Abstract

By using Krasnoselskii's fixed point theorem, we study the existence of positive solutions to the three-point summation boundary value problem Δ2𝑢(𝑡1)+𝑎(𝑡)𝑓(𝑢(𝑡))=0, 𝑡{1,2,,𝑇}, 𝑢(0)=𝛽𝜂𝑠=1𝑢(𝑠), 𝑢(𝑇+1)=𝛼𝜂𝑠=1𝑢(𝑠), where 𝑓 is continuous, 𝑇3 is a fixed positive integer, 𝜂{1,2,...,𝑇1}, 0<𝛼<(2𝑇+2)/𝜂(𝜂+1), 0<𝛽<(2𝑇+2𝛼𝜂(𝜂+1))/𝜂(2𝑇𝜂+1), and Δ𝑢(𝑡1)=𝑢(𝑡)𝑢(𝑡1). We show the existence of at least one positive solution if 𝑓 is either superlinear or sublinear.

1. Introduction

The study of the existence of solutions of multipoint boundary value problems for linear second-order ordinary differential and difference equations was initiated by Ilin and Moiseev [1]. Then Gupta [2] studied three-point boundary value problems for nonlinear second-order ordinary differential equations. Since then, nonlinear second-order three-point boundary value problems have also been studied by many authors; one may see the text books [3, 4] and the papers [510]. However, all these papers are concerned with problems with three-point boundary condition restrictions on the difference of the solutions and the solutions themselves, for example, 𝑢𝑢(0)=0,𝑢(𝑇+1)=0,(0)=0,𝑎𝑢(𝑠)=𝑢(𝑇+1),𝑢(0)=0,𝑢(𝑇+1)𝑎𝑢(𝑠)=𝑏,𝑢(0)𝛼Δ𝑢(0)=0,𝑢(𝑇+1)=𝛽𝑢(𝑠),𝑢(0)𝛼Δ𝑢(0)=0,Δ𝑢(𝑇+1)=0,(1.1) and so forth.

In [5], Leggett-Williams developed a fixed point theorem to prove the existence of three positive solutions for Hammerstein integral equations. Since then, this theorem has been reported to be a successful technique for dealing with the existence of three solutions for the two-point boundary value problems of differential and difference equations; see [6, 7]. In [8], X. Lin and W. Liu, using the properties of the associate Green’s function and Leggett-Williams fixed point theorem, studied the existence of positive solutions of the problem.

In [9], Zhang and Medina studied the existence of positive solutions for second-order boundary value problems of difference equations by applying Krasnoselskii’s fixed point theorem. In [10], Henderson and Thompson used lower and upper solution methods to study the existence of multiple solutions for second-order discrete boundary value problems.

We are interested in the existence of positive solutions of the following second-order difference equation with three-point summation boundary value problem (BVP): Δ2𝑢𝑢(𝑡1)+𝑎(𝑡)𝑓(𝑢(𝑡))=0,𝑡{1,2,,𝑇},(0)=𝛽𝜂𝑠=1𝑢(𝑠),𝑢(𝑇+1)=𝛼𝜂𝑠=1𝑢(𝑠),(1.2) where 𝑓 is continuous, 𝑇3 is a fixed positive integer, 𝜂{1,2,,𝑇1}.

The aim of this paper is to give some results for existence of positive solutions to (1.2), assuming that 0<𝛼<(2𝑇+2)/𝜂(𝜂+1), 0<𝛽<(2𝑇+2𝛼𝜂(𝜂+1))/𝜂(2𝑇𝜂+1), and 𝑓 is either superlinear or sublinear. Set 𝑓0=lim𝑢0+𝑓(𝑢)𝑢,𝑓=lim𝑢𝑓(𝑢)𝑢.(1.3) Then 𝑓0=0 and 𝑓= correspond to the superlinear case, and 𝑓0= and 𝑓=0 correspond to the sublinear case. Let be the nonnegative integer; we let 𝑖,𝑗={𝑘|𝑖𝑘𝑗} and 𝑝=0,𝑝. By the positive solution of (1.2), we mean that a function 𝑢(𝑡)𝑇+1[0,) and satisfies the problem (1.2).

Recently, Sitthiwirattham [11] proved the existence of positive solutions for the boundary value problem with summation condition Δ2𝑢𝑢(𝑡1)+𝑎(𝑡)𝑓(𝑢(𝑡))=0,𝑡{1,2,,𝑇},(0)=0,𝑢(𝑇+1)=𝛼𝜂𝑠=1𝑢(𝑠),(1.4) where 𝑓 is continuous, 𝑇3 is a fixed positive integer, 𝜂{1,2,,𝑇1}, and 0<𝛼<2𝑇+2/𝜂(𝜂+1).

Throughout this paper, we suppose the following conditions hold:(𝐴1)𝑓𝐶([0,),[0,));(𝐴2)𝑎𝐶(𝑇+1,[0,)) and there exists 𝑡0𝜂,𝑇+1 such that 𝑎(𝑡0)>0.

The proof of the main theorem is based upon an application of the following Krasnoselskii’s fixed point theorem in a cone.

Theorem 1.1 (see [12]). Let 𝐸 be a Banach space, and let 𝐾𝐸 be a cone. Assume Ω1, Ω2 are open subsets of 𝐸 with 0Ω1, Ω1Ω2, and let 𝐴𝐾Ω2Ω1𝐾(1.5) be a completely continuous operator such that(i)𝐴𝑢𝑢, 𝑢𝐾𝜕Ω1, and 𝐴𝑢𝑢, 𝑢𝐾𝜕Ω2, or(ii)𝐴𝑢𝑢, 𝑢𝐾𝜕Ω1, and 𝐴𝑢𝑢, 𝑢𝐾𝜕Ω2.Then 𝐴 has a fixed point in 𝐾(Ω2Ω1).

2. Preliminaries

We now state and prove several lemmas before stating our main results.

Lemma 2.1. Let 𝛽(2𝑇+2𝛼𝜂(𝜂+1))/𝜂(2𝑇𝜂+1). Then, for 𝑦𝐶(𝑇+1,[0,)), the problem Δ2𝑢(𝑡1)+𝑦(𝑡)=0,𝑡𝑁1,𝑇,(2.1)𝑢(0)=𝛽𝜂𝑠=1𝑢(𝑠),𝑢(𝑇+1)=𝛼𝜂𝑠=1𝑢(𝑠),(2.2) has a unique solution 𝑢(𝑡)=𝛽𝜂(𝜂+1)+2𝑡(1𝛽𝜂)(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝑇𝑠=1(𝑇𝑠+1)𝑦(𝑠)𝛽(𝑇+1)(𝛽𝛼)𝑡(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝜂1𝑠=1(𝜂𝑠)(𝜂𝑠1)𝑦(𝑠)𝑡1𝑠=1(𝑡𝑠)𝑦(𝑠),𝑡𝑇+1.(2.3)

Proof. From (2.1), we get Δ𝑢(𝑡)Δ𝑢(𝑡1)=𝑦(𝑡),Δ𝑢(𝑡1)Δ𝑢(𝑡2)=𝑦(𝑡1),Δ𝑢(1)Δ𝑢(0)=𝑦(1).(2.4)
We sum the above equations to obtainΔ𝑢(𝑡)=Δ𝑢(0)𝑡𝑠=1𝑦(𝑠),𝑡𝑇,(2.5) we denote 𝑞𝑠=𝑝𝑦(𝑠)=0, if 𝑝>𝑞. Similarly, summing the above equation from 𝑡=0 to 𝑡=, we get 𝑢(+1)=𝑢(0)+(+1)Δ𝑢(0)𝑠=1(+1𝑠)𝑦(𝑠),𝑇,(2.6) changing the variable from +1 to 𝑡, we have 𝑢(𝑡)=𝑢(0)+𝑡Δ𝑢(0)𝑡1𝑠=1(𝑡𝑠)𝑦(𝑠)𝐴+𝐵𝑡𝑡1𝑠=1(𝑡𝑠)𝑦(𝑠),𝑡𝑇+1.(2.7) We sum (2.7) from 𝑠=1,2,,𝜂, 𝜂𝑠=1𝑢(𝑠)=𝜂𝐴+𝜂(𝜂+1)2𝐵𝜂1𝑠=1𝜂𝑠𝑙=1(𝑙𝑠)𝑦(𝑠)=𝜂𝐴+𝜂(𝜂+1)21𝐵2𝜂1𝑠=1(𝜂𝑠)(𝜂𝑠+1)𝑦(𝑠).(2.8) By (2.2) from 𝑢(0)=𝛽𝜂𝑠=1𝑢(𝑠), we get (1𝛽𝜂)𝐴𝛽𝜂(𝜂+1)2𝛽𝐵=2𝜂1𝑠=1(𝜂𝑠)(𝜂𝑠+1)𝑦(𝑠),(2.9) and from 𝑢(𝑇+1)=𝛼𝜂𝑠=1𝑢(𝑠), we obtain (1𝛼𝜂)𝐴+𝑇+1𝛼𝜂(𝜂+1)2𝐵=𝑇𝑠=1𝛼(𝑇𝑠+1)𝑦(𝑠)2𝜂1𝑠=1(𝜂𝑠)(𝜂𝑠+1)𝑦(𝑠).(2.10) Therefore, 𝐴=𝛽𝜂(𝜂+1)(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝑇𝑠=1(𝑇𝑠+1)𝑦(𝑠)𝛽(𝑇+1)(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝜂1𝑠=1(𝜂𝑠)(𝜂𝑠+1)𝑦(𝑠),𝐵=2(1𝛽𝜂)(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝑇𝑠=1+(𝑇𝑠+1)𝑦(𝑠)𝛽𝛼(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝜂1𝑠=1(𝜂𝑠)(𝜂𝑠+1)𝑦(𝑠).(2.11) Hence, (2.1)-(2.2) has a unique solution 𝑢(𝑡)=𝛽𝜂(𝜂+1)+2𝑡(1𝛽𝜂)(2𝑡+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝑇𝑠=1(𝑇𝑠+1)𝑦(𝑠)𝛽(𝑇+1)(𝛽𝛼)𝑡(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝜂1𝑠=1(𝜂𝑠)(𝜂𝑠+1)𝑦(𝑠)𝑡1𝑠=1(𝑡𝑠)𝑦(𝑠),𝑡𝑇+1.(2.12)

Lemma 2.2. Let 0<𝛼<(2𝑇+2)/𝜂(𝜂+1), 0<𝛽<(2𝑇+2𝛼𝜂(𝜂+1))/𝜂(2𝑇𝜂+1). If 𝑦𝐶(𝑇+1,[0,)) and 𝑦(𝑡)0 for 𝑡1,𝑇, then the unique solution 𝑢 of (2.1)-(2.2) satisfies 𝑢(𝑡)0 for 𝑡𝑇+1.

Proof. From the fact that Δ2𝑢(𝑡1)=𝑢(𝑡+1)2𝑢(𝑡)+𝑢(𝑡1)=𝑦(𝑡)0, we know that 𝑢(𝑡)(𝑢(𝑡+1)+𝑢(𝑡1))/2, so 𝑢(𝑡+1)/(𝑡+1)<𝑢(𝑡)/𝑡.
Hence𝑢(𝑇+1)𝑢(0)<𝑇+1𝑢(𝜂)𝑢(0)𝜂+1,𝜂1,𝑇,(2.13) since 𝑢(𝑇)0 and 𝑢(0)0 imply that 𝑢(𝑡)0 for 𝑡𝑇+1.
Moreover, from 𝑢(𝑖)>(𝑖/𝜂)𝑢(𝜂)+((𝜂𝑖)/𝜂)𝑢(0), we get𝜂𝑠=11𝑢(𝑠)>𝜂𝑢(𝜂)+𝜂1𝜂+2𝑢(0)𝜂𝑢(𝜂)+𝜂2𝜂𝜂𝑢(0)++𝜂𝑢(𝜂)+𝜂𝜂𝜂=1𝑢(0)𝜂[]+1𝑢(𝜂)1+2++𝜂𝜂[]=1𝑢(0)(𝜂1)+(𝜂2)++0𝜂1𝑢(𝜂)2+1𝜂(𝜂+1)𝜂𝜂𝑢(0)212=1𝜂(𝜂+1)2(1𝜂+1)𝑢(𝜂)+2(𝜂1)𝑢(0).(2.14) Combining (2.14) with (2.2), we can get 𝑢(0)>𝛽(𝜂+1)2𝛽(𝜂1)𝑢(𝜂),(2.15) again combining (2.2), (2.14), and (2.15), we obtain 𝑢(𝑇+1)>𝛼(𝜂+1)2𝛽(𝜂1)𝑢(𝜂),(2.16) such that 2𝛽(𝜂1)>2𝛽𝜂>22𝑇+2𝛼𝜂(𝜂+1)=2𝑇𝜂+12(𝑇𝜂)+𝛼𝜂(𝜂+1)2𝑇𝜂+1>0.(2.17) By using (2.13), (2.15), and (2.16), we obtain 22𝛽𝜂𝜂𝑢(𝜂)(𝛼𝛽)(𝜂+1)𝑇+1𝑢(𝜂).(2.18) If 𝑢(0)<0, then 𝑢(𝜂)<0. It implies that (2𝑇+2𝛼𝜂(𝜂+1))/𝜂(2𝑇𝜂+1)𝛽, a contradiction to 𝛽<(2𝑇+2𝛼𝜂(𝜂+1))/𝜂(2𝑇𝜂+1). If 𝑢(𝑇)<0, then 𝑢(𝜂)<0, and the same contradiction emerges. Thus, it is true that 𝑢(0)0, 𝑢(𝑇)0, together with (2.13), we have 𝑢(𝑡)0,𝑡𝑇+1.(2.19) This proof is complete.

Lemma 2.3. Let 𝛼𝜂(𝜂+1)>2𝑇+2, 𝛽>max{(2𝑇+2𝛼𝜂(𝜂+1))/𝜂(2𝑇𝜂+1),0}. If 𝑦𝐶(𝑇+1,[0,)) and 𝑦(𝑡)0 for 𝑡1,𝑇, then problem (2.1)-(2.2) has no positive solutions.

Proof. Suppose that problem (2.1)-(2.2) has a positive solution 𝑢 satisfying 𝑢(𝑡)0, 𝑡𝑇+1, and there is a 𝜏01,𝑇 such that 𝑢(𝜏0)>0.
If 𝑢(𝑇+1)>0, then 𝜂𝑠=1𝑢(𝑠)>0. It implies𝑢(0)=𝛽𝜂𝑠=1𝑢(𝑠)>2𝑇+2𝛼𝜂(𝜂+1)𝜂(2𝑇𝜂+1)𝜂𝑠=1𝑢(𝑠)𝜂(𝑇+1)(𝑢(0)+𝑢(𝜂))𝜂(𝜂+1)𝑢(𝑇+1),𝜂(2𝑇𝜂+1)(2.20) that is, 𝑢(𝑇+1)𝑢(0)>𝑇+1𝑢(𝜂)𝑢(0)𝜂+1,(2.21) which is a contradiction to (2.13).
If 𝑢(𝑇+1)=0, then 𝜂𝑠=1𝑢(𝑠)𝑑𝑠=0. When 𝜏01,𝜂1, we get 𝑢(𝜏0)>𝑢(𝑇)=0>𝑢(𝜂), which contradicts to (2.13). When 𝜏0𝜂+1,𝑇, we get 𝑢(𝜂)0=𝑢(0)<𝑢(𝜏0), which contradicts to (2.13) again. Therefore, no positive solutions exist.

Let 𝐸=𝐶(𝑇+1,[0,)), then 𝐸 is a Banach space with respect to the norm 𝑢=sup𝑡𝑇+1||||𝑢(𝑡).(2.22)

Lemma 2.4. Let 0<𝛼<(2𝑇+2)/𝜂(𝜂+1), 0<𝛽<(2𝑇+2𝛼𝜂(𝜂+1))/𝜂(2𝑇𝜂+1). If 𝑦𝐶(𝑇+1,[0,)) and 𝑦(𝑡)0, then the unique solution to problem (2.1)-(2.2) satisfies inf𝑡𝑇+1𝑢(𝑡)𝛾𝑢,(2.23) where 𝛾=min𝛼(𝜂+1)(𝑇+1𝜂),(𝑇+1)(2𝛽(𝜂1))𝛼𝜂(𝜂+1)𝛼𝜂(𝜂+1),(2𝛽(𝜂1))(𝑇+1)𝛽(𝜂+1)(𝑇+1𝜂)(,2𝛽(𝜂1))(𝑇+1)𝛽𝜂(𝜂+1)(.2𝛽(𝜂1))(𝑇+1)(2.24)

Proof. Let 𝑢(𝑡) be maximal at 𝑡=𝜏1, when 𝜏11,𝑇 and 𝑢=𝑢(𝜏1). We divide the proof into two cases.
Case i. If 𝑢(0)𝑢(𝑇+1) and inf𝑡𝑇+1𝑢(𝑡)=𝑢(𝑇+1), then either 0𝜏1𝜂<𝑇+1 or 0<𝜂<𝜏1<𝑇+1, if 0𝜏1𝜂<𝑇+1, then 𝑢𝜏1𝑢(𝑇+1)+𝑢(𝑇+1)𝑢(𝜂)𝜏𝑇+1𝜂1𝑢(𝑇+1)𝑢(𝑇+1)+(𝑇+1)𝑢(𝜂)𝑇+1𝜂(0(𝑇+1))𝑢(𝑇+1)1(𝑇+1)(𝑇+1)(2𝛽(𝜂1))/𝛼(𝜂+1)(𝑇+1𝜂𝑢(𝑇+1)𝑇+1)(2𝛽(𝜂1))𝛼𝜂(𝜂+1)𝛼.(𝑇+1)(𝑇+1𝜂)(2.25) This implies inf𝑡𝑇+1𝑢(𝑡)𝛼(𝑇+1)(𝑇+1𝜂)(𝑇+1)(2𝛽(𝜂1))𝛼𝜂(𝜂+1)𝑢.(2.26)
Similarly, if 0<𝜂<𝜏1<𝑇+1, from𝑢(𝜂)𝜂𝑢𝜏1𝜏1𝑢𝜏1𝑇+1,(2.27) together with (2.16), we have 𝑢(𝑇+1)𝛼𝜂(𝜂+1)𝑢𝜏(2𝛽(𝜂1))(𝑇+1)1.(2.28) This implies inf𝑡𝑇+1𝑢(𝑡)𝛼𝜂(𝜂+1)(2𝛽(𝜂1))(𝑇+1)𝑢.(2.29)

Case ii. If 𝑢(0)𝑢(𝑇+1) and inf𝑡𝑇+1𝑢(𝑡)=𝑢(0), then either 0<𝜏1<𝜂<𝑇+1 or 0<𝜂𝜏1𝑇+1, by (2.13). If 0<𝜏1<𝜂<𝑇+1, from 𝑢(𝜂)𝑢𝜏𝑇+1𝜂1𝑇+1𝜏1𝑢𝜏1𝑇+1,(2.30) together with (2.15), we have 𝑢(0)>𝛽(𝜂+1)(𝑇+1𝜂)𝑢𝜏(2𝛽(𝜂1))(𝑇+1)1.(2.31) Hence, inf𝑡𝑇+1𝑢(𝑡)>𝛽(𝜂+1)(𝑇+1𝜂)(2𝛽(𝜂1))(𝑇+1)𝑢.(2.32) If 0<𝜂𝜏1𝑇+1, from 𝑢𝜏1𝑢𝜏𝑇+11𝜏1𝑢(𝜂)𝜂,(2.33) together with (2.15), we have 𝑢(0)<𝛽𝜂(𝜂+1)𝑢𝜏(2𝛽(𝜂1))(𝑇+1)1.(2.34) This implies inf𝑡𝑁𝑇+1𝑢(𝑡)<𝛽𝜂(𝜂+1)(2𝛽(𝜂1))(𝑇+1)𝑢.(2.35) This completes the proof.

In the rest of the paper, we assume that 0<𝛼<(2𝑇+2)/𝜂(𝜂+1), 𝑇1,𝑇; 0<𝛽<(2𝑇+2𝛼𝜂(𝜂+1))/𝜂(2𝑇𝜂+1). It is easy to see that the BVP (1.2) has a solution 𝑢=𝑢(𝑡) if and only if 𝑢 is a solution of the operator equation 𝐴𝑢(𝑡)𝛽𝜂(𝜂+1)+2𝑡(1𝛽𝜂)(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝑇𝑠=1(𝑇𝑠+1)𝑢(𝑠)𝑓(𝑢(𝑠))𝛽(𝑇+1)(𝛽𝛼)𝑡(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝜂1𝑠=1(𝜂𝑠)(𝜂𝑠+1)𝑢(𝑠)𝑓(𝑢(𝑠))𝑡1𝑠=1(𝑡𝑠)𝑢(𝑠)𝑓(𝑢(𝑠)).(2.36)Denote 𝐾=𝑢𝐸𝑢0,min𝑡𝑇+1𝑢(𝑡)𝛾𝑢,(2.37)

where 𝛾 is defined in (2.24).

It is obvious that 𝐾 is a cone in 𝐸. Since 𝐴𝑢=𝑢 and from Lemmas 2.2 and 2.4, then 𝐴(𝐾)𝐾. It is also easy to check that 𝐴𝐾𝐾 is completely continuous. In the following, for the sake of convenience, setΛ1=(2𝑇+2)(1𝛽𝜂)+𝛽𝜂(𝜂+1)(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝑇𝑠=1Λ(𝑇𝑠+1)𝑎(𝑠),2=𝛾(2𝛽𝜂+𝛽)(𝑇𝜂)(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝑇𝑠=1𝑠𝑎(𝑠).(2.38)

3. Main Results

Now we are in the position to establish the main result.

Theorem 3.1. The BVP (1.2) has at least one positive solution in the case(𝐻1)𝑓0=0 and 𝑓= (superlinear) or(𝐻2)𝑓0= and 𝑓=0 (sublinear).

Proof. Superlinear Case
Let (𝐻1) hold. Since 𝑓0=lim𝑢0+(𝑓(𝑢)/𝑢)=0 for any 𝜀(0,Λ11], there exists 𝜌 such that 𝑓(𝑢)𝜀𝑢for𝑢0,𝜌.(3.1) Let Ω𝜌={𝑢𝐸𝑢<𝜌} for any 𝑢𝐾𝜕Ω𝜌. From (3.1), we get 𝐴𝑢(𝑡)=2𝑡(1𝛽𝜂)+𝛽𝜂(𝜂+1)(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝑇𝑠=1(𝑇𝑠+1)𝑎(𝑠)𝑓(𝑢(𝑠))𝛽(𝑇+1)(𝛽𝛼)𝑡(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝜂1𝑠=1(𝜂𝑠)(𝜂𝑠+1)𝑎(𝑠)𝑓(𝑢(𝑠))𝑡1𝑠=1(𝑡𝑠)𝑎(𝑠)𝑓(𝑢(𝑠))2𝑡(1𝛽𝜂)+𝛽𝜂(𝜂+1)(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝑇𝑠=1(𝑇𝑠+1)𝑎(𝑠)𝑓(𝑢(𝑠))2(𝑇+1)(1𝛽𝜂)+𝛽𝜂(𝜂+1)(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝑇𝑠=1(𝑇𝑠+1)𝑎(𝑠)𝑓(𝑢(𝑠))𝜀𝜌(2𝑇+2)(1𝛽𝜂)+𝛽𝜂(𝜂+1)(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝑇𝑠=1(𝑇𝑠+1)𝑎(𝑠)=𝜀Λ1𝜌𝜌=𝑢,(3.2) which yields 𝐴𝑢𝑢for𝑢𝐾𝜕Ω𝜌.(3.3) Further, since 𝑓=lim𝑢(𝑓(𝑢)/𝑢)=, then, for any 𝑀[Λ21,), there exists 𝜌>𝜌 such that 𝑓(𝑢)𝑀𝑢for𝑢𝛾𝜌.(3.4) Set Ω𝜌={𝑢𝐸𝑢<𝜌} for 𝑢𝐾𝜕Ω𝜌.
Since 𝑢𝐾, min𝑡𝑁𝑇𝑢(𝑡)𝛾𝑢=𝛾𝜌. Hence, for any 𝑢𝐾Ω𝜌, from (3.4) and (2.23), we get 𝐴𝑢(𝜂)=(2𝛽𝜂+𝛽)𝜂(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝑇𝑠=1𝛽(𝑇𝑠+1)𝑎(𝑠)𝑓(𝑢(𝑠))(𝑇+1)(𝛽𝛼)𝜂(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝜂𝑠=1(𝜂𝑠)(𝜂𝑠+1)𝑎(𝑠)𝑓(𝑢(𝑠))𝜂1𝑠=1(=𝜂𝑠)𝑎(𝑠)𝑓(𝑢(𝑠))(2𝛽𝜂+𝛽)𝜂(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝑇𝑠=1+1(𝑇𝑠+1)𝑎(𝑠)𝑓(𝑢(𝑠))×(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝜂1𝑠=1[]=(𝜂𝑠)(2𝛽𝜂+𝛽)𝑇+(𝛽(𝑇𝜂)+𝛼𝜂+1)𝑠+(𝜂1)𝛽𝑎(𝑠)𝑓(𝑢(𝑠))(2𝛽𝜂+𝛽)𝜂(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝑇𝑠=1(𝑇𝑠+1)𝑎(𝑠)𝑓(𝑢(𝑠))𝑇(2𝛽𝜂+𝛽)(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝜂1𝑠=1+(𝜂𝑠)𝑎(𝑠)𝑓(𝑢(𝑠))𝛽(𝑡𝜂)+𝛼𝜂+1(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝜂1𝑠=1𝜂𝑠𝑠2+𝑎(𝑠)𝑓(𝑢(𝑠))(𝜂1)𝛽(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝜂1𝑠=1(𝜂𝑠)𝑎(𝑠)𝑓(𝑢(𝑠))(2𝛽𝜂+𝛽)𝜂(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝑇𝑠=1(𝑇𝑠+1)𝑎(𝑠)𝑓(𝑢(𝑠))𝑇(2𝛽𝜂+𝛽)(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝑇𝑠=1=(𝜂𝑠)𝑎(𝑠)𝑓(𝑢(𝑠))(2𝛽𝜂+𝛽)(𝑇𝜂)(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝑇s=1𝑠𝑎(𝑠)𝑓(𝑢(𝑠))𝛾𝜌𝑀(2𝛽𝜂+𝛽)(𝑇𝜂)(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝑇𝑠=1𝑠𝑎(𝑠)=𝑀Λ2𝜌𝜌=𝑢,(3.5) which implies 𝐴𝑢𝑢for𝑢𝐾𝜕Ω𝜌.(3.6)
Therefore, from (3.3), (3.6), and Theorem 1.1, it follows that 𝐴 has a fixed point in 𝐾(Ω𝜌Ω𝜌) such that 𝜌𝑢𝜌.

Sublinear Case
Let (𝐻2) hold. In view of 𝑓0=lim𝑢0+(𝑓(𝑢)/𝑢)= for any 𝑀[Λ21,), there exists 𝑟>0 such that 𝑓(𝑢)𝑀𝑢for0𝑢𝑟.(3.7) Set Ω𝑟={𝑢𝐸𝑢<𝑟} for 𝑢𝐾𝜕Ω𝑟. Since 𝑢𝐾, then min𝑡𝑇+1𝑢(𝑡)𝛾𝑢=𝛾𝑟. Thus, from (3.7) for any 𝑢𝐾𝜕Ω𝑟, we can get 𝐴𝑢(𝜂)=(2𝛽𝜂+𝛽)𝜂(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝑇𝑠=1(𝑇𝑠+1)𝑎(𝑠)𝑓(𝑢(𝑠))𝛽(𝑇+1)(𝛽𝛼)𝜂(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝜂1𝑠=1(𝜂𝑠)(𝜂𝑠+1)𝑎(𝑠)𝑓(𝑢(𝑠))𝜂1𝑠=1(𝜂𝑠)𝑎(𝑠)𝑓(𝑢(𝑠))𝛾𝑟𝑀(2𝛽𝜂+𝛽)(𝑇𝜂)(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝑇𝑠=1𝑠𝑎(𝑠)=𝑀Λ2𝑟𝑟=𝑢,(3.8) which yields 𝐴𝑢𝑢for𝑢𝐾𝜕Ω𝑟.(3.9)
Since 𝑓=lim𝑢(𝑓(𝑢)/𝑢)=0, then, for any 𝜀1(0,Λ11], there exists 𝑟0>𝑟 such that𝑓(𝑢)𝜀1𝑟𝑢for𝑢0,.(3.10) We have the following two cases.

Case i. Suppose that 𝑓(𝑢) is unbounded, then, from 𝑓𝐶([0,),[0,)), we know that there is 𝑟>𝑟0 such that 𝑓𝑟(𝑢)𝑓for𝑢0,𝑟.(3.11) Since 𝑟>𝑟0, then, from (3.10) and (3.11), one has 𝑓𝑟(𝑢)𝑓𝜀1𝑟for𝑢0,𝑟.(3.12) For 𝑢𝐾, 𝑢=𝑟, from (3.12), we obtain 𝐴𝑢(𝑡)(2𝑇+2)(1𝛽𝜂)+𝛽𝜂(𝜂+1)(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝑇𝑠=1(𝑇𝑠+1)𝑎(𝑠)𝑓(𝑢(𝑠))𝜀1𝑟(2𝑇+2)(1𝛽𝜂)+𝛽𝜂(𝜂+1)(2𝑇+2𝛼(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝑇𝑠=1(𝑇𝑠+1)𝑎(𝑠)=𝜀1Λ1𝑟𝑟=𝑢.(3.13)
Case ii. Suppose that 𝑓(𝑢) is bounded, say 𝑓(𝑢)𝑁 for all 𝑢[0,). Taking 𝑟max{𝑁/𝜀1,𝑟}, for 𝑢𝐾, 𝑢=𝑟, we have 𝐴𝑢(𝑡)(2𝑇+2)(1𝛽𝜂)+𝛽𝜂(𝜂+1)(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝑇𝑠=1((𝑇𝑠+1)𝑎(𝑠)𝑓(𝑢(𝑠))𝑁2𝑇+2)(1𝛽𝜂)+𝛽𝜂(𝜂+1)(2𝑇+2𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝑇𝑠=1(𝑇𝑠+1)𝑎(𝑠)𝜀1𝑟(2𝑇+2)(1𝛽𝜂)+𝛽𝜂(𝜂+1)(2𝑇𝛼𝜂(𝜂+1))𝛽𝜂(2𝑇𝜂+1)𝑇𝑠=1(𝑇𝑠+1)𝑎(𝑠)=𝜀1Λ1𝑟𝑟=𝑢.(3.14) Hence, in either case, we may always set Ω𝑟={𝑢𝐸𝑢<𝑟} such that 𝐴𝑢𝑢for𝑢𝐾𝜕Ω𝑟.(3.15)
Hence, from (3.9), (3.15), and Theorem 1.1, it follows that 𝐴 has a fixed point in 𝐾(Ω𝜌Ω𝜌) such that 𝑟𝑢𝑟. The proof is complete.

4. Some Examples

In this section, in order to illustrate our result, we consider some examples.

Example 4.1. Consider the BVP Δ2𝑢(t1)+𝑡2𝑢𝑘=0,𝑡𝑁1,4,1𝑢(0)=32𝑠=12𝑢(𝑠),𝑢(5)=32𝑠=1𝑢(𝑠).(4.1) Set 𝛼=2/3, 𝛽=1/3, 𝜂=2, 𝑇=4, 𝑎(𝑡)=𝑡2, and 𝑓(𝑢)=𝑢𝑘.
We can show that20<𝛼=3<53=2𝑇+21𝜂(𝜂+1),0<𝛽=3<37=2𝑇+2𝛼𝜂(𝜂+1)𝜂(2𝑇𝜂+1).(4.2)
Case I. 𝑘(1,). In this case, 𝑓0=0,𝑓=, and 𝐻1 of Theorem 3.1 holds. Then BVP (4.1) has at least one positive solution.
Case II. 𝑘(0,1). In this case, 𝑓0=,𝑓=0, and 𝐻2 of Theorem 3.1 holds. Then BVP (4.1) has at least one positive solution.

Example 4.2. Consider the BVP Δ2𝑢(𝑡1)+𝑒𝑡𝑡𝑒𝜋sin𝑢+2cos𝑢𝑢2=0,𝑡𝑁1,4,1𝑢(0)=43𝑠=11𝑢(𝑠),𝑢(5)=33𝑠=1𝑢(𝑠).(4.3) Set 𝛼=1/3, 𝛽=1/4, 𝜂=3, 𝑇=4, 𝑎(𝑡)=𝑒𝑡𝑡𝑒, 𝑓(𝑢)=(𝜋sin𝑢+2cos𝑢)/𝑢2.
We can show that10<𝛼=3<56=2𝑇+21𝜂(𝜂+1),0<𝛽=4<13=2𝑇+2𝛼𝜂(𝜂+1)𝜂(2𝑇𝜂+1).(4.4)
Through a simple calculation we can get 𝑓0=,𝑓=0. Thus, by 𝐻2 of Theorem 3.1, we can get BVP (4.3) has at least one positive solution.

Acknowledgment

This research is supported by the Centre of Excellence in Mathematics, Commission on Higher Education, Thailand.