐œ‡๐ด)โˆ—,๐‘ฆ๐‘›๐‘–โˆ’๐‘ฅโˆ—๎ฌ=limsup๐‘›โ†’โˆž[]๐‘ฅโŸจ๐‘ข+๐›พ๐‘“โˆ’(๐ผ+๐œ‡๐ด)โˆ—,๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โŸฉ.(3.64)
Since {๐‘ฆ๐‘›๐‘–} is bounded, there exists a subsequence {๐‘ฆ๐‘›๐‘–๐‘—} of {๐‘ฆ๐‘›๐‘–} which converges weakly to ๐‘งโˆˆ๐ถ. Without loss of generality, we can assume that ๐‘ฆ๐‘›๐‘–โ‡€๐‘ง. From (3.53), we get ๐‘ฅ๐‘›๐‘–โ‡€๐‘ง.
Next, we show that ๐‘งโˆˆฮฉโˆถ=๐น(๐’ฎ)โˆฉ๐น(๐‘Š)โˆฉ๐”‰โˆฉSVI(๐ถ,๐ต,๐ท), where ๐”‰=(โˆฉ๐‘๐‘˜=1MEP(ฮ˜๐‘˜,๐œ™)).
(1) First, we prove that ๐‘งโˆˆ๐น(๐’ฎ). Indeed, from Lemma 2.11 and (3.56), we get ๐‘งโˆˆ๐น(๐’ฎ), that is, ๐‘ง=๐‘†(๐‘ )๐‘ง,forall๐‘ โ‰ฅ0.
(2) Next, we show that ๐‘งโˆˆ๐น(๐‘Š)=โˆฉโˆž๐‘›=1๐น(๐‘Š๐‘›), where ๐น(๐‘Š๐‘›)=โˆฉ๐‘›๐‘–=1๐น(๐‘‡๐‘–),forall๐‘›โ‰ฅ1 and ๐น(๐‘Š๐‘›+1)โŠ‚๐น(๐‘Š๐‘›). Assume that ๐‘งโˆ‰๐น(๐‘Š), then there exists a positive integer ๐‘š such that ๐‘งโˆ‰๐น(๐‘‡๐‘š) and so ๐‘งโˆ‰โˆฉ๐‘š๐‘–=1๐น(๐‘‡๐‘–). Hence for any ๐‘›โ‰ฅ๐‘š,๐‘งโˆ‰โˆฉ๐‘›๐‘–=1๐น(๐‘‡๐‘–)=๐น(๐‘Š๐‘›), that is, ๐‘งโ‰ ๐‘Š๐‘›๐‘ง. This together with ๐‘ง=๐‘†(๐‘ )๐‘ง,forall๐‘ โ‰ฅ0, shows ๐‘ง=๐‘†(๐‘ )๐‘งโ‰ ๐‘†(๐‘ )๐‘Š๐‘›๐‘ง,forall๐‘ โ‰ฅ0; therefore, we have ๐‘งโ‰ ๐พ๐‘›๐‘Š๐‘›๐‘ง,forall๐‘›โ‰ฅ๐‘š. It follows from the Opialโ€™s condition and (3.52) that liminf๐‘–โ†’โˆžโ€–โ€–๐‘ฆ๐‘›๐‘–โ€–โ€–โˆ’๐‘ง<liminf๐‘–โ†’โˆžโ€–โ€–๐‘ฆ๐‘›๐‘–โˆ’๐พ๐‘›๐‘–๐‘Š๐‘›๐‘–๐‘งโ€–โ€–โ‰คliminf๐‘–โ†’โˆž๎€ทโ€–โ€–๐‘ฆ๐‘›๐‘–โˆ’๐พ๐‘›๐‘–๐‘Š๐‘›๐‘–๐‘ฆ๐‘›๐‘–โ€–โ€–+โ€–โ€–๐พ๐‘›๐‘–๐‘Š๐‘›๐‘–๐‘ฆ๐‘›๐‘–โˆ’๐พ๐‘›๐‘–๐‘Š๐‘›๐‘–๐‘งโ€–โ€–๎€ธโ‰คliminf๐‘–โ†’โˆžโ€–โ€–๐‘ฆ๐‘›๐‘–โ€–โ€–,โˆ’๐‘ง(3.65) which is a contradiction. Thus, we get ๐‘งโˆˆ๐น(๐‘Š).
(3) Now, we prove that ๐‘งโˆˆ๐”‰. Since ๐’œ๐‘˜+1=๐ฝฮ˜๐‘˜+1๐‘Ÿ๐‘˜+1๐’œ๐‘˜,๐‘˜=1,2,โ€ฆ,๐‘โˆ’1, and ๐‘ข๐‘›(๐‘˜+1)=๐’œ๐‘˜+1๐‘ฅ๐‘›, we have ฮ˜๎€ท๐’œ๐‘˜+1๐‘ฅ๐‘›๎€ธ๎€ท๐’œ,๐‘ฅ+๐œ™(๐‘ฅ)โˆ’๐œ™๐‘˜+1๐‘ฅ๐‘›๎€ธ+1๐‘Ÿ๐‘˜+1๎ซ๐พ๎…ž๎€ท๐’œ๐‘˜+1๐‘ฅ๐‘›๎€ธโˆ’๐พ๎…ž๎€ท๐’œ๐‘˜๐‘ฅ๐‘›๎€ธ๎€ท,๐œ‚๐‘ฅ,๐’œ๐‘˜+1๐‘ฅ๐‘›๎€ธ๎ฌโ‰ฅ0,โˆ€๐‘ฅโˆˆ๐ป.(3.66) It follows that 1๐‘Ÿ๐‘˜+1๎ซ๐พ๎…ž๎€ท๐’œ๐‘˜+1๐‘ฅ๐‘›๐‘–๎€ธโˆ’๐พ๎…ž๎€ท๐’œ๐‘˜๐‘ฅ๐‘›๐‘–๎€ธ๎€ท,๐œ‚๐‘ฅ,๐’œ๐‘˜+1๐‘ฅ๐‘›๐‘–๎€ท๐’œ๎€ธ๎ฌโ‰ฅโˆ’ฮ˜๐‘˜+1๐‘ฅ๐‘›๐‘–๎€ธ๎€ท๐’œ,๐‘ฅโˆ’๐œ™(๐‘ฅ)+๐œ™๐‘˜+1๐‘ฅ๐‘›๐‘–๎€ธ(3.67) for all ๐‘ฅโˆˆ๐ป. From (3.61) and by conditions (C1)(c) and (C2), we get lim๐‘›๐‘–โ†’โˆž1๐‘Ÿ๐‘˜+1๎ซ๐พ๎…ž๎€ท๐’œ๐‘˜+1๐‘ฅ๐‘›๐‘–๎€ธโˆ’๐พ๎…ž๎€ท๐’œ๐‘˜๐‘ฅ๐‘›๐‘–๎€ธ๎€ท,๐œ‚๐‘ฅ,๐’œ๐‘˜+1๐‘ฅ๐‘›๐‘–๎€ธ๎ฌ=0.(3.68) By the assumption that ๐œ™ is lower semicontinuous, then it is weakly lower semicontinuous and by the condition (H2) that ๐‘ฅโ†ฆ(โˆ’ฮ˜๐‘–(๐‘ฅ,๐‘ฆ)) is lower semicontinuous, then it is weakly lower semicontinuous. Since ๐‘ฆ๐‘›๐‘–โ‡€๐‘ง, it follows from (3.36), (3.52), and (3.61) that ๐‘ข๐‘›(๐‘˜)๐‘–โ‡€๐‘ง for each ๐‘˜=1,2,โ€ฆ,๐‘โˆ’1. Taking the lower limit ๐‘›๐‘–โ†’โˆž in (3.67), we have ฮ˜๐‘˜+1(๐‘ง,๐‘ฅ)+๐œ™(๐‘ฅ)โˆ’๐œ™(๐‘ง)โ‰ฅ0,โˆ€๐‘ฅโˆˆ๐ป,โˆ€๐‘˜=0,1,2,โ€ฆ,๐‘โˆ’1.(3.69) Therefore, ๐‘งโˆˆโˆฉ๐‘๐‘˜=1MEP(ฮ˜๐‘˜,๐œ™).
(4) Next, we show that ๐‘งโˆˆSVI(๐ถ,๐ต,๐ท). By (3.36) and (3.52), we have โ€–โ€–๐‘ข๐‘›(๐‘)โˆ’๐‘ฆ๐‘›โ€–โ€–โ‰คโ€–โ€–๐‘ข๐‘›(๐‘)โˆ’๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โ€–โ€–+โ€–โ€–๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฆ๐‘›โ€–โ€–โŸถ0as๐‘›โŸถโˆž.(3.70) By Lemma 2.13 that ๐บ is a nonexpansive, we obtain โ€–โ€–๐‘ฆ๐‘›๎€ท๐‘ฆโˆ’๐บ๐‘›๎€ธโ€–โ€–=โ€–โ€–๐‘ƒ๐ถ๎‚ƒ๐‘ƒ๐ถ๎‚€๐‘ข๐‘›(๐‘)โˆ’๐›ฟ๐ท๐‘ข๐‘›(๐‘)๎‚โˆ’๐œ๐ต๐‘ƒ๐ถ๎‚€๐‘ข๐‘›(๐‘)โˆ’๐›ฟ๐ท๐‘ข๐‘›(๐‘)๎€ท๐‘ฆ๎‚๎‚„โˆ’๐บ๐‘›๎€ธโ€–โ€–=โ€–โ€–๐บ๎‚€๐‘ข๐‘›(๐‘)๎‚๎€ท๐‘ฆโˆ’๐บ๐‘›๎€ธโ€–โ€–โ‰คโ€–โ€–๐‘ข๐‘›(๐‘)โˆ’๐‘ฆ๐‘›โ€–โ€–.(3.71) Thus, lim๐‘›โ†’โˆžโ€–โ€–๐‘ฆ๐‘›๎€ท๐‘ฆโˆ’๐บ๐‘›๎€ธโ€–โ€–=0.(3.72) By Lemma 2.14, we obtain that ๐‘งโˆˆSVI(๐ถ,๐ต,๐ท). Hence ๐‘งโˆˆฮฉ is proved.
Now, from Lemma 2.9, (3.64), and (3.53), we have limsup๐‘›โ†’โˆž[]๐‘ฅโŸจ๐‘ข+๐›พ๐‘“โˆ’(๐ผ+๐œ‡๐ด)โˆ—,๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โŸฉ=limsup๐‘›โ†’โˆž[]๐‘ฅโŸจ๐‘ข+๐›พ๐‘“โˆ’(๐ผ+๐œ‡๐ด)โˆ—,๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โŸฉ=lim๐‘–โ†’โˆž๎ซ[]๐‘ฅ๐‘ข+๐›พ๐‘“โˆ’(๐ผ+๐œ‡๐ด)โˆ—,๐‘ฆ๐‘›๐‘–โˆ’๐‘ฅโˆ—๎ฌ[]๐‘ฅ=โŸจ๐‘ข+๐›พ๐‘“โˆ’(๐ผ+๐œ‡๐ด)โˆ—,๐‘งโˆ’๐‘ฅโˆ—โŸฉโ‰ค0.(3.73) By (3.52), (3.53), and (3.73), we obtain limsup๐‘›โ†’โˆž[]๐‘ฅโŸจ๐‘ข+๐›พ๐‘“โˆ’(๐ผ+๐œ‡๐ด)โˆ—,๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โŸฉโ‰ค0.(3.74)
Step 5. Finally, we show that ๐‘ฅ๐‘›โ†’๐‘ฅโˆ—. From (3.1), we obtain โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅโˆ—โ€–โ€–2=โ€–โ€–๐›ผ๐‘›๎€ท๎€ท๐‘Š๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธ๎€ธ+๐›ฝ๐‘›๐‘ฅ๐‘›+๎€ท๎€ท1โˆ’๐›ฝ๐‘›๎€ธ๐ผโˆ’๐›ผ๐‘›๎€ธ๐พ(๐ผ+๐œ‡๐ด)๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2=โ€–โ€–๎€ท๎€ท1โˆ’๐›ฝ๐‘›๎€ธ๐ผโˆ’๐›ผ๐‘›๐พ(๐ผ+๐œ‡๐ด)๎€ธ๎€ท๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ธ+๐›ฝ๐‘›๎€ท๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—๎€ธ+๐›ผ๐‘›๎€ท๎€ท๐‘Š๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎€ธโ€–โ€–2=โ€–โ€–๎€ท๎€ท1โˆ’๐›ฝ๐‘›๎€ธ๐ผโˆ’๐›ผ๐‘›๐พ(๐ผ+๐œ‡๐ด)๎€ธ๎€ท๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ธ+๐›ฝ๐‘›๎€ท๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—๎€ธโ€–โ€–2+2๐›ผ๐‘›๎ซ๎€ท๎€ท1โˆ’๐›ฝ๐‘›๎€ธ๐ผโˆ’๐›ผ๐‘›๐พ(๐ผ+๐œ‡๐ด)๎€ธ๎€ท๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ธ๎€ท๐‘Š,๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎ฌ+2๐›ผ๐‘›๐›ฝ๐‘›๎ซ๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—๎€ท๐‘Š,๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎ฌ+๐›ผ2๐‘›๎€ท๐‘Šโ€–๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—โ€–2โ‰ค๎€บ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›๎€ท1+๐œ‡๐›พโ€–โ€–๐พ๎€ธ๎€ธ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–+๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–๎€ป2+2๐›ผ๐‘›๎€ท1โˆ’๐›ฝ๐‘›๎€ธ๐›พ๎ซ๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ท๐‘Š,๐‘“๐‘›๐‘ฅ๐‘›๎€ธ๎€ท๐‘ฅโˆ’๐‘“โˆ—๎€ธ๎ฌ+2๐›ผ๐‘›๎€ท1โˆ’๐›ฝ๐‘›๐พ๎€ธ๎ซ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ท๐‘ฅ,๐‘ข+๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎ฌโˆ’2๐›ผ2๐‘›๐›พ๎ซ๎€ท๐พ(๐ผ+๐œ‡๐ด)๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ธ๎€ท๐‘Š,๐‘“๐‘›๐‘ฅ๐‘›๎€ธ๎€ท๐‘ฅโˆ’๐‘“โˆ—๎€ธ๎ฌโˆ’2๐›ผ2๐‘›๎ซ(๎€ท๐พ๐ผ+๐œ‡๐ด)๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ธ๎€ท๐‘ฅ,๐‘ข+๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎ฌ+2๐›ผ๐‘›๐›ฝ๐‘›๐›พ๎ซ๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—๎€ท๐‘Š,๐‘“๐‘›๐‘ฅ๐‘›๎€ธ๎€ท๐‘ฅโˆ’๐‘“โˆ—๎€ธ๎ฌ+2๐›ผ๐‘›๐›ฝ๐‘›๎ซ๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—๎€ท๐‘ฅ,๐‘ข+๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎ฌ+๐›ผ2๐‘›โ€–โ€–๎€ท๐‘Š๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—โ€–โ€–2โ‰ค๎€บ๎€ท1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›๎€ท1+๐œ‡๐›พโ€–โ€–๐พ๎€ธ๎€ธ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–+๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–๎€ป2+2๐›ผ๐‘›๎€ท1โˆ’๐›ฝ๐‘›๎€ธ๐›พโ€–โ€–๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–โ€–โ€–๐‘“๎€ท๐‘Š๐‘›๐‘ฅ๐‘›๎€ธ๎€ท๐‘ฅโˆ’๐‘“โˆ—๎€ธโ€–โ€–+2๐›ผ๐‘›๎€ท1โˆ’๐›ฝ๐‘›๐พ๎€ธ๎ซ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ท๐‘ฅ,๐‘ข+๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎ฌโˆ’2๐›ผ2๐‘›๐›พโ€–โ€–๎€ท๐พ(๐ผ+๐œ‡๐ด)๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ธโ€–โ€–โ€–โ€–๐‘“๎€ท๐‘Š๐‘›๐‘ฅ๐‘›๎€ธ๎€ท๐‘ฅโˆ’๐‘“โˆ—๎€ธโ€–โ€–โˆ’2๐›ผ2๐‘›โ€–โ€–๎€ท๐พ(๐ผ+๐œ‡๐ด)๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ธโ€–โ€–โ€–โ€–๎€ท๐‘ฅ๐‘ข+๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—โ€–โ€–+2๐›ผ๐‘›๐›ฝ๐‘›๐›พโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–โ€–โ€–๐‘“๎€ท๐‘Š๐‘›๐‘ฅ๐‘›๎€ธ๎€ท๐‘ฅโˆ’๐‘“โˆ—๎€ธโ€–โ€–+2๐›ผ๐‘›๐›ฝ๐‘›๎ซ๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—๎€ท๐‘ฅ,๐‘ข+๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎ฌ+๐›ผ2๐‘›โ€–โ€–๎€ท๐‘Š๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—โ€–โ€–2โ‰ค๎€บ(1โˆ’๐›ฝ๐‘›โˆ’๐›ผ๐‘›(1+๐œ‡โ€–โ€–๐‘ฅ๐›พ))๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–+๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–๎€ป2+2๐›ผ๐‘›๎€ท1โˆ’๐›ฝ๐‘›๎€ธโ€–โ€–๐‘ฅ๐›พ๐›ผ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+2๐›ผ๐‘›๎€ท1โˆ’๐›ฝ๐‘›๐พ๎€ธ๎ซ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ท๐‘ฅ,๐‘ข+๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎ฌโˆ’2๐›ผ2๐‘›โ€–โ€–๎€ท๐พ๐›พ๐›ผ(๐ผ+๐œ‡๐ด)๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ธโ€–โ€–โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–โˆ’2๐›ผ2๐‘›โ€–โ€–๎€ท๐พ(๐ผ+๐œ‡๐ด)๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ธโ€–โ€–โ€–โ€–๎€ท๐‘ฅ๐‘ข+๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—โ€–โ€–+2๐›ผ๐‘›๐›ฝ๐‘›โ€–โ€–๐‘ฅ๐›พ๐›ผ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+2๐›ผ๐‘›๐›ฝ๐‘›๎ซ๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—๎€ท๐‘ฅ,๐‘ข+๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎ฌ+๐›ผ2๐‘›โ€–โ€–๎€ท๐‘Š๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—โ€–โ€–2=๎€บ๎€ท1โˆ’๐›ผ๐‘›๎€ท1+๐œ‡๐›พ๎€ธ๎€ธ+2๐›ผ๐‘›๎€ปโ€–โ€–๐‘ฅ๐›พ๐›ผ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๐›ผ๐‘›๎‚†2๎€ท1โˆ’๐›ฝ๐‘›๐พ๎€ธ๎ซ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ท๐‘ฅ,๐‘ข+๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎ฌโˆ’2๐›ผ๐‘›โ€–โ€–๎€ท๐พ๐›พ๐›ผ(๐ผ+๐œ‡๐ด)๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ธโ€–โ€–โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–โˆ’2๐›ผ๐‘›โ€–โ€–๎€ท๐พ(๐ผ+๐œ‡๐ด)๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ธโ€–โ€–โ€–โ€–๎€ท๐‘ฅ๐‘ข+๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—โ€–โ€–+2๐›ฝ๐‘›๎ซ๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—๎€ท๐‘ฅ,๐‘ข+๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎ฌ+๐›ผ๐‘›โ€–โ€–๎€ท๐‘Š๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—โ€–โ€–2๎‚‡=๎‚ƒ1โˆ’2๐›ผ๐‘›๎€ท1+๐œ‡๐›พ๎€ธ+๐›ผ2๐‘›๎€ท1+๐œ‡๐›พ๎€ธ2+2๐›ผ๐‘›๎‚„โ€–โ€–๐‘ฅ๐›พ๐›ผ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๐›ผ๐‘›๎‚†2๎€ท1โˆ’๐›ฝ๐‘›๐พ๎€ธ๎ซ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ท๐‘ฅ,๐‘ข+๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎ฌโˆ’2๐›ผ๐‘›โ€–โ€–๎€ท๐พ๐›พ๐›ผ(๐ผ+๐œ‡๐ด)๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ธโ€–โ€–โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–โˆ’2๐›ผ๐‘›โ€–โ€–๎€ท๐พ(๐ผ+๐œ‡๐ด)๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ธโ€–โ€–โ€–โ€–๎€ท๐‘ฅ๐‘ข+๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—โ€–โ€–+2๐›ฝ๐‘›๎ซ๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—๎€ท๐‘ฅ,๐‘ข+๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎ฌ+๐›ผ๐‘›โ€–โ€–๎€ท๐‘Š๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—โ€–โ€–2๎‚‡.=๎€บ1โˆ’2๐›ผ๐‘›๎€ท1+๐œ‡โ€–โ€–๐‘ฅ๐›พโˆ’๐›พ๐›ผ๎€ธ๎€ป๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๐›ผ๐‘›๎‚†2๎€ท1โˆ’๐›ฝ๐‘›๐พ๎€ธ๎ซ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ท๐‘ฅ,๐‘ข+๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎ฌ+2๐›ฝ๐‘›๎ซ๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—๎€ท๐‘ฅ,๐‘ข+๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎ฌ+๐›ผ๐‘›๎‚ƒ๎€ท1+๐œ‡๐›พ๎€ธ2โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2โ€–โ€–๎€ท๐พโˆ’2๐›พ๐›ผ(๐ผ+๐œ‡๐ด)๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ธโ€–โ€–โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–โ€–โ€–๎€ท๐พโˆ’2(๐ผ+๐œ‡๐ด)๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ธโ€–โ€–โ€–โ€–๎€ท๐‘ฅ๐‘ข+๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—โ€–โ€–+โ€–โ€–๐‘ข+๐›พ๐‘“(๐‘Š๐‘›๐‘ฅ๐‘›)โˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—โ€–โ€–2.๎‚„๎‚‡(3.75) Since {๐‘ฅ๐‘›}, {๐‘“(๐‘Š๐‘›๐‘ฅ๐‘›)}, and {๐พ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›} are bounded, there exist ๐‘€>0 such that ๎€ท1+๐œ‡๐›พ๎€ธ2โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2โ€–โ€–๎€ท๐พโˆ’2๐›พ๐›ผ(๐ผ+๐œ‡๐ด)๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ธโ€–โ€–โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–โ€–โ€–๎€ท๐พโˆ’2(๐ผ+๐œ‡๐ด)๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ธโ€–โ€–โ€–โ€–๎€ท๐‘ฅ๐‘ข+๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—โ€–โ€–+โ€–โ€–๎€ท๐‘Š๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—โ€–โ€–2โ‰ค๐‘€(3.76) for all ๐‘›โ‰ฅ0. It follows that โ€–โ€–๐‘ฅ๐‘›+1โˆ’๐‘ฅโˆ—โ€–โ€–2โ‰ค๎€ท1โˆ’๐›ผ๐‘›๐‘Ž๐‘›๎€ธโ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–2+๐›ผ๐‘›๐‘๐‘›,(3.77) where ๐‘Ž๐‘›๎€ท=21+๐œ‡๎€ธ,๐‘๐›พโˆ’๐›พ๐›ผ๐‘›๎€ท=21โˆ’๐›ฝ๐‘›๐พ๎€ธ๎ซ๐‘›๐‘Š๐‘›๐‘ฆ๐‘›โˆ’๐‘ฅโˆ—๎€ท๐‘ฅ,๐‘ข+๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎ฌ+2๐›ฝ๐‘›๎ซ๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—๎€ท๐‘ฅ,๐‘ข+๐›พ๐‘“โˆ—๎€ธโˆ’(๐ผ+๐œ‡๐ด)๐‘ฅโˆ—๎ฌ+๐›ผ๐‘›๐‘€.(3.78) Applying Lemma 2.8 to (3.77), we conclude that ๐‘ฅ๐‘›โ†’๐‘ฅโˆ—. This completes the proof.

Remark 3.2. For example, of the control conditions (C4)โ€“(C6), we set ๐›ผ๐‘›=1/10๐‘›,๐›ฝ๐‘›=๐‘›/(๐‘›+1). We set ๐ต,๐ท is a 1-Lipschitz continuous and relaxed (0,1)-cocoercive mapping, (i.e., ๐ฟ๐ต=1=๐ฟ๐ท and ๐‘=0=๐‘๎…ž,๐‘‘=1=๐‘‘๎…ž).
Then, we can choose ๐œโˆˆ(0,2) and ๐›ฟโˆˆ(0,2) which satisfies the condition (C6) in Theorem 3.1.

Corollary 3.3. Let ๐ถ be a nonempty closed convex subset of a real Hilbert space ๐ป which ๐ถ+๐ถโŠ‚๐ถ and let ๐‘“ be a contraction of ๐ถ into itself with ๐›ผโˆˆ(0,1). Let ๐œ™ be a lower semicontinuous and convex functional from ๐ป to โ„ and let ฮ˜โˆถ๐ปร—๐ปโ†’โ„ be a finite family of equilibrium functions satisfying conditions (H1)โ€“(H3). Let ๐’ฎ={๐‘†(๐‘ )โˆถ0โ‰ค๐‘ <โˆž} be a nonexpansive semigroup on ๐ถ and let {๐‘ก๐‘›} be a positive real divergent sequence. Let {๐‘‰๐‘–โˆถ๐ถโ†’๐ถ}โˆž๐‘–=1 be a countable family of uniformly ๐‘˜- strict pseudo-contractions, let {๐‘‡๐‘–โˆถ๐ถโ†’๐ถ}โˆž๐‘–=1 be the countable family of nonexpansive mappings defined by ๐‘‡๐‘–๐‘ฅ=๐‘ก๐‘ฅ+(1โˆ’๐‘ก)๐‘‰๐‘–๐‘ฅ,forall๐‘ฅโˆˆ๐ถ,forall๐‘–โ‰ฅ1,๐‘กโˆˆ[๐‘˜,1), let ๐‘Š๐‘› be the ๐‘Š-mapping defined by (2.12), and let ๐‘Š be a mapping defined by (2.13) with ๐น(๐‘Š)โ‰ โˆ…. Let ๐ด be a strongly positive linear bounded operator on ๐ป with coefficient ๐›พ>0 and let 0<๐›พ<(1+๐œ‡๐›พ)/๐›ผ, ๐ตโˆถ๐ปโ†’๐ป be a ๐ฟ๐ต-Lipschitz continuous and relaxed (๐‘,๐‘‘)-cocoercive mapping with ๐‘‘>๐‘๐ฟ2๐ต, and let ๐ทโˆถ๐ปโ†’๐ป be a ๐ฟ๐ท-Lipschitz continuous and relaxed (๐‘๎…ž,๐‘‘๎…ž)-cocoercive mapping with ๐‘‘๎…ž>๐‘๎…ž๐ฟ2๐ท. Suppose that ฮฉโˆถ=๐น(๐’ฎ)โˆฉ๐น(๐‘Š)โˆฉMEP(ฮ˜,๐œ™)โˆฉSVI(๐ถ,๐ต,๐ท)โ‰ โˆ…. Let ๐œ‡>0, ๐›พ>0 and ๐‘Ÿ>0, which are constants. For given ๐‘ฅ1โˆˆ๐ป arbitrarily and fixed ๐‘ขโˆˆ๐ป, suppose {๐‘ฅ๐‘›}, {๐‘ฆ๐‘›},{๐‘ง๐‘›}, and{๐‘ข๐‘›} are the sequences generated iteratively by ฮ˜๎€ท๐‘ข๐‘›๎€ธ๎€ท๐‘ข,๐‘ฅ+๐œ™(๐‘ฅ)โˆ’๐œ™๐‘›๎€ธ+1๐‘Ÿ๎ซ๐พ๎…ž๎€ท๐‘ข๐‘›๎€ธโˆ’๐พ๎…ž๎€ท๐‘ฅ๐‘›๎€ธ๎€ท,๐œ‚๐‘ฅ,๐‘ข๐‘›๐‘ง๎€ธ๎ฌโ‰ฅ0,โˆ€๐‘ฅโˆˆ๐ป,๐‘›=๐‘ƒ๐ถ๎€ท๐‘ข๐‘›โˆ’๐›ฟ๐ท๐‘ข๐‘›๎€ธ,๐‘ฆ๐‘›=๐‘ƒ๐ถ๎€ท๐‘ง๐‘›โˆ’๐œ๐ต๐‘ง๐‘›๎€ธ,๐‘ฅ๐‘›+1=๐›ผ๐‘›๎€บ๎€ท๐‘Š๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธ๎€ป+๐›ฝ๐‘›๐‘ฅ๐‘›+๎€บ๎€ท1โˆ’๐›ฝ๐‘›๎€ธ๐ผโˆ’๐›ผ๐‘›๎€ป1(๐ผ+๐œ‡๐ด)๐‘ก๐‘›๎€œ๐‘ก๐‘›0๐‘†(๐‘ )๐‘Š๐‘›๐‘ฆ๐‘›๐‘‘๐‘ ,(3.79) where ๐‘ข๐‘›=๐ฝฮ˜๐‘Ÿ๐‘ฅ๐‘› such that ๐ฝฮ˜๐‘Ÿโˆถ๐ปโ†’๐ป is the mapping defined by (2.22) and {๐›ผ๐‘›} and {๐›ฝ๐‘›} are two sequences in (0,1) for all ๐‘›โˆˆโ„•. If the functions ๐œ‚โˆถ๐ปร—๐ปโ†’๐ป and ๐พโˆถ๐ปโ†’โ„ satisfy the conditions (C1)โ€“(C6) as given in Theorem 3.1, then {๐‘ฅ๐‘›} converges strongly to ๐‘ฅโˆ—โˆˆฮฉ, which solves the following optimization problem (OP): min๐‘ฅโˆ—โˆˆฮฉ๐œ‡2โŸจ๐ด๐‘ฅโˆ—,๐‘ฅโˆ—1โŸฉ+2โ€–๐‘ฅโˆ—โ€–โˆ’๐‘ข2๎€ท๐‘ฅโˆ’โ„Žโˆ—๎€ธ,(3.80) and (๐‘ฅโˆ—,๐‘ฆโˆ—) is a solution of the general system of variational inequality problem (1.20) such that ๐‘ฆโˆ—=๐‘ƒ๐ถ(๐‘ฅโˆ—โˆ’๐›ฟ๐ท๐‘ฅโˆ—).

Proof. Taking ๐‘=1 in Theorem 3.1. Hence, the conclusion follows. This completes the proof.

Corollary 3.4. Let ๐ถ be a nonempty closed convex subset of a real Hilbert space ๐ป which ๐ถ+๐ถโŠ‚๐ถ and let ๐‘“ be a contraction of ๐ถ into itself with ๐›ผโˆˆ(0,1). Let ๐’ฎ={๐‘†(๐‘ )โˆถ0โ‰ค๐‘ <โˆž} be a nonexpansive semigroup on ๐ถ and let {๐‘ก๐‘›} be a positive real divergent sequence. Let {๐‘‰๐‘–โˆถ๐ถโ†’๐ถ}โˆž๐‘–=1 be a countable family of uniformly ๐‘˜-strict pseudo-contractions, let {๐‘‡๐‘–โˆถ๐ถโ†’๐ถ}โˆž๐‘–=1 be the countable family of nonexpansive mappings defined by ๐‘‡๐‘–๐‘ฅ=๐‘ก๐‘ฅ+(1โˆ’๐‘ก)๐‘‰๐‘–๐‘ฅ,forall๐‘ฅโˆˆ๐ถ,forall๐‘–โ‰ฅ1,๐‘กโˆˆ[๐‘˜,1), let ๐‘Š๐‘› be the W-mapping defined by (2.12), and let ๐‘Š be a mapping defined by (2.13) with ๐น(๐‘Š)โ‰ โˆ…. Let ๐ด be a strongly positive linear bounded operator on ๐ป with coefficient ๐›พ>0 and let 0<๐›พ<(1+๐œ‡๐›พ)/๐›ผ, ๐ตโˆถ๐ปโ†’๐ป be a ๐ฟ๐ต-Lipschitz continuous and relaxed (๐‘,๐‘‘)-cocoercive mapping with ๐‘‘>๐‘๐ฟ2๐ต, and let ๐ทโˆถ๐ปโ†’๐ป be a ๐ฟ๐ท-Lipschitz continuous and relaxed (๐‘๎…ž,๐‘‘๎…ž)-cocoercive mapping with ๐‘‘๎…ž>๐‘๎…ž๐ฟ2๐ท. Suppose that ฮฉโˆถ=๐น(๐’ฎ)โˆฉ๐น(๐‘Š)โˆฉSVI(๐ถ,๐ต,๐ท)โ‰ โˆ…. Let ๐œ‡>0 and ๐›พ>0, which are constants. For given ๐‘ฅ1โˆˆ๐ป arbitrarily and fixed ๐‘ขโˆˆ๐ป, suppose {๐‘ฅ๐‘›}, {๐‘ฆ๐‘›}, and{๐‘ง๐‘›} are the sequences generated iteratively by ๐‘ง๐‘›=๐‘ƒ๐ถ๎€ท๐‘ฅ๐‘›โˆ’๐›ฟ๐ท๐‘ฅ๐‘›๎€ธ,๐‘ฆ๐‘›=๐‘ƒ๐ถ๎€ท๐‘ง๐‘›โˆ’๐œ๐ต๐‘ง๐‘›๎€ธ,๐‘ฅ๐‘›+1=๐›ผ๐‘›๎€บ๎€ท๐‘Š๐‘ข+๐›พ๐‘“๐‘›๐‘ฅ๐‘›๎€ธ๎€ป+๐›ฝ๐‘›๐‘ฅ๐‘›+๎€บ๎€ท1โˆ’๐›ฝ๐‘›๎€ธ๐ผโˆ’๐›ผ๐‘›(๎€ป1๐ผ+๐œ‡๐ด)๐‘ก๐‘›๎€œ๐‘ก๐‘›0๐‘†(๐‘ )๐‘Š๐‘›๐‘ฆ๐‘›๐‘‘๐‘ ,(3.81) where {๐›ผ๐‘›} and {๐›ฝ๐‘›} are two sequences in (0,1) for all ๐‘›โˆˆโ„•. If the sequence {๐‘ฅ๐‘›} satisfy the conditions (C1)โ€“(C6) as given in Theorem 3.1, then {๐‘ฅ๐‘›} converges strongly to ๐‘ฅโˆ—โˆˆฮฉ, which solves the following optimization problem (OP): min๐‘ฅโˆ—โˆˆฮฉ๐œ‡2โŸจ๐ด๐‘ฅโˆ—,๐‘ฅโˆ—1โŸฉ+2โ€–๐‘ฅโˆ—โ€–โˆ’๐‘ข2๎€ท๐‘ฅโˆ’โ„Žโˆ—๎€ธ,(3.82) and (๐‘ฅโˆ—,๐‘ฆโˆ—) is a solution of the general system of variational inequality problem (1.20) such that ๐‘ฆโˆ—=๐‘ƒ๐ถ(๐‘ฅโˆ—โˆ’๐›ฟ๐ท๐‘ฅโˆ—).

Proof. Put ฮ˜(๐‘ฅ,๐‘ฆ)โ‰ก๐œ™(๐‘ฅ)โ‰ก0 for all ๐‘ฅ,๐‘ฆโˆˆ๐ป and ๐‘Ÿ=1. Take ๐พ(๐‘ฅ)=โ€–๐‘ฅโ€–2/2 and ๐œ‚(๐‘ฆ,๐‘ฅ)=๐‘ฆโˆ’๐‘ฅ, for all ๐‘ฅ,๐‘ฆโˆˆ๐ป. Then, we get ๐‘ข๐‘›=๐‘ƒ๐ถ๐‘ฅ๐‘›=๐‘ฅ๐‘› in Corollary 3.3. Hence, the conclusion follows. This completes the proof.

Corollary 3.5. Let ๐ถ be a nonempty closed convex subset of a real Hilbert space ๐ป and let ๐‘“ be a contraction of ๐ป into itself with ๐›ผโˆˆ(0,1). Let ๐’ฎ={๐‘†(๐‘ )โˆถ0โ‰ค๐‘ <โˆž} be a nonexpansive semigroup on ๐ถ and let {๐‘ก๐‘›} be a positive real divergent sequence. Let ๐ด be a strongly positive linear bounded operator on ๐ป with coefficient ๐›พ>0 and let 0<๐›พ<(1+๐œ‡๐›พ)/๐›ผ, ๐ตโˆถ๐ปโ†’๐ป be a ๐ฟ๐ต-Lipschitz continuous and relaxed (๐‘,๐‘‘)-cocoercive mapping with ๐‘‘>๐‘๐ฟ2๐ต. Suppose that ฮฉโˆถ=๐น(๐’ฎ)โˆฉ๐ตโˆ’10โ‰ โˆ…. Let ๐œ‡>0 and ๐›พ>0, which are constants. For given ๐‘ฅ1โˆˆ๐ป arbitrarily and fixed ๐‘ขโˆˆ๐ป, suppose the {๐‘ฅ๐‘›}, {๐‘ฆ๐‘›}, and {๐‘ง๐‘›} are the sequences generated iteratively by ๐‘ง๐‘›=๐‘ฅ๐‘›โˆ’๐œ๐ต๐‘ฅ๐‘›,๐‘ฆ๐‘›=๐‘ง๐‘›โˆ’๐œ๐ต๐‘ง๐‘›,๐‘ฅ๐‘›+1=๐›ผ๐‘›๎€บ๎€ท๐‘ฅ๐‘ข+๐›พ๐‘“๐‘›๎€ธ๎€ป+๐›ฝ๐‘›๐‘ฅ๐‘›+๎€บ๎€ท1โˆ’๐›ฝ๐‘›๎€ธ๐ผโˆ’๐›ผ๐‘›๎€ป1(๐ผ+๐œ‡๐ด)๐‘ก๐‘›๎€œ๐‘ก๐‘›0๐‘†(๐‘ )๐‘ฆ๐‘›๐‘‘๐‘ ,(3.83) where {๐›ผ๐‘›} and {๐›ฝ๐‘›} are two sequences in (0,1) for all ๐‘›โˆˆโ„•. If the sequence {๐‘ฅ๐‘›} satisfy the conditions (C1)โ€“(C6) as given in Theorem 3.1, then {๐‘ฅ๐‘›} converges strongly to ๐‘ฅโˆ—โˆˆฮฉ.

Proof. Setting ๐œ=๐›ฟ, ๐ถโ‰ก๐ป, ๐ทโ‰ก๐ต and ๐‘Š๐‘›โ‰ก๐‘ƒ๐ปโ‰ก๐ผ in Corollary 3.4, it follows from the proof of Theoremโ€‰โ€‰4.1 in [25] that ๐ตโˆ’10=VI(๐ป,๐ต). Hence, the conclusion follows. This completes the proof.

Acknowledgments

The authors would like to thank the โ€œCentre of Excellence in Mathematicsโ€ under the Commission on Higher Education, Ministry of Education, Thailand. Moreover, the authors are grateful to the reviewers for the careful reading of the paper and for the suggestions which improved the quality of this work.