About this Journal Submit a Manuscript Table of Contents
Journal of Applied Mathematics
Volume 2012 (2012), Article ID 751975, 15 pages
http://dx.doi.org/10.1155/2012/751975
Research Article

On a New Method for Computing the Numerical Solution of Systems of Nonlinear Equations

1Department of Mathematics, Islamic Azad University, Sirjan Branch, Sirjan, Iran
2Department of Mathematics, Islamic Azad University, Zahedan Branch, Zahedan, Iran
3Department of Mathematics, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
4School of Mathematical Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg 3209, South Africa

Received 22 June 2012; Revised 17 August 2012; Accepted 27 August 2012

Academic Editor: Changbum Chun

Copyright © 2012 H. Montazeri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, NY, USA, 1970. View at Zentralblatt MATH
  2. S. C. Eisenstat and H. F. Walker, “Globally convergent inexact Newton methods,” SIAM Journal on Optimization, vol. 4, no. 2, pp. 393–422, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  3. M. T. Darvishi and B.-C. Shin, “High-order Newton-Krylov methods to solve systems of nonlinear equations,” Journal of the Korean Society for Industrial and Applied Mathematics, vol. 15, no. 1, pp. 19–30, 2011.
  4. Z.-Z. Bai and H.-B. An, “A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations,” Applied Numerical Mathematics, vol. 57, no. 3, pp. 235–252, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  5. F. Toutounian, J. Saberi-Nadjafi, and S. H. Taheri, “A hybrid of the Newton-GMRES and electromagnetic meta-heuristic methods for solving systems of nonlinear equations,” Journal of Mathematical Modelling and Algorithms, vol. 8, no. 4, pp. 425–443, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. S. Wagon, Mathematica in Action, Springer, New York, NY, USA, 3rd edition, 2010.
  7. H. Binous, “Solution of a system of nonlinear equations using the fixed point method,” 2006, http://library.wolfram.com/infocenter/MathSource/6611/.
  8. A. Margaris and K. Goulianas, “Finding all roots of 2×2 nonlinear algebraic systems using back-propagation neural networks,” Neural Computing and Applications, vol. 21, no. 5, pp. 891–904, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Turan and A. Ecder, “Set reduction in nonlinear equations,” . In press, http://arxiv.org/abs/1203.3059v1.
  10. B.-C. Shin, M. T. Darvishi, and C.-H. Kim, “A comparison of the Newton-Krylov method with high order Newton-like methods to solve nonlinear systems,” Applied Mathematics and Computation, vol. 217, no. 7, pp. 3190–3198, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. D. K. R. Babajee, M. Z. Dauhoo, M. T. Darvishi, and A. Barati, “A note on the local convergence of iterative methods based on Adomian decomposition method and 3-node quadrature rule,” Applied Mathematics and Computation, vol. 200, no. 1, pp. 452–458, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  12. J. R. Sharma, R. K. Guha, and R. Sharma, “An efficient fourth order weighted-Newton method for systems of nonlinear equations,” Numerical Algorithms. In press. View at Publisher · View at Google Scholar
  13. F. Soleymani, “Regarding the accuracy of optimal eighth-order methods,” Mathematical and Computer Modelling, vol. 53, no. 5-6, pp. 1351–1357, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  14. A. Cordero, J. L. Hueso, E. Martínez, and J. R. Torregrosa, “A modified Newton-Jarratt's composition,” Numerical Algorithms, vol. 55, no. 1, pp. 87–99, 2010. View at Publisher · View at Google Scholar
  15. M. Grau-Sánchez, A. Grau, and M. Noguera, “On the computational efficiency index and some iterative methods for solving systems of nonlinear equations,” Journal of Computational and Applied Mathematics, vol. 236, no. 6, pp. 1259–1266, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  16. J. A. Ezquerro, M. Grau-Sánchez, A. Grau, M. A. Hernández, M. Noguera, and N. Romero, “On iterative methods with accelerated convergence for solving systems of nonlinear equations,” Journal of Optimization Theory and Applications, vol. 151, no. 1, pp. 163–174, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  17. M. Trott, The Mathematica GuideBook for Numerics, Springer, New York, NY, USA, 2006.
  18. A. H. Bhrawy, E. Tohidi, and F. Soleymani, “A new Bernoulli matrix method for solving high-order linear and nonlinear Fredholm integro-differential equations with piecewise intervals,” Applied Mathematics and Computation, vol. 219, no. 2, pp. 482–497, 2012. View at Publisher · View at Google Scholar
  19. M. T. Darvishi, “Some three-step iterative methods free from second order derivative for finding solutions of systems of nonlinear equations,” International Journal of Pure and Applied Mathematics, vol. 57, no. 4, pp. 557–573, 2009. View at Zentralblatt MATH
  20. M. Y. Waziri, W. J. Leong, M. A. Hassan, and M. Monsi, “A low memory solver for integral equations of Chandrasekhar type in the radiative transfer problems,” Mathematical Problems in Engineering, vol. 2011, Article ID 467017, 12 pages, 2011. View at Zentralblatt MATH
  21. O. R. N. Samadi and E. Tohidi, “The spectral method for solving systems of Volterra integral equations,” Journal of Applied Mathematics and Computing, vol. 40, no. 1-2, pp. 477–497, 2012. View at Publisher · View at Google Scholar