About this Journal Submit a Manuscript Table of Contents
Journal of Applied Mathematics
Volume 2012 (2012), Article ID 581471, 11 pages
http://dx.doi.org/10.1155/2012/581471
Research Article

Cooling Intensification of a Continuously Moving Stretching Surface Using Different Types of Nanofluids

Department of Mechanical Engineering, Celal Bayar University, Muradiye, 45140 Manisa, Turkey

Received 10 October 2012; Accepted 5 December 2012

Academic Editor: Fazal M. Mahomed

Copyright © 2012 M. B. Akgül and M. Pakdemirli. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. C. Sakiadis, “Boundary layer behaviour on continuous solid surfaces: I Boundary layer equations for two dimensional and axisymmetric flow,” AIChE Journal, vol. 7, pp. 26–28, 1961.
  2. E. M. A. Elbashbeshy and M. A. A. Bazid, “Heat transfer over an unsteady stretching surface,” Heat and Mass Transfer, vol. 41, no. 1, pp. 1–4, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. F. K. Tsou, E. M. Sparrow, and R. J. Goldstein, “Flow and heat transfer in the boundary layer on a continuous moving surface,” International Journal of Heat and Mass Transfer, vol. 10, no. 2, pp. 219–235, 1967. View at Scopus
  4. P. S. Gupta and A. S. Gupta, “Heat and mass transfer on a stretching sheet with suction or blowing,” Canadian Journal of Chemical Engineering, vol. 55, pp. 744–746, 1977.
  5. C. H. Chen, “Convection cooling of a continuously moving surface in manufacturing processes,” Journal of Materials Processing Technology, vol. 138, no. 1–3, pp. 332–338, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. S. P. A. Devi and M. Thiyagarajan, “Steady nonlinear hydromagnetic flow and heat transfer over a stretching surface of variable temperature,” Heat and Mass Transfer, vol. 42, no. 8, pp. 671–677, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. I. A. Hassanien, A. A. Abdullah, and R. S. R. Gorla, “Flow and heat transfer in a power-law fluid over a nonisothermal stretching sheet,” Mathematical and Computer Modelling, vol. 28, no. 9, pp. 105–116, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. S. A. Al-Sanea and M. E. Ali, “The effect of extrusion slit on the flow and heat-transfer characteristics from a continuously moving material with suction or injection,” International Journal of Heat and Fluid Flow, vol. 21, no. 1, pp. 84–91, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Cortell, “Viscous flow and heat transfer over a nonlinearly stretching sheet,” Applied Mathematics and Computation, vol. 184, no. 2, pp. 864–873, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, “Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles,” Netsu Bussei, vol. 7, pp. 227–233, 1993.
  11. S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” ASME Publications, FED-vol. 231/MD-vol. 66, pp. 99–105, 1995.
  12. D. Wen and Y. Ding, “Experimental investigation into convective heat transfer of nano-fluids at the entrance region under laminar flow conditions,” International Journal of Heat and Mass Transfer, vol. 47, pp. 5181–5188, 2004.
  13. A. K. Santra, S. Sen, and N. Chakraborty, “Study of heat transfer due to laminar flow of copper-water nanofluid through two isothermally heated parallel plates,” International Journal of Thermal Sciences, vol. 48, no. 2, pp. 391–400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increase effective thermal conductivities of ethylene glycol based nanofluids containing copper nanoparticles,” Applied Physics Letters, vol. 78, no. 6, pp. 718–720, 2001.
  15. E. Abu-Nada, Z. Masoud, and A. Hijazi, “Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids,” International Communications in Heat and Mass Transfer, vol. 35, no. 5, pp. 657–665, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. A. A. Hamad and I. Pop, “Scaling transformations for boundary layer flow near the stagnation-point on a heated permeable stretching surface in a porous medium saturated with a nanofluid and heat generation/absorption effects,” Transport in Porous Media, vol. 87, no. 1, pp. 25–39, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  17. N. Bachok, A. Ishak, R. Nazar, and I. Pop, “Flow and heat transfer at a general three-dimensional stagnation point in a nanofluid,” Physica B, vol. 405, no. 24, pp. 4914–4918, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Vajravelu, K. V. Prasad, J. Lee, C. Lee, I. Pop, and R. A. Van Gorder, “Convective heat transfer in the flow of viscous Ag-water and Cu-water nanofluids over a stretching surface,” International Journal of Thermal Sciences, vol. 50, no. 5, pp. 843–851, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. M. F. Hady, S. I. Fouad, S. M. Abdel-Gaied, and M. R. Eid, “Radiation effect on viscous flow of a nanofluid and heat transfer over a nonlinearly stretching sheet,” Nanoscale Research Letters, vol. 7, no. 1, p. 229, 2012. View at Publisher · View at Google Scholar
  20. N. A. Yacob, A. Ishak, I. Pop, and K. Vajravelu, “Boundary layer flow past a stretching/shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluid,” Nanoscale Research Letters, vol. 6, p. 314, 2011. View at Publisher · View at Google Scholar
  21. H. C. Brinkman, “The viscosity of concentrated suspensions and solutions,” Journal of Chemical Physics, vol. 20, pp. 571–581, 1952.
  22. Y. Xuan and Q. Li, “Experimental research on the viscosity of nanofluids,” Report of Nanjing University of Science and Technology, 1999.
  23. E. M. Sparrow, H. Quack, and C. J. Boerner, “Local non-similarity boundary layer solutions,” AIAA Journal, vol. 8, no. 11, pp. 1936–1942, 1970.
  24. E. M. Sparrow and H. S. Yu, “Local non-similarity thermal boundary-layer solutions,” ASME Journal of Heat Transfer, pp. 328–334, 1971.
  25. C. H. Chen, “Heat transfer characteristics of a non-isothermal surface moving parallel to a free stream,” Acta Mechanica, vol. 142, no. 1, pp. 195–205, 2000. View at Scopus
  26. V. M. Soundalgekar and T. V. Ramana Murty, “Heat transfer in flow past a continuous moving plate with variable temperature,” Wärme- und Stoffübertragung, vol. 14, no. 2, pp. 91–93, 1980. View at Publisher · View at Google Scholar · View at Scopus