About this Journal Submit a Manuscript Table of Contents
Journal of Applied Mathematics
Volume 2012 (2012), Article ID 648262, 17 pages
http://dx.doi.org/10.1155/2012/648262
Research Article

Optimization on Production-Inventory Problem with Multistage and Varying Demand

1School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China
2Department of Mathematics, Lanzhou City University, Lanzhou 730070, China
3Northwest Traffic Economy Research Center, Lanzhou Jiaotong University, Lanzhou 730070, China

Received 25 June 2012; Revised 9 October 2012; Accepted 16 October 2012

Academic Editor: Yuri Sotskov

Copyright © 2012 Duan Gang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. K. Goyal and B. C. Giri, “The production-inventory problem of a product with time varying demand, production and deterioration rates,” European Journal of Operational Research, vol. 147, no. 3, pp. 549–557, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  2. C. K. Huang, “An optimal policy for a single-vendor single-buyer integrated production-inventory problem with process unreliability consideration,” International Journal of Production Economics, vol. 91, no. 1, pp. 91–98, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. R. M. Hill, “The optimal production and shipment policy for the single-vendor singlebuyer integrated production-inventory problem,” International Journal of Production Research, vol. 37, no. 11, pp. 2463–2475, 1999. View at Scopus
  4. J. P. Gayon, S. Benjaafar, and F. Véricourt, “Using imperfect advance demand information in production-inventory systems with multiple customer classes,” Manufacturing and Service Operations Management, vol. 11, no. 1, pp. 128–143, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. M. Alshamrani, “Adaptive control of a two-item inventory model with unknown demand rate coefficients,” Journal of Applied Mathematics, vol. 2012, pp. 1–16, 2012. View at Publisher · View at Google Scholar
  6. A. M. Alshamrani, “Adaptive control of a reverse logistic inventory model with uncertain deteriorations and disposal rates,” Advances in Operations Research, vol. 2012, pp. 1–11, 2012. View at Publisher · View at Google Scholar
  7. M. K. Doğru, M. I. Reiman, and Q. Wang, “A stochastic programming based inventory policy for assemble-to-order systems with application to the W model,” Operations Research, vol. 58, no. 4, pp. 849–864, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  8. H. Zijm and G. V. Houtum, “On multi-stage production/inventory systems under stochastic demand,” International Journal of Production Economics, vol. 35, no. 1–3, pp. 391–400, 1994. View at Scopus
  9. A. J. Kleywegt, V. S. Nori, and M. W. P. Savelsbergh, “The stochastic inventory routing problem with direct deliveries,” Transportation Science, vol. 36, no. 1, pp. 94–118, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Gupta and L. Wang, “A stochastic inventory model with trade credit,” Manufacturing and Service Operations Management, vol. 11, no. 1, pp. 4–18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Y. Ouyang, J. T. Teng, and M. C. Cheng, “A fuzzy inventory system with deteriorating items under supplier credits linked to ordering quantity,” Journal of Information Science and Engineering, vol. 26, no. 1, pp. 231–253, 2010. View at Scopus
  12. C. H. Hsieh, “Optimization of fuzzy inventory models under k-preference,” Tamsui Oxford Journal of Mathematical Sciences, vol. 19, no. 1, pp. 79–97, 2003.
  13. C. H. Hsieh, “Optimization of fuzzy production inventory models,” Information Sciences, vol. 146, no. 1–4, pp. 29–40, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  14. S. H. Chen and S. M. Chang, “Optimization of fuzzy production inventory model with unrepairable defective products,” International Journal of Production Economics, vol. 113, no. 2, pp. 887–894, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Roy, K. Maity, S. kar, and M. Maiti, “A production-inventory model with remanufacturing for defective and usable items in fuzzy-environment,” Computers and Industrial Engineering, vol. 56, no. 1, pp. 87–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. J. K. Syed and L. A. Aziz, “Fuzzy inventory model without shortages using signed distance method,” Applied Mathematics & Information Sciences, vol. 1, no. 2, pp. 203–209, 2007. View at Zentralblatt MATH
  17. X. Chao, J. Chen, and S. Wang, “Dynamic inventory management with cash flow constraints,” Naval Research Logistics, vol. 55, no. 8, pp. 758–768, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. W. J. Hopp and X. Xu, “A static approximation for dynamic demand substitution with applications in a competitive market,” Operations Research, vol. 56, no. 3, pp. 630–645, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  19. T. L. Olsen and R. P. Parker, “Inventory management under market size dynamics,” Management Science, vol. 54, no. 10, pp. 1805–1821, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Broekmeulen and K. Donselaar, “A heuristic to manage perishable inventory with batch ordering, positive lead-times, and time-varying demand,” Computers and Operations Research, vol. 36, no. 11, pp. 3013–3018, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. R. Duan, G. P. Li, J. M. Tien, and J. Z. Huo, “Inventory models for perishable items with inventory level dependent demand rate,” Applied Mathematical Modelling, vol. 36, no. 10, pp. 5015–5028, 2012.
  22. K. Gumasta, F. T. S. Chan, and M. K. Tiwari, “An incorporated inventory transport system with two types of customers for multiple perishable goods,” International Journal of Production Economics, vol. 139, no. 2, pp. 678–686, 2012.
  23. R. Jayaraman, B. Sivakumar, and G. Arivarignan, “A perishable inventory system with postponed demands and multiple server vacations,” Modelling and Simulation in Engineering, vol. 2012, Article ID 620960, 17 pages, 2012. View at Publisher · View at Google Scholar
  24. H. Dong and G. Jiang, “Limit distribution of inventory level of perishable inventory model,” Mathematical Problems in Engineering, Article ID 329531, 9 pages, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  25. P. Manuel, B. Sivakumar, and G. Arivarignan, “A perishable inventory system with service facilities and retrial customers,” Computers and Industrial Engineering, vol. 54, no. 3, pp. 484–501, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Lian, X. Liu, and N. Zhao, “A perishable inventory model with Markovian renewal demands,” International Journal of Production Economics, vol. 121, no. 1, pp. 176–182, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Aggoun, L. Benkherouf, and L. Tadj, “A hidden Markov model for an inventory system with perishable items,” Journal of Applied Mathematics and Stochastic Analysis, vol. 10, no. 4, pp. 423–430, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  28. J. S. Yao and H. M. Lee, “Fuzzy inventory with backorder defuzzification by signed distance method,” Journal of Information Science and Engineering, vol. 21, no. 4, pp. 673–694, 2005. View at Scopus
  29. Ü. Gürler, E. Berk, and U. Akbay, “Bayesian updating of demand and backorder distributions in a newsvendor inventory problem,” in Proceedings of the 34th Conference on Applications of Mathematics in Engineering and Economics (AMEE '08), pp. 483–490, Sozopol, Bulgaria, 2008.
  30. K. S. Shin, Y. W. Shin, J. H. Kwon, and S. H. Kang, “Development of risk based dynamic backorder replenishment planning framework using Bayesian Belief Network,” Computers & Industrial Engineering, vol. 62, no. 3, pp. 716–725, 2012.
  31. J. S. Hu, H. Zheng, C. Y. Guo, and Y. P. Ji, “Optimal production run length with imperfect production processes and backorder in fuzzy random environment,” Computers and Industrial Engineering, vol. 59, no. 1, pp. 9–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. N. H. Shah and H. Soni, “A multi-objective production inventory model with backorder for fuzzy random demand under flexibility and reliability,” Journal of Mathematical Modelling and Algorithms, vol. 10, no. 4, pp. 341–356, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  33. G. Liberopoulos, I. Tsikis, and S. Delikouras, “Backorder penalty cost coefficient "b": what could it be?” International Journal of Production Economics, vol. 123, no. 1, pp. 166–178, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. K. C. Hung, “An inventory model with generalized type demand, deterioration and backorder rates,” European Journal of Operational Research, vol. 208, no. 3, pp. 239–242, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  35. G. A. Widyadana, L. E. Cárdenas-Barrón, and H. M. Wee, “Economic order quantity model for deteriorating items with planned backorder level,” Mathematical and Computer Modelling, vol. 54, no. 5-6, pp. 1569–1575, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  36. K.-J. Chung and L. E. Cárdenas-Barrón, “The complete solution procedure for the EOQ and EPQ inventory models with linear and fixed backorder costs,” Mathematical and Computer Modelling, vol. 55, no. 11-12, pp. 2151–2156, 2012. View at Publisher · View at Google Scholar
  37. Y. J. Lin, “A stochastic periodic review integrated inventory model involving defective items, backorder price discount, and variable lead time,” 4OR. A Quarterly Journal of Operations Research, vol. 8, no. 3, pp. 281–297, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  38. H. Lin, “Effective investment to reduce setup cost in a mixture inventory model involving controllable backorder rate and variable lead time with a service level constraint,” Mathematical Problems in Engineering, vol. 2012, Article ID 689061, 15 pages, 2012. View at Publisher · View at Google Scholar
  39. Y. N. Sotskov and A. B. Dolgui, “Stability radius of the optimal assembly line balance with fixed cycle time,” in Proceedings of the 8th International Conference on Emerging Technologies and Factory Automation (ETFA '01), pp. 623–628, October 2001. View at Scopus
  40. Y. N. Sotskov, A. Dolgui, and M.-C. Portmann, “Stability analysis of an optimal balance for an assembly line with fixed cycle time,” European Journal of Operational Research, vol. 168, no. 3, pp. 783–797, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  41. U. Özcan and B. Toklu, “Balancing of mixed-model two-sided assembly lines,” Computers & Industrial Engineering, vol. 57, no. 1, pp. 217–227, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. U. Özcan and B. Toklu, “Multiple-criteria decision-making in two-sided assembly line balancing: a goal programming and a fuzzy goal programming models,” Computers & Operations Research, vol. 36, no. 6, pp. 1955–1965, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. U. Özcan, “Balancing stochastic two-sided assembly lines: achance-constrained, piecewise-linear, mixed integer program and a simulated annealing algorithm,” European Journal of Operational Research, vol. 205, no. 1, pp. 81–97, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. H. D. Purnomo, H. M. Wee, and H. Rau, “Two-sided assembly lines balancing with assignment restrictions,” Mathematical and Computer Modelling, vol. 57, no. 1-2, pp. 189–199, 2013. View at Publisher · View at Google Scholar
  45. T. Kellegöz and B. Toklu, “An efficient branch and bound algorithm for assembly line balancing problems with parallel multi-manned workstations,” Computers & Operations Research, vol. 39, no. 12, pp. 3344–3360, 2012.