Abstract

Under some weaker conditions, we prove the strong convergence of the sequence generated by a modified regularization method of finding a zero for a maximal monotone operator in a Hilbert space. In addition, an example is also given in order to illustrate the effectiveness of our generalizations. The results presented in this paper can be viewed as the improvement, supplement, and extension of the corresponding results.

1. Introduction

Let 𝐻 be a real Hilbert space and 𝐢 a nonempty closed convex subset of 𝐻, and let πΉβˆΆπ»β†’π» be a nonlinear operator. The variational inequality problem is formulated as finding a point π‘₯βˆ—βˆˆπΆ such that ⟨𝐹π‘₯βˆ—,π‘£βˆ’π‘₯βˆ—βŸ©β‰₯0,βˆ€π‘£βˆˆπΆ.(1.1)

In 1964, Stampacchia [1] introduced and studied variational inequality initially. It is now well known that variational inequalities cover as diverse disciplines as partial differential equations, optimal control, optimization, mathematical programming, mechanics, and finance, see [1–5].

Let 𝑇 be an operator with domain 𝐷(𝑇) and range 𝑅(𝑇) in 𝐻. A multivalued operator π‘‡βˆΆπ»β†’2𝐻 is called monotone if βŸ¨π‘’βˆ’π‘£,π‘₯βˆ’π‘¦βŸ©β‰₯0,(1.2) for any π‘’βˆˆπ‘‡π‘₯,π‘£βˆˆπ‘‡π‘¦, and maximal monotone if it is monotone and its graph 𝐺(𝑇)={(π‘₯,𝑦)∢π‘₯∈𝐷(𝑇),π‘¦βˆˆπ‘‡π‘₯}(1.3) is not properly contained in the graph of any other monotone operator.

One of the major problems in the theory of monotone operators is to find a point in the zero set, which can be formulated as finding a point π‘₯ so that π‘₯βˆˆπ‘‡βˆ’1(0), where π‘‡βˆ’1(0) denotes the zero set of the operator 𝑇. A variety of problems, including convex programming and variational inequalities, can be formulated as finding a zero of maximal monotone operators. A classical way to solve such problem is Rockafellar's proximal point algorithm [6], which generates an iterative sequence as π‘₯𝑛+1=𝐽𝑇𝑐π‘₯𝑛+𝑒𝑛,(1.4)

where, for 𝑐>0, 𝐽𝑇𝑐 denotes the resolvent of 𝑇 given by 𝐽𝑇𝑐=(𝐼+𝑐𝑇)βˆ’1, with 𝐼 being the identity map on the space 𝐻. If π‘‡βˆ’1(0)β‰ βˆ…, it is known that the sequence generated by (1.4) converges weakly to some point in π‘‡βˆ’1(0).

Motivated by Lehdili and Moudafi's prox-Tikhonov method [7], Xu [8] considered the following regularization iterative form: for a fixed point π‘’βˆˆπ», π‘₯𝑛+1=𝐽𝑇𝑐𝑛1βˆ’π‘‘π‘›ξ€Έπ‘₯𝑛+𝑑𝑛𝑒+𝑒𝑛,𝑛β‰₯0,(1.5)

where π‘‘π‘›βˆˆ(0,1) and {𝑒𝑛} is a sequence of errors. Then, the iterative sequence converges strongly to π‘ƒπ‘‡βˆ’1(0)𝑒, provided that(C1)limπ‘›β†’βˆžπ‘‘π‘›=0,(C2)βˆ‘βˆžπ‘›=0|𝑑𝑛+1βˆ’π‘‘π‘›|<∞,(C3)0<𝑐≀𝑐𝑛≀𝑐,(C4)βˆ‘βˆžπ‘›=0|𝑐𝑛+1βˆ’π‘π‘›|<∞,(C5)βˆ‘βˆžπ‘›=0𝑑𝑛=∞, βˆ‘βˆžπ‘›=0‖𝑒𝑛‖<∞.

Recently, Song and Yang [9] removed some strict restrictions in Xu [8]. Under conditions (C1), (C2), (C4) (or βˆ‘βˆžπ‘›=0|1βˆ’(𝑐𝑛/𝑐𝑛+1)|<+∞), (C5), and (C3β€²)(C3β€²)0<liminfπ‘›β†’βˆžπ‘π‘›, they proved that the sequence generated by (1.5) converges strongly to π‘ƒπ‘‡βˆ’1(0)𝑒.

Very recently, under conditions (C1), (C3) (or C3β€²), (C5), and (C4β€²) (C4β€²)limπ‘›β†’βˆž|1βˆ’(𝑐𝑛/𝑐𝑛+1)|=0. Wang [10] proved the strong convergence of the sequence generated by (1.5). It is easy to see that conditions (C3β€²) and (C4β€²) are strictly weaker than conditions (C3) and (C4), respectively.

We remind the reader of the following fact: in order to guarantee the strong convergence of the iterative sequence {π‘₯𝑛}, there is at least one parameter sequence converging to zero (i.e., 𝑑𝑛→0) in the result of Xu [8], Song and Yang [9], and Wang [10]. So the above results bring us to the following natural questions.

Question 1. Can we obtain the strong convergence theorem without the parameter sequence {𝑑𝑛} converging to zero?

Question 2. Can we get that the sequence {π‘₯𝑛} converges strongly to π‘₯βˆ—βˆˆπ‘‡βˆ’1(0), which solves uniquely some variational inequalities?

In this work, motivated by the above results, we consider the following modified regularization method for the proximal point algorithm: for an arbitrary π‘₯0∈𝐻, 𝑧𝑛=ξ€·πΌβˆ’π‘‘π‘›πΉξ€Έπ‘₯𝑛+𝑑𝑛𝑒+𝑒𝑛,π‘₯𝑛+1=𝐽𝑇𝑐𝑛𝑧𝑛,𝑛β‰₯0,(1.6)

where 𝐹 is a π‘˜-Lipschitzian and πœ‚-strongly monotone operator on 𝐻 and 𝑒 is a fixed point in 𝐻. Without the parameter sequence {𝑑𝑛} converging to zero, we prove that the sequence {π‘₯𝑛} generated by the iterative algorithm (1.6) converges strongly to π‘₯βˆ—βˆˆπ‘‡βˆ’1(0), which solves uniquely the variational inequality ⟨𝐹π‘₯βˆ—βˆ’π‘’,π‘₯βˆ—βˆ’π‘βŸ©β‰€0,  for all π‘βˆˆπ‘‡βˆ’1(0). In addition, an example is also given in order to illustrate the effectiveness of our generalizations. The results presented in this paper can be viewed as the improvement, supplement, and extension of the results obtained in [6–10].

2. Preliminaries

Let 𝐻 be a real Hilbert space with inner product βŸ¨β‹…,β‹…βŸ© and norm β€–β‹…β€–. For the sequence {π‘₯𝑛} in 𝐻, we write π‘₯𝑛⇀π‘₯ to indicate that the sequence {π‘₯𝑛} converges weakly to π‘₯. π‘₯𝑛→π‘₯ means that {π‘₯𝑛} converges strongly to π‘₯.

A mapping πΉβˆΆπ»β†’π» is called π‘˜-Lipschitzian if there exists a positive constant π‘˜ such that ‖𝐹π‘₯βˆ’πΉπ‘¦β€–β‰€π‘˜β€–π‘₯βˆ’π‘¦β€–,βˆ€π‘₯,π‘¦βˆˆπ».(2.1)

𝐹 is said to be πœ‚-strongly monotone if there exists a positive constant πœ‚ such that ⟨𝐹π‘₯βˆ’πΉπ‘¦,π‘₯βˆ’π‘¦βŸ©β‰₯πœ‚β€–π‘₯βˆ’π‘¦β€–2,βˆ€π‘₯,π‘¦βˆˆπ».(2.2)

Let 𝐴 be a strongly positive bounded linear operator on 𝐻, that is, there exists a constant ̃𝛾>0 such that ⟨𝐴π‘₯,π‘₯⟩β‰₯̃𝛾‖π‘₯β€–2,βˆ€π‘₯∈𝐻.(2.3)

A typical problem is that of minimizing a quadratic function over the set of the fixed points of a nonexpansive mapping on a real Hilbert space 𝐻: minπ‘₯∈Fix(π‘Š)12,⟨𝐴π‘₯,π‘₯βŸ©βˆ’βŸ¨π‘₯,π‘βŸ©(2.4)

where 𝑏 is a given point in 𝐻 and Fix(π‘Š) is the set of the fixed points of nonexpansive mapping π‘Š.

Remark 2.1 (see [11]). From the definition of 𝐴, we note that a strongly positive bounded linear operator 𝐴 is a ‖𝐴‖-Lipschitzian and ̃𝛾-strongly monotone operator.

Let 𝑇 be a maximal monotone operator on a real Hilbert space 𝐻 such that π‘†βˆΆ=π‘‡βˆ’1(0)β‰ βˆ…. For 𝑐>0, we use 𝐽𝑇𝑐 to denote the resolvent of 𝑇, that is, 𝐽𝑇𝑐=(𝐼+𝑐𝑇)βˆ’1.(2.5)

It is well known that 𝐽𝑇𝑐 is firmly nonexpansive and consequently nonexpansive; moreover, 𝑆=Fix(𝐽𝑇𝑐)={π‘₯∈𝐻∢π‘₯=𝐽𝑇𝑐π‘₯}.

The following lemma is known as the resolvent identity of maximal monotone operators.

Lemma 2.2 (see [8]). Let 𝑐,𝑑>0. Then, for any π‘₯∈𝐻, 𝐽𝑇𝑐π‘₯=𝐽𝑇𝑑𝑑𝑐𝑑π‘₯+1βˆ’π‘ξ‚π½π‘‡π‘π‘₯.(2.6)

In order to prove our main results, we need the following lemmas.

Lemma 2.3 (see [11]). Let 𝐹 be a π‘˜-Lipschitzian and πœ‚-strongly monotone operator on a Hilbert space 𝐻 with 0<πœ‚β‰€π‘˜ and 0<𝑑<πœ‚/π‘˜2. Then, 𝑆=(πΌβˆ’π‘‘πΉ)βˆΆπ»β†’π» is a contraction with contraction coefficient πœπ‘‘=√1βˆ’π‘‘(2πœ‚βˆ’π‘‘π‘˜2).

Lemma 2.4 (see [12]). 𝑇 is firmly nonexpansive if and only if 2π‘‡βˆ’πΌ is nonexpansive.

Lemma 2.5 (see [13]). Let 𝐻 be a Hilbert space, 𝐢 a closed convex subset of 𝐻, and π‘‡βˆΆπΆβ†’πΆ a nonexpansive mapping with Fix(𝑇)β‰ βˆ…; if {π‘₯𝑛} is a sequence in 𝐢 weakly converging to π‘₯ and if {(πΌβˆ’π‘‡)π‘₯𝑛} converges strongly to 𝑦, then (πΌβˆ’π‘‡)π‘₯=𝑦.

Lemma 2.6 (see [14]). Let {π‘₯𝑛} and {𝑧𝑛} be bounded sequences in Banach space 𝐸 and {𝛾𝑛} a sequence in [0,1] which satisfies the following condition: 0<liminfπ‘›β†’βˆžπ›Ύπ‘›β‰€limsupπ‘›β†’βˆžπ›Ύπ‘›<1.(2.7) Suppose that π‘₯𝑛+1=𝛾𝑛π‘₯𝑛+(1βˆ’π›Ύπ‘›)𝑧𝑛, 𝑛β‰₯0, and limsupπ‘›β†’βˆž(‖𝑧𝑛+1βˆ’π‘§π‘›β€–βˆ’β€–π‘₯𝑛+1βˆ’π‘₯𝑛‖)≀0. Then, limπ‘›β†’βˆžβ€–π‘§π‘›βˆ’π‘₯𝑛‖=0.

Lemma 2.7 (see [15, 16]). Let {𝑠𝑛} be a sequence of nonnegative real numbers satisfying 𝑠𝑛+1≀1βˆ’πœ†π‘›ξ€Έπ‘ π‘›+πœ†π‘›π›Ώπ‘›+𝛾𝑛,𝑛β‰₯0,(2.8) where {πœ†π‘›}, {𝛿𝑛}, and {𝛾𝑛} satisfy the following conditions: (i) {πœ†π‘›}βŠ‚[0,1] and βˆ‘βˆžπ‘›=0πœ†π‘›=∞, (ii) limsupπ‘›β†’βˆžπ›Ώπ‘›β‰€0 or βˆ‘βˆžπ‘›=0πœ†π‘›π›Ώπ‘›<∞, and (iii) π›Ύπ‘›βˆ‘β‰₯0(𝑛β‰₯0),βˆžπ‘›=0𝛾𝑛<∞. Then, limπ‘›β†’βˆžπ‘ π‘›=0.

3. Main Results

Let 𝐹 be a π‘˜-Lipschitzian and πœ‚-strongly monotone operator on 𝐻 with 0<πœ‚β‰€π‘˜ and 𝐽𝑇𝑐 the resolvent of 𝑇. Let π‘‘βˆˆ(0,πœ‚/π‘˜2) and πœπ‘‘=√1βˆ’π‘‘(2πœ‚βˆ’π‘‘π‘˜2)∈(0,1), and consider a mapping 𝑉𝑑 on 𝐻 defined by 𝑉𝑑π‘₯=𝐽𝑇𝑐[](πΌβˆ’π‘‘πΉ)π‘₯+𝑑𝑒,π‘₯∈𝐻,(3.1)

where 𝑐>0 is a fixed constant and π‘’βˆˆπ» is a fixed point. It is easy to see that 𝑉𝑑 is a contraction. Indeed, from Lemma 2.3, we have ‖‖𝑉𝑑π‘₯βˆ’π‘‰π‘‘π‘¦β€–β€–=‖‖𝐽𝑇𝑐[](πΌβˆ’π‘‘πΉ)π‘₯+π‘‘π‘’βˆ’π½π‘‡π‘[]β€–β€–(πΌβˆ’π‘‘πΉ)𝑦+𝑑𝑒≀‖(πΌβˆ’π‘‘πΉ)π‘₯βˆ’(πΌβˆ’π‘‘πΉ)π‘¦β€–β‰€πœπ‘‘β€–π‘₯βˆ’π‘¦β€–,(3.2)

for all π‘₯,π‘¦βˆˆπ». Hence, it has a unique fixed point, denoted by 𝑣𝑑, which uniquely solves the fixed point equation 𝑣𝑑=𝐽𝑇𝑐(πΌβˆ’π‘‘πΉ)𝑣𝑑+𝑑𝑒,π‘£π‘‘βˆˆπ».(3.3)

Theorem 3.1. For any 𝑐>0 and π‘’βˆˆπ», let the net {𝑣𝑑} be generated by (3.3). Then, as 𝑑→0, the net {𝑣𝑑} converges strongly to π‘£βˆ— of 𝑆, which solves uniquely the variational inequality βŸ¨πΉπ‘£βˆ—βˆ’π‘’,π‘£βˆ—βˆ’π‘βŸ©β‰€0,βˆ€π‘βˆˆπ‘†.(3.4)

Proof. We first show the uniqueness of a solution of the variational inequality (3.4), which is indeed a consequence of the strong monotonicity of 𝐹. Suppose π‘£βˆ—βˆˆπ‘† and Μƒπ‘£βˆˆπ‘† both are solutions to (3.4); then, βŸ¨πΉπ‘£βˆ—βˆ’π‘’,π‘£βˆ—βˆ’ΜƒΜƒΜƒπ‘£βŸ©β‰€0,(3.5)βŸ¨πΉπ‘£βˆ’π‘’,π‘£βˆ’π‘£βˆ—βŸ©β‰€0.(3.6)
Adding (3.5) to (3.6), we get βŸ¨πΉπ‘£βˆ—Μƒβˆ’πΉπ‘£,π‘£βˆ—βˆ’Μƒπ‘£βŸ©β‰€0.(3.7)
The strong monotonicity of 𝐹 implies that π‘£βˆ—=̃𝑣 and the uniqueness is proved. Below we use π‘£βˆ—βˆˆπ‘† to denote the unique solution of (3.4). Next, we prove that {𝑣𝑑} is bounded. Taking π‘βˆˆπ‘†, from (3.3) and using Lemma 2.3, we have ‖‖𝑣𝑑‖‖=β€–β€–π½βˆ’π‘π‘‡π‘ξ€Ί(πΌβˆ’π‘‘πΉ)𝑣𝑑‖‖≀‖‖+π‘‘π‘’βˆ’π‘(πΌβˆ’π‘‘πΉ)π‘£π‘‘β€–β€–βˆ’(πΌβˆ’π‘‘πΉ)𝑝+𝑑(π‘’βˆ’πΉπ‘)β‰€πœπ‘‘β€–β€–π‘£π‘‘β€–β€–βˆ’π‘+π‘‘β€–π‘’βˆ’πΉπ‘β€–,(3.8)
that is, β€–β€–π‘£π‘‘β€–β€–β‰€π‘‘βˆ’π‘1βˆ’πœπ‘‘β€–π‘’βˆ’πΉπ‘β€–.(3.9)
Observe that lim𝑑→0+𝑑1βˆ’πœπ‘‘=1πœ‚.(3.10)
From 𝑑→0, we may assume, without loss of generality, that π‘‘β‰€πœ‚/π‘˜2βˆ’πœ–, where πœ– is an arbitrarily small positive number. Thus, we have that 𝑑/(1βˆ’πœπ‘‘) is continuous, for all π‘‘βˆˆ[0,πœ‚/π‘˜2βˆ’πœ–]. Therefore, we obtain 𝑑sup1βˆ’πœπ‘‘ξ‚΅πœ‚βˆΆπ‘‘βˆˆ0,π‘˜2βˆ’πœ–ξ‚Ήξ‚Ό<+∞.(3.11) From (3.9) and (3.11), we have {𝑣𝑑} bounded and so is {𝐹𝑣𝑑}. On the other hand, from (3.3), we obtain β€–β€–π‘£π‘‘βˆ’π½π‘‡π‘π‘£π‘‘β€–β€–=‖‖𝐽𝑇𝑐(πΌβˆ’π‘‘πΉ)𝑣𝑑+π‘‘π‘’βˆ’π½π‘‡π‘π‘£π‘‘β€–β€–β‰€β€–β€–(πΌβˆ’π‘‘πΉ)𝑣𝑑+π‘‘π‘’βˆ’π‘£π‘‘β€–β€–β€–β€–=π‘‘π‘’βˆ’πΉπ‘£π‘‘β€–β€–β†’0(𝑑→0).(3.12) To prove that π‘£π‘‘β†’π‘£βˆ—, for a givenβ€‰β€‰π‘βˆˆπ‘†, using Lemma 2.3, we have β€–β€–π‘£π‘‘β€–β€–βˆ’π‘2=‖‖𝐽𝑇𝑐(πΌβˆ’π‘‘πΉ)𝑣𝑑‖‖+π‘‘π‘’βˆ’π‘2≀‖‖(πΌβˆ’π‘‘πΉ)π‘£π‘‘β€–β€–βˆ’(πΌβˆ’π‘‘πΉ)𝑝+𝑑(π‘’βˆ’πΉπ‘)2β‰€πœ2π‘‘β€–β€–π‘£π‘‘β€–β€–βˆ’π‘2+𝑑2β€–π‘’βˆ’πΉπ‘β€–2+2π‘‘βŸ¨(πΌβˆ’π‘‘πΉ)π‘£π‘‘βˆ’(πΌβˆ’π‘‘πΉ)𝑝,π‘’βˆ’πΉπ‘βŸ©β‰€πœπ‘‘β€–β€–π‘£π‘‘β€–β€–βˆ’π‘2+𝑑2β€–π‘’βˆ’πΉπ‘β€–2+2π‘‘βŸ¨π‘£π‘‘βˆ’π‘,π‘’βˆ’πΉπ‘βŸ©+2𝑑2βŸ¨πΉπ‘βˆ’πΉπ‘£π‘‘,π‘’βˆ’πΉπ‘βŸ©β‰€πœπ‘‘β€–β€–π‘£π‘‘β€–β€–βˆ’π‘2+𝑑2β€–π‘’βˆ’πΉπ‘β€–2+2π‘‘βŸ¨π‘£π‘‘βˆ’π‘,π‘’βˆ’πΉπ‘βŸ©+2𝑑2π‘˜β€–β€–π‘βˆ’π‘£π‘‘β€–β€–β€–π‘’βˆ’πΉπ‘β€–β‰€πœπ‘‘β€–β€–π‘£π‘‘β€–β€–βˆ’π‘2+2𝑑2𝑀+2π‘‘βŸ¨π‘£π‘‘βˆ’π‘,π‘’βˆ’πΉπ‘βŸ©,(3.13) where 𝑀=max{β€–π‘’βˆ’πΉπ‘β€–2,2π‘˜β€–π‘βˆ’π‘£π‘‘β€–β€–π‘’βˆ’πΉπ‘β€–}. Therefore, β€–β€–π‘£π‘‘β€–β€–βˆ’π‘2≀2𝑑21βˆ’πœπ‘‘π‘€+2𝑑1βˆ’πœπ‘‘βŸ¨π‘£π‘‘βˆ’π‘,π‘’βˆ’πΉπ‘βŸ©.(3.14) From πœπ‘‘=√1βˆ’π‘‘(2πœ‚βˆ’π‘‘π‘˜2), we have lim𝑑→0(𝑑2/(1βˆ’πœπ‘‘))=0. Moreover, if 𝑣𝑑⇀𝑝, we have lim𝑑→0((2𝑑/(1βˆ’πœπ‘‘))βŸ¨π‘£π‘‘βˆ’π‘,π‘’βˆ’πΉπ‘βŸ©)=0.
Since {𝑣𝑑} is bounded, we see that if {𝑑𝑛} is a sequence in (0,πœ‚/π‘˜2βˆ’πœ–] such that 𝑑𝑛→0 and 𝑣𝑑𝑛⇀̃𝑣, then, by (3.14), we see that 𝑣𝑑𝑛→̃𝑣. Moreover, by (3.12) and using Lemma 2.5, we have Μƒπ‘£βˆˆπ‘†. We next prove that ̃𝑣 solves the variational inequality (3.4). From (3.3) and π‘βˆˆπ‘†, we have β€–β€–π‘£π‘‘β€–β€–βˆ’π‘2≀‖‖(πΌβˆ’π‘‘πΉ)𝑣𝑑‖‖+π‘‘π‘’βˆ’π‘2=β€–β€–π‘£π‘‘β€–β€–βˆ’π‘2+𝑑2β€–β€–π‘’βˆ’πΉπ‘£π‘‘β€–β€–2+2π‘‘βŸ¨π‘£π‘‘βˆ’π‘,π‘’βˆ’πΉπ‘£π‘‘βŸ©,(3.15) that is, βŸ¨πΉπ‘£π‘‘βˆ’π‘’,π‘£π‘‘π‘‘βˆ’π‘βŸ©β‰€2β€–β€–π‘’βˆ’πΉπ‘£π‘‘β€–β€–2.(3.16) Now replacing 𝑑 in (3.16) with 𝑑𝑛 and letting π‘›β†’βˆž, we have ΜƒΜƒβŸ¨πΉπ‘£βˆ’π‘’,π‘£βˆ’π‘βŸ©β‰€0.(3.17) That is, Μƒπ‘£βˆˆπ‘† is a solution of (3.4), and hence ̃𝑣=π‘£βˆ— by uniqueness. In a summary, we have shown that each cluster point of {𝑣𝑑} (at 𝑑→0) equals π‘£βˆ—. Therefore, π‘£π‘‘β†’π‘£βˆ— as 𝑑→0.

Setting 𝐹=𝐴 in Theorem 3.1, we can obtain the following result.

Corollary 3.2. For any 𝑐>0 and π‘’βˆˆπ», let 𝐴 be a strongly positive bounded linear operator with coefficient 0<̃𝛾≀‖𝐴‖. For each π‘‘βˆˆ(0,̃𝛾/‖𝐴‖2), let the net {𝑣𝑑} be generated by 𝑣𝑑=𝐽𝑇𝑐[(πΌβˆ’π‘‘π΄)𝑣𝑑+𝑑𝑒]. Then, as 𝑑→0, the net {𝑣𝑑} converges strongly to π‘£βˆ— of 𝑆 which solves uniquely the variational inequality βŸ¨π΄π‘£βˆ—βˆ’π‘’,π‘£βˆ—βˆ’π‘βŸ©β‰€0,βˆ€π‘βˆˆπ‘†.(3.18)

Setting 𝐹=𝐼 and π‘£βˆ—=𝑃𝑆𝑒 in Theorem 3.1, we can obtain the following result.

Corollary 3.3 (Xu [8, Theorem 3.1]). For any 𝑐>0 and π‘’βˆˆπ». For each π‘‘βˆˆ(0,1), let the net {𝑣𝑑} be generated by 𝑣𝑑=𝐽𝑇𝑐[(1βˆ’π‘‘)𝑣𝑑+𝑑𝑒]. Then, as 𝑑→0, {𝑣𝑑} converges strongly to the projection of 𝑒 onto 𝑆; that is, lim𝑑→0𝑣𝑑=𝑃𝑆𝑒. Moreover, this limit is attained uniformly for 𝑐>0.

The next result gives a strong convergence theorem on algorithm (1.6) with a weaker restriction on the sequence {𝑑𝑛}.

Theorem 3.4. Let 𝑇 be a maximal monotone operator on a Hilbert space 𝐻 with π‘†β‰ βˆ…. Let 𝐹 be a π‘˜-Lipschitzian and πœ‚-strongly monotone operator on 𝐻 with 0<πœ‚β‰€π‘˜. Let {𝑑𝑛} be a sequence in (0,1), {𝑐𝑛} a sequence in (0,+∞), and πœ– an arbitrarily small positive number. Assume that the control conditions (C1ξ…ž), (C3ξ…ž), (C4ξ…ž), and (C5) hold for {𝑑𝑛}, {𝑐𝑛}, and {𝑒𝑛}(C1ξ…ž)0<π‘‘π‘›β‰€πœ‚/π‘˜2βˆ’πœ–, forall𝑛β‰₯𝑛0 for some integer 𝑛0β‰₯0.
For an arbitrary point π‘₯0∈𝐻, let the sequence {π‘₯𝑛} be generated by (1.6). Then, 𝑧𝑛→π‘₯βˆ—βŸΊπ‘‘π‘›ξ€·π‘’βˆ’πΉπ‘₯𝑛→0(π‘›β†’βˆž),(3.19) where π‘₯βˆ—βˆˆπ‘† solves the variational inequality ⟨𝐹π‘₯βˆ—βˆ’π‘’,π‘₯βˆ—βˆ’π‘βŸ©β‰€0,βˆ€π‘βˆˆπ‘†.(3.20)

Proof. On the one hand, suppose that 𝑑𝑛(π‘’βˆ’πΉπ‘₯𝑛)β†’0(π‘›β†’βˆž). We proceed with the following steps.
Step 1. We claim that {π‘₯𝑛} is bounded. In fact, taking π‘βˆˆπ‘†, from (1.6) and (C1ξ…ž) and using Lemma 2.3, we have β€–β€–π‘₯𝑛+1β€–β€–=β€–β€–π½βˆ’π‘π‘‡π‘π‘›π‘§π‘›β€–β€–β‰€β€–β€–ξ€·βˆ’π‘πΌβˆ’π‘‘π‘›πΉξ€Έπ‘₯𝑛+𝑑𝑛𝑒+π‘’π‘›β€–β€–β‰€β€–β€–ξ€·βˆ’π‘πΌβˆ’π‘‘π‘›πΉξ€Έπ‘₯π‘›βˆ’ξ€·πΌβˆ’π‘‘π‘›πΉξ€Έπ‘+𝑑𝑛(π‘’βˆ’πΉπ‘)+π‘’π‘›β€–β€–β‰€πœπ‘‘π‘›β€–β€–π‘₯π‘›β€–β€–βˆ’π‘+π‘‘π‘›β€–β€–π‘’β€–π‘’βˆ’πΉπ‘β€–+𝑛‖‖≀1βˆ’1βˆ’πœπ‘‘π‘›β€–β€–π‘₯𝑛‖‖+ξ€·βˆ’π‘1βˆ’πœπ‘‘π‘›ξ€Έπ‘‘π‘›1βˆ’πœπ‘‘π‘›β€–β€–π‘’β€–π‘’βˆ’πΉπ‘β€–+𝑛‖‖‖‖π‘₯≀max𝑛‖‖,π‘‘βˆ’π‘π‘›1βˆ’πœπ‘‘π‘›ξƒ°+β€–β€–π‘’β€–π‘’βˆ’πΉπ‘β€–π‘›β€–β€–,(3.21) for all𝑛β‰₯𝑛0 for some integer 𝑛0β‰₯0, where πœπ‘‘π‘›=1βˆ’π‘‘π‘›(2πœ‚βˆ’π‘‘π‘›π‘˜2)∈(0,1). By induction, we have β€–β€–π‘₯𝑛‖‖‖‖π‘₯βˆ’π‘β‰€max0β€–β€–βˆ’π‘,β€–π‘’βˆ’πΉπ‘β€–π‘€1ξ€Ύ+π‘›βˆ’1𝑗=0‖‖𝑒𝑗‖‖,(3.22) for all𝑛β‰₯𝑛0 for some integer 𝑛0β‰₯0, where 𝑀1=sup{𝑑𝑛/(1βˆ’πœπ‘‘π‘›)∢0<π‘‘π‘›β‰€πœ‚/π‘˜2βˆ’πœ–}<+∞. Therefore, {π‘₯𝑛} is bounded. We also obtain that {𝑧𝑛} and {𝐹π‘₯𝑛} are bounded.
Step 2. We claim that limπ‘›β†’βˆžβ€–π‘₯𝑛+1βˆ’π‘₯𝑛‖=0. In fact, write 𝐽𝑛=𝐽𝑇𝑐𝑛 and 𝑇𝑛=2π½π‘›βˆ’πΌ. Then, 𝐽𝑛 is firmly nonexpansive and 𝑇𝑛 is nonexpansive (see Lemma 2.4).
Observe that π‘₯𝑛+1=𝐽𝑛𝑧𝑛=𝐼+𝑇𝑛2𝑧𝑛=12𝑧𝑛+12𝑇𝑛𝑧𝑛=12π‘₯𝑛+12ξ€Ίπ‘‘π‘›ξ€·π‘’βˆ’πΉπ‘₯𝑛+𝑒𝑛+𝑇𝑛𝑧𝑛=12π‘₯𝑛+12𝑦𝑛,(3.23) where 𝑦𝑛=𝑑𝑛(π‘’βˆ’πΉπ‘₯𝑛)+𝑒𝑛+𝑇𝑛𝑧𝑛. Therefore, ‖‖𝑦𝑛+1βˆ’π‘¦π‘›β€–β€–=‖‖𝑑𝑛+1ξ€·π‘’βˆ’πΉπ‘₯𝑛+1ξ€Έ+𝑒𝑛+1+𝑇𝑛+1𝑧𝑛+1βˆ’π‘‘π‘›ξ€·π‘’βˆ’πΉπ‘₯π‘›ξ€Έβˆ’π‘’π‘›βˆ’π‘‡π‘›π‘§π‘›β€–β€–β‰€β€–β€–π‘‘π‘›+1ξ€·π‘’βˆ’πΉπ‘₯𝑛+1ξ€Έβ€–β€–+β€–β€–π‘‘π‘›ξ€·π‘’βˆ’πΉπ‘₯𝑛‖‖+‖‖𝑒𝑛+1β€–β€–+‖‖𝑒𝑛‖‖+‖‖𝑇𝑛+1𝑧𝑛+1βˆ’π‘‡π‘›π‘§π‘›β€–β€–.(3.24)
It follows from the resolvent identity that ‖‖𝑇𝑛+1π‘₯βˆ’π‘‡π‘›π‘₯‖‖‖‖𝐽=2𝑛+1π‘₯βˆ’π½π‘›π‘₯‖‖‖‖‖𝐽=2𝑛𝑐𝑛𝑐𝑛+1𝑐π‘₯+1βˆ’π‘›π‘π‘›+1𝐽𝑛+1π‘₯ξ‚Άβˆ’π½π‘›π‘₯β€–β€–β€–||||𝑐≀21βˆ’π‘›π‘π‘›+1||||‖‖𝐽𝑛+1‖‖≀||||𝑐π‘₯βˆ’π‘₯1βˆ’π‘›π‘π‘›+1||||‖‖𝑇𝑛+1β€–β€–π‘₯βˆ’π‘₯(3.25) for any π‘₯∈𝐻. From (1.6), we get ‖‖𝑧𝑛+1βˆ’π‘§π‘›β€–β€–=β€–β€–ξ€·πΌβˆ’π‘‘π‘›+1𝐹π‘₯𝑛+1+𝑑𝑛+1𝑒+𝑒𝑛+1βˆ’ξ€·πΌβˆ’π‘‘π‘›πΉξ€Έπ‘₯π‘›βˆ’π‘‘π‘›π‘’βˆ’π‘’π‘›β€–β€–β‰€β€–β€–π‘₯𝑛+1βˆ’π‘₯𝑛‖‖+‖‖𝑑𝑛+1ξ€·π‘’βˆ’πΉπ‘₯𝑛+1ξ€Έβ€–β€–+β€–β€–π‘‘π‘›ξ€·π‘’βˆ’πΉπ‘₯𝑛‖‖+‖‖𝑒𝑛+1β€–β€–+‖‖𝑒𝑛‖‖.(3.26) By (3.25) and (3.26), we have ‖‖𝑇𝑛+1𝑧𝑛+1βˆ’π‘‡π‘›π‘§π‘›β€–β€–β‰€β€–β€–π‘‡π‘›+1𝑧𝑛+1βˆ’π‘‡π‘›π‘§π‘›+1β€–β€–+‖‖𝑇𝑛𝑧𝑛+1βˆ’π‘‡π‘›π‘§π‘›β€–β€–β‰€||||𝑐1βˆ’π‘›π‘π‘›+1||||‖‖𝑇𝑛+1𝑧𝑛+1βˆ’π‘§π‘›+1β€–β€–+‖‖𝑧𝑛+1βˆ’π‘§π‘›β€–β€–β‰€||||𝑐1βˆ’π‘›π‘π‘›+1||||‖‖𝑇𝑛+1𝑧𝑛+1βˆ’π‘§π‘›+1β€–β€–+β€–β€–π‘₯𝑛+1βˆ’π‘₯𝑛‖‖+‖‖𝑑𝑛+1ξ€·π‘’βˆ’πΉπ‘₯𝑛+1ξ€Έβ€–β€–+β€–β€–π‘‘π‘›ξ€·π‘’βˆ’πΉπ‘₯𝑛‖‖+‖‖𝑒𝑛+1β€–β€–+‖‖𝑒𝑛‖‖.(3.27) Substituting (3.27) into (3.24) at once gives ‖‖𝑦𝑛+1βˆ’π‘¦π‘›β€–β€–β€–β€–π‘‘β‰€2𝑛+1ξ€·π‘’βˆ’πΉπ‘₯𝑛+1‖‖‖‖𝑑+2π‘›ξ€·π‘’βˆ’πΉπ‘₯𝑛‖‖‖‖𝑒+2𝑛+1‖‖‖‖𝑒+2𝑛‖‖+||||𝑐1βˆ’π‘›π‘π‘›+1||||𝑀2+β€–β€–π‘₯𝑛+1βˆ’π‘₯𝑛‖‖,(3.28) that is, ‖‖𝑦𝑛+1βˆ’π‘¦π‘›β€–β€–βˆ’β€–β€–π‘₯𝑛+1βˆ’π‘₯𝑛‖‖‖‖𝑑≀2𝑛+1ξ€·π‘’βˆ’πΉπ‘₯𝑛+1‖‖‖‖𝑑+2π‘›ξ€·π‘’βˆ’πΉπ‘₯𝑛‖‖‖‖𝑒+2𝑛+1‖‖‖‖𝑒+2𝑛‖‖+||||𝑐1βˆ’π‘›π‘π‘›+1||||𝑀2,(3.29) where 𝑀2=sup{‖𝑇𝑛+1𝑧𝑛+1βˆ’π‘§π‘›+1β€–,𝑛β‰₯0}. Observing 𝑑𝑛(π‘’βˆ’πΉπ‘₯𝑛)β†’0, 𝑒𝑛→0, and |1βˆ’(𝑐𝑛/𝑐𝑛+1)|β†’0(π‘›β†’βˆž), it follows that limsupπ‘›β†’βˆžξ€·β€–β€–π‘¦π‘›+1βˆ’π‘¦π‘›β€–β€–βˆ’β€–β€–π‘₯𝑛+1βˆ’π‘₯𝑛‖‖≀0.(3.30) From (3.23) and using Lemma 2.6, we have limπ‘›β†’βˆžβ€–π‘¦π‘›βˆ’π‘₯𝑛‖=0. Therefore, limπ‘›β†’βˆžβ€–β€–π‘₯𝑛+1βˆ’π‘₯𝑛‖‖=limπ‘›β†’βˆž12β€–β€–π‘¦π‘›βˆ’π‘₯𝑛‖‖=0.(3.31)Step 3. We claim that limπ‘›β†’βˆžβ€–π‘₯π‘›βˆ’π½π‘‡π‘π‘₯𝑛‖=0. Since liminfπ‘›β†’βˆžπ‘π‘›>0, there exist 𝛼>0 and a positive integer 𝑁 such that for all 𝑛β‰₯𝑁, 𝑐𝑛β‰₯𝛼. From Lemma 2.2, for each π‘βˆˆ(0,𝛼), we have ‖‖𝐽𝑛π‘₯π‘›βˆ’π½π‘‡π‘π‘₯𝑛‖‖=‖‖‖𝐽𝑇𝑐𝑐𝑐𝑛π‘₯𝑛+𝑐1βˆ’π‘π‘›ξ‚Άπ½π‘›π‘₯π‘›ξ‚Άβˆ’π½π‘‡π‘π‘₯𝑛‖‖‖≀‖‖‖𝑐𝑐𝑛π‘₯𝑛+𝑐1βˆ’π‘π‘›ξ‚Άπ½π‘›π‘₯π‘›βˆ’π‘₯𝑛‖‖‖=||||𝑐1βˆ’π‘π‘›||||‖‖𝐽𝑛π‘₯π‘›βˆ’π‘₯𝑛‖‖≀‖‖𝐽𝑛π‘₯π‘›βˆ’π‘₯𝑛+1β€–β€–+β€–β€–π‘₯𝑛+1βˆ’π‘₯𝑛‖‖.(3.32) Observe that ‖‖𝐽𝑛π‘₯π‘›βˆ’π‘₯𝑛+1‖‖≀‖‖π‘₯π‘›βˆ’π‘§π‘›β€–β€–β‰€β€–β€–π‘‘π‘›ξ€·π‘’βˆ’πΉπ‘₯𝑛‖‖+‖‖𝑒𝑛‖‖→0.(3.33) Thus, it follows from (3.32), (3.33), and Step2 that limπ‘›β†’βˆžβ€–β€–π½π‘›π‘₯π‘›βˆ’π½π‘‡π‘π‘₯𝑛‖‖=0.(3.34) Since β€–π‘₯π‘›βˆ’π½π‘‡π‘π‘₯𝑛‖≀‖π‘₯π‘›βˆ’π‘₯𝑛+1β€–+β€–π‘₯𝑛+1βˆ’π½π‘›π‘₯𝑛‖+‖𝐽𝑛π‘₯π‘›βˆ’π½π‘‡π‘π‘₯𝑛‖, then limπ‘›β†’βˆžβ€–β€–π‘₯π‘›βˆ’π½π‘‡π‘π‘₯𝑛‖‖=0.(3.35)Step 4. We claim that limsupπ‘›β†’βˆžβŸ¨π‘₯π‘›βˆ’π‘₯βˆ—,π‘’βˆ’πΉπ‘₯βˆ—βŸ©β‰€0, where π‘₯βˆ—=lim𝑑→0𝑣𝑑 and 𝑣𝑑 is defined by (3.3). Since π‘₯𝑛 is bounded, there exists a subsequence {π‘₯π‘›π‘˜} of {π‘₯𝑛} which converges weakly to πœ”. From Step3, we obtain 𝐽𝑇𝑐π‘₯π‘›β‡€πœ”. From Lemma 2.5, we have πœ”βˆˆπ‘†. Hence, by Theorem 3.1, we have limsupπ‘›β†’βˆžβŸ¨π‘₯π‘›βˆ’π‘₯βˆ—,π‘’βˆ’πΉπ‘₯βˆ—βŸ©=limπ‘˜β†’βˆžξ«π‘₯π‘›π‘˜βˆ’π‘₯βˆ—,π‘’βˆ’πΉπ‘₯βˆ—ξ¬=βŸ¨πœ”βˆ’π‘₯βˆ—,π‘’βˆ’πΉπ‘₯βˆ—βŸ©β‰€0.(3.36)Step 5. We claim that {𝑧𝑛} converges strongly to π‘₯βˆ—βˆˆπ‘†. From (1.6), for an appropriate constant 𝛾>0, we haveβ€–β€–π‘₯𝑛+1βˆ’π‘₯βˆ—β€–β€–2=β€–β€–π½π‘›π‘§π‘›βˆ’π‘₯βˆ—β€–β€–2β‰€β€–β€–π‘§π‘›βˆ’π‘₯βˆ—β€–β€–2=β€–β€–(πΌβˆ’π‘‘π‘›πΉ)π‘₯𝑛+𝑑𝑛𝑒+π‘’π‘›βˆ’π‘₯βˆ—β€–β€–2≀‖‖(πΌβˆ’π‘‘π‘›πΉ)π‘₯𝑛+π‘‘π‘›π‘’βˆ’π‘₯βˆ—β€–β€–2‖‖𝑒+π›Ύπ‘›β€–β€–β‰€β€–β€–ξ€·πΌβˆ’π‘‘π‘›πΉξ€Έπ‘₯π‘›βˆ’ξ€·πΌβˆ’π‘‘π‘›πΉξ€Έπ‘₯βˆ—+π‘‘π‘›ξ€·π‘’βˆ’πΉπ‘₯βˆ—ξ€Έβ€–β€–2‖‖𝑒+π›Ύπ‘›β€–β€–β‰€πœ2𝑑𝑛‖‖π‘₯π‘›βˆ’π‘₯βˆ—β€–β€–2+𝑑2π‘›β€–π‘’βˆ’πΉπ‘₯βˆ—β€–2+2π‘‘π‘›ξ«ξ€·πΌβˆ’π‘‘π‘›πΉξ€Έπ‘₯π‘›βˆ’ξ€·πΌβˆ’π‘‘π‘›πΉξ€Έπ‘₯βˆ—,π‘’βˆ’πΉπ‘₯βˆ—ξ¬β€–β€–π‘’+π›Ύπ‘›β€–β€–β‰€πœπ‘‘π‘›β€–β€–π‘₯π‘›βˆ’π‘₯βˆ—β€–β€–2+𝑑2π‘›β€–π‘’βˆ’πΉπ‘₯βˆ—β€–2+2π‘‘π‘›βŸ¨π‘₯π‘›βˆ’π‘₯βˆ—βˆ’π‘‘π‘›πΉπ‘₯𝑛+𝑑𝑛𝑒,π‘’βˆ’πΉπ‘₯βˆ—βŸ©+2𝑑2π‘›βŸ¨πΉπ‘₯βˆ—βˆ’π‘’,π‘’βˆ’πΉπ‘₯βˆ—β€–β€–π‘’βŸ©+π›Ύπ‘›β€–β€–β‰€πœπ‘‘π‘›β€–β€–π‘₯π‘›βˆ’π‘₯βˆ—β€–β€–2+2π‘‘π‘›βŸ¨π‘₯π‘›βˆ’π‘₯βˆ—,π‘’βˆ’πΉπ‘₯βˆ—βŸ©+2π‘‘π‘›β€–β€–π‘‘π‘›ξ€·π‘’βˆ’πΉπ‘₯π‘›ξ€Έβ€–β€–β€–π‘’βˆ’πΉπ‘₯βˆ—β€–β€–π‘’β€–+𝛾𝑛‖‖≀1βˆ’1βˆ’πœπ‘‘π‘›β€–β€–π‘₯ξ€Έξ€»π‘›βˆ’π‘₯βˆ—β€–β€–2+ξ€·1βˆ’πœπ‘‘π‘›ξ€Έξ€Ί2𝑀1⟨π‘₯π‘›βˆ’π‘₯βˆ—,π‘’βˆ’πΉπ‘₯βˆ—βŸ©+2𝑀1β€–β€–π‘‘π‘›ξ€·π‘’βˆ’πΉπ‘₯π‘›ξ€Έβ€–β€–β€–π‘’βˆ’πΉπ‘₯βˆ—β€–ξ€»β€–β€–π‘’+𝛾𝑛‖‖,(3.37) for all 𝑛β‰₯𝑛0 for some integer 𝑛0β‰₯0. For every 𝑛β‰₯𝑛0, put πœ‡π‘›=1βˆ’πœπ‘‘π‘› and 𝛿𝑛=2𝑀1⟨π‘₯π‘›βˆ’π‘₯βˆ—,π‘’βˆ’πΉπ‘₯βˆ—βŸ©+2𝑀1‖𝑑𝑛(π‘’βˆ’πΉπ‘₯𝑛)β€–β€–π‘’βˆ’πΉπ‘₯βˆ—β€–. It follows that β€–β€–π‘₯𝑛+1βˆ’π‘₯βˆ—β€–β€–2≀1βˆ’πœ‡π‘›ξ€Έβ€–β€–π‘₯π‘›βˆ’π‘₯βˆ—β€–β€–2+πœ‡π‘›π›Ώπ‘›β€–β€–π‘’+𝛾𝑛‖‖,βˆ€π‘›β‰₯𝑛0.(3.38) It is easy to see that βˆ‘βˆžπ‘›=1πœ‡π‘›=∞ and limsupπ‘›β†’βˆžπ›Ώπ‘›β‰€0. Hence, by Lemma 2.7, the sequence {π‘₯𝑛} converges strongly to π‘₯βˆ—βˆˆπ‘†. Observe that β€–β€–π‘§π‘›βˆ’π‘₯βˆ—β€–β€–=β€–β€–ξ€·πΌβˆ’π‘‘π‘›πΉξ€Έπ‘₯𝑛+𝑑𝑛𝑒+π‘’π‘›βˆ’π‘₯βˆ—β€–β€–β‰€β€–β€–π‘₯π‘›βˆ’π‘₯βˆ—β€–β€–+β€–β€–π‘‘π‘›ξ€·π‘’βˆ’πΉπ‘₯𝑛‖‖+‖‖𝑒𝑛‖‖.(3.39) Thus, it follows that the sequence {𝑧𝑛} converges strongly to π‘₯βˆ—βˆˆπ‘†.
On the other hand, suppose that 𝑧𝑛→π‘₯βˆ—βˆˆπ‘† as π‘›β†’βˆž. From (1.6), we have β€–β€–π‘₯𝑛+1βˆ’π‘₯βˆ—β€–β€–=β€–β€–π½π‘›π‘§π‘›βˆ’π‘₯βˆ—β€–β€–β‰€β€–β€–π‘§π‘›βˆ’π‘₯βˆ—β€–β€–β†’0.(3.40) Therefore, β€–β€–π‘‘π‘›ξ€·π‘’βˆ’πΉπ‘₯𝑛‖‖=β€–β€–π‘§π‘›βˆ’π‘₯π‘›βˆ’π‘’π‘›β€–β€–β‰€β€–β€–π‘§π‘›βˆ’π‘₯𝑛‖‖+β€–β€–π‘’π‘›β€–β€–β‰€β€–β€–π‘§π‘›βˆ’π‘₯βˆ—β€–β€–+β€–β€–π‘₯π‘›βˆ’π‘₯βˆ—β€–β€–+‖‖𝑒𝑛‖‖→0.(3.41)

Setting 𝐹=𝐼 and π‘₯βˆ—=𝑃𝑆𝑒 in Theorem 3.4, we can obtain the following result.

Corollary 3.5. Let 𝑇 be a maximal monotone operator on a Hilbert space 𝐻 with π‘†β‰ βˆ…. Let {𝑑𝑛} be a sequence in (0,1), {𝑐𝑛} a sequence in (0,+∞), and πœ– an arbitrarily small positive number. Assume that the control conditions (C1ξ…žξ…ž), (C3ξ…ž), (C4ξ…ž), and (C5) hold for {𝑑𝑛}, {𝑐𝑛}, and {𝑒𝑛}.(C1ξ…žξ…ž)0<𝑑𝑛≀1βˆ’πœ–, for all 𝑛β‰₯𝑛0 for some integer 𝑛0β‰₯0.
For an arbitrary point π‘₯0∈𝐻, let the sequence {π‘₯𝑛} be generated by 𝑧𝑛=ξ€·1βˆ’π‘‘π‘›ξ€Έπ‘₯𝑛+𝑑𝑛𝑒+𝑒𝑛,π‘₯𝑛+1=𝐽𝑇𝑐𝑛𝑧𝑛,𝑛β‰₯0.(3.42) Then, π‘§π‘›β†’π‘ƒπ‘†π‘’βŸΊπ‘‘π‘›ξ€·π‘’βˆ’π‘₯𝑛→0(π‘›β†’βˆž).(3.43)

Corollary 3.6 ([Wang [10], Theorem  4]). Let {𝑐𝑛}, {𝑑𝑛}, and {𝑒𝑛} satisfy (C1), (C3),(or (C3ξ…ž)), (C4ξ…ž) and (C5). In addition, if π‘†β‰ βˆ…, then the sequence generated by (1.5) converges strongly to 𝑃𝑆𝑒.

Proof. Since limπ‘›β†’βˆžπ‘‘π‘›=0, it is easy to see that π‘‘π‘›β‰€πœ‚/π‘˜2βˆ’πœ–, for all 𝑛β‰₯𝑛0 for some integer 𝑛0β‰₯0. Without loss of generality, we assume that 0<π‘‘π‘›β‰€πœ‚/π‘˜2βˆ’πœ–, for all 𝑛β‰₯𝑛0 for some integer 𝑛0β‰₯0. Repeating the same argument as in the proof of Theorem  4 in Wang [10], we know that {π‘₯𝑛} is bounded. Thus, we have that 𝑑𝑛(π‘’βˆ’π‘₯𝑛)β†’0. Therefore, all conditions of Corollary 3.5 are satisfied. Using Corollary 3.5, we have that {𝑧𝑛} converges strongly to π‘ƒπ‘†π‘’βˆˆπ‘†, with 𝑧𝑛=(1βˆ’π‘‘π‘›)π‘₯𝑛+𝑑𝑛𝑒+𝑒𝑛. Therefore, β€–β€–π‘₯𝑛+1βˆ’π‘ƒπ‘†π‘’β€–β€–β‰€β€–β€–π‘§π‘›βˆ’π‘ƒπ‘†π‘’β€–β€–β†’0.(3.44)

Remark 3.7. Corollary 3.5 is more general than Theorem 4 of Wang [10]. The following example is given in order to illustrate the effectiveness of our generalizations.

Example 3.8. Let 𝐻=𝑅  be the set of real numbers, 𝑒=0 and 𝑐𝑛=1/2 for all 𝑛β‰₯0. Define a maximal monotone operator 𝑇 as follows: 𝑇π‘₯=2π‘₯, for all π‘₯βˆˆπ‘…. It is easy to see that 𝐽𝑇𝑐𝑛=(1/2)𝐼 and 𝑆={0}. Given sequences {𝑑𝑛} and {𝑒𝑛}, 𝑑𝑛=1/2 and 𝑒𝑛=0, for all 𝑛β‰₯0. For an arbitrary π‘₯0βˆˆπ‘…, let {π‘₯𝑛} be defined by (3.42), that is, 𝑧𝑛=12π‘₯𝑛,π‘₯𝑛+1=12𝑧𝑛=14π‘₯𝑛,𝑛β‰₯0.(3.45) Observe that β€–β€–π‘₯𝑛+1β€–β€–=β€–β€–β€–1βˆ’04π‘₯𝑛‖‖‖=1βˆ’04β€–β€–π‘₯𝑛‖‖.βˆ’0(3.46) Hence, we have β€–π‘₯𝑛+1βˆ’0β€–=(1/4)𝑛+1β€–π‘₯0βˆ’0β€– for all 𝑛β‰₯0. This implies that {π‘₯𝑛} converges strongly to 0=𝑃𝑆0. Thus, β€–β€–π‘‘π‘›ξ€·π‘’βˆ’π‘₯𝑛‖‖=12β€–β€–π‘₯𝑛‖‖→0(π‘›β†’βˆž).(3.47) Furthermore, it is easy to see that there hold the following:(B1)0<𝑑𝑛=1/2≀1βˆ’πœ–, forall𝑛β‰₯𝑛0 for some integer 𝑛0β‰₯0,(B2)βˆ‘βˆžπ‘›=0𝑑𝑛=βˆ‘βˆžπ‘›=0(1/2)=∞,(B3)liminfπ‘›β†’βˆžπ‘π‘›=1/2>0 and limπ‘›β†’βˆž|1βˆ’(𝑐𝑛/𝑐𝑛+1)|=0,(B4)βˆ‘βˆžπ‘›=0β€–π‘’π‘›βˆ‘β€–=βˆžπ‘›=00=0<∞.

Hence there is no doubt that all conditions of Corollary 3.5 are satisfied. Since 𝑑𝑛=1/2↛0, the condition 𝑑𝑛→0 of Wang [10, Theorem   4] is not satisfied. So, by Corollary 3.5, we obtain that the sequence {π‘₯𝑛} and {𝑧𝑛} converges strongly to zero but Theorem  4 of Wang [10] cannot be applied to {π‘₯𝑛} and {𝑧𝑛} in this example.

Acknowledgment

This paper is supported by the Natural Science Foundation of Yancheng Teachers University under Grant 11YCKL009.