Abstract

The Gross-Pitaevskii model of spinor Bose-Einstein condensates is studied. Using the abstract results obtained for infinite-dimensional Hamilton system, we establish the mathematical theory for the model of spinor BEC. Furthermore, three conservative quantities of spinor BEC, that is, the energy, total particle number, and magnetization intensity, are also proved.

1. Introduction

After the first remarkable experiments concerning the observation of Bose-Einstein condensate (BEC) in dilute gases of alkali atoms such as 87Rb [1], 23Na [2], and 7Li [3] the interest in this phenomenon has revived [4, 5]. On the mathematical side, most of the work has concentrated on the Gross-Pitaevskii (GP) model of BEC, which is usually referred to as nonlinear SchΓΆdinger equation (NLSE) (cf. [6–14] and references therein). There are also many pieces of the literature on the spinor BEC ([15–19]). In the spinor BEC case, the constituent bosons have internal degrees of freedom, such as spin, the quantum state, and its properties becomes more complex [20]. What has made the alkali spinor BEC particularly interesting is that optical and magnetic fields can be used to probe and manipulate the system.

In [15], Ho shows that in an optical trap the ground states of spin-1 bosons such as 23Na, 39K, and 87Rb can be either ferromagnetic or polar states, depending on the scattering lengths in different angular momentum channels. In [17], Pu et al. discuss the energy eigenstates, ground and spin mixing dynamics of a spin-1 spinor BEC for a dilute atomic vapor confined in an optical trap. Their results go beyond the mean field picture and are developed within a fully quantized framework. In [19], Zou and Mathis propose a three-step scheme for generating the maximally entangled atomic Greenberger-Horne-Zeilinger (GHZ) states in a spinor BEC by using strong classical laser fields to shift atom level and drive single-atom Raman transition. Their scheme can be directly used to generate the maximally entangled states between atoms with hyperfine spin 0 and 1.

In this paper, we want to establish the mathematical theory of the GP model of spinor BEC in which the internal degrees of freedom of atoms are also under consideration. Furthermore, three conservative quantities of spinor BEC, that is, the energy, total particle number, and magnetization intensity are also proved.

2. Gross-Pitaevskii Model for Spinor BEC

In this section we derive GP equation for spinor BEC, that is, the following equation:π‘–β„πœ•πœ“1β„πœ•π‘‘=βˆ’22π‘šΞ”πœ“1+𝑉(π‘₯)πœ“1+𝑔𝑛||Ξ¨||2πœ“1+π‘”π‘ πœ“βˆ—βˆ’1πœ“20+𝑔𝑠||πœ“1||2+||πœ“0||2βˆ’||πœ“βˆ’1||2ξ‚πœ“1,π‘–β„πœ•πœ“0β„πœ•π‘‘=βˆ’22π‘šΞ”πœ“0+𝑉(π‘₯)πœ“0+𝑔𝑛||Ξ¨||2πœ“0+2π‘”π‘ πœ“1πœ“βˆ’1πœ“βˆ—0+𝑔𝑠||πœ“1||2+||πœ“βˆ’1||2ξ‚πœ“0,π‘–β„πœ•πœ“βˆ’1β„πœ•π‘‘=βˆ’22π‘šΞ”πœ“βˆ’1+𝑉(π‘₯)πœ“βˆ’1+𝑔𝑛||Ξ¨||2πœ“βˆ’1+π‘”π‘ πœ“βˆ—1πœ“20+𝑔𝑠||πœ“βˆ’1||2+||πœ“0||2βˆ’||πœ“1||2ξ‚πœ“βˆ’1.(2.1)

We consider the GP model for 𝐹=1 spinor BEC. Particles of 𝐹=1 have three quantum states: magnetic quantum number π‘š=1,0,βˆ’1. The corresponding wave function of these three quantum states are denote byξ€·πœ“Ξ¨=1,πœ“0,πœ“βˆ’1ξ€Έ.(2.2) Here the physical meaning of |πœ“π‘–|2 is the density of π‘š=𝑖 particles (𝑖=1,0,βˆ’1). The corresponding Hamilton energy functional of 𝐹=1 spinor BEC is as follows:𝐸Ψ,Ξ¨βˆ—ξ€Έ=ξ€œΞ©ξ‚Έβ„2||||2π‘šβˆ‡Ξ¨2||Ξ¨||+𝑉(π‘₯)2+12𝑔𝑛||Ξ¨||4+12𝑔𝑠||Ξ¨βˆ—||𝑆Ψ2𝑑π‘₯,(2.3) where π‘š is the boson mass, ℏ is Planck constant, 𝑉(β‹…) is the external trapping potential, |Ξ¨|2 is the density of dilute bosonic atoms, 𝑔𝑛 is the interaction constant between atoms, and 𝑔𝑠 is the spin exchange interaction constant𝑔𝑛=4πœ‹β„2π‘šπ‘Ž0+2π‘Ž23,𝑔𝑠=4πœ‹β„2π‘šπ‘Ž2βˆ’π‘Ž03,(2.4)π‘Ž0 and π‘Ž2 are the scattering length, and 𝑆=𝑆π‘₯⃗𝑖+𝑆𝑦⃗𝑗+π‘†π‘§βƒ—π‘˜ is the spin operator:𝑆π‘₯=1√2ξƒͺ010101010,𝑆𝑦=1√2ξƒͺ0βˆ’π‘–0𝑖0βˆ’π‘–0𝑖0,𝑆𝑧=ξƒͺ.10000000βˆ’1(2.5) We adopt the following notations:Ξ¨βˆ—ξ€·πœ“π‘†Ξ¨=βˆ—1,πœ“βˆ—0,πœ“βˆ—βˆ’1𝑆π‘₯⃗𝑖+𝑆𝑦⃗𝑗+π‘†π‘§βƒ—π‘˜ξ‚„ξƒ©πœ“1πœ“0πœ“βˆ’1ξƒͺ,||Ξ¨βˆ—||𝑆Ψ2=||Ξ¨βˆ—π‘†π‘₯Ξ¨||2+||Ξ¨βˆ—π‘†π‘¦Ξ¨||2+||Ξ¨βˆ—π‘†π‘§Ξ¨||2=12||πœ“βˆ—1πœ“0+πœ“βˆ—0ξ€·πœ“1+πœ“βˆ’1ξ€Έ+πœ“βˆ—βˆ’1πœ“0||2+12||βˆ’πœ“βˆ—1πœ“0+πœ“βˆ—0ξ€·πœ“1βˆ’πœ“βˆ’1ξ€Έ+πœ“βˆ—βˆ’1πœ“0||2+ξ‚€||πœ“1||2βˆ’||πœ“βˆ’1||22.(2.6) By calculation we can get||Ξ¨βˆ—||𝑆Ψ2=||πœ“1||4+||πœ“βˆ’1||4||πœ“βˆ’21||2||πœ“βˆ’1||2||πœ“+20||2||πœ“1||2||πœ“+20||2||πœ“βˆ’1||2+2πœ“20πœ“βˆ—1πœ“βˆ—βˆ’1+2πœ“βˆ—02πœ“1πœ“βˆ’1.(2.7)

By using Lagrange multiplier theorem, from the Hamilton energy functional 𝐸 (see (2.3) and the total particle numberξ€œπ‘=Ξ©||Ξ¨||2ξ€·πœ“π‘‘π‘₯,Ξ¨=1,πœ“0,πœ“βˆ’1ξ€Έ(2.8) is conservative, and we can obtain the steady state GP equation of spinor BEC as follows:πœ‡πœ“π‘˜=π›Ώπ›Ώπœ“βˆ—π‘˜πΈξ€·Ξ¨,Ξ¨βˆ—ξ€Έ,π‘˜=1,0,βˆ’1,(2.9) where πœ‡ is the chemical potential. Furthermore, according to general rules of quantum mechanics from steady state GP equation, we can get the dynamical model as follows:π‘–β„πœ•πœ“π‘˜=π›Ώπœ•π‘‘π›Ώπœ“βˆ—π‘˜πΈξ€·Ξ¨,Ξ¨βˆ—ξ€Έ,π‘˜=1,0,βˆ’1,(2.10) where βˆšπ‘–=βˆ’1. From ((2.3) and (2.7), we can obtain the concrete expression of (2.10) as (2.1).

In the spinor BEC 𝑔𝑛 and 𝑔𝑠 we have following physical meaning:𝑔𝑛>0,correspondingtotherepulsiveinteractionbetweenatoms,<0,correspondingtotheattractiveinteractionbetweenatoms,𝑔𝑠>0,correspondingtotheantiferromagneticstates,<0,correspondingtotheferromagneticstates.(2.11)

3. Equivalent Form of Spinor BEC

Let πœ“π‘˜=πœ“1π‘˜+π‘–πœ“2π‘˜. In this section we will show that GP equation (2.1) is equivalent to the following quantum Hamilton systems (see [21]):πœ•πœ“1π‘˜=ξ€·πœ“πœ•π‘‘π›ΏπΉ1,πœ“2ξ€Έπ›Ώπœ“2π‘˜,πœ•πœ“2π‘˜ξ€·πœ“πœ•π‘‘=βˆ’π›ΏπΉ1,πœ“2ξ€Έπ›Ώπœ“1π‘˜,π‘˜=1,0,βˆ’1,(3.1) where πœ“1=(πœ“11,πœ“10,πœ“1βˆ’1),πœ“2=(πœ“21,πœ“20,πœ“2βˆ’1), and the energy functional defined asπΉξ€·πœ“1,πœ“2ξ€Έ=1𝐸2ℏΨ,Ξ¨βˆ—ξ€Έ,(𝐸see(2.3)).(3.2)

In fact, on the one hand, splitting real and imaginary parts of (2.1), we can obtain β„πœ•πœ“11=ξ‚΅βˆ’β„πœ•π‘‘22π‘šΞ”+𝑉(π‘₯)+𝑔𝑛||Ξ¨||2+𝑔𝑠||πœ“1||2+||πœ“0||2βˆ’||πœ“βˆ’1||2ξ‚ξ‚Άπœ“21+𝑔𝑠2πœ“1βˆ’1πœ“10πœ“20βˆ’πœ“2βˆ’1ξ€·πœ“10ξ€Έ2+πœ“2βˆ’1ξ€·πœ“20ξ€Έ2,β„πœ•πœ“21=ξ‚΅β„πœ•π‘‘22π‘šΞ”βˆ’π‘‰(π‘₯)βˆ’π‘”π‘›||Ξ¨||2βˆ’π‘”π‘ ξ‚€||πœ“1||2+||πœ“0||2βˆ’||πœ“βˆ’1||2ξ‚ξ‚Άπœ“11βˆ’π‘”π‘ ξ‚€2πœ“2βˆ’1πœ“10πœ“20+πœ“1βˆ’1ξ€·πœ“10ξ€Έ2βˆ’πœ“1βˆ’1ξ€·πœ“20ξ€Έ2,β„πœ•πœ“10=ξ‚΅βˆ’β„πœ•π‘‘22π‘šΞ”+𝑉(π‘₯)+𝑔𝑛||Ξ¨||2+𝑔𝑠||πœ“1||2+||πœ“βˆ’1||2ξ‚ξ‚Άπœ“20+2π‘”π‘ ξ€·πœ“11πœ“2βˆ’1πœ“10+πœ“1βˆ’1πœ“21πœ“10βˆ’πœ“11πœ“1βˆ’1πœ“20+πœ“21πœ“2βˆ’1πœ“20ξ€Έ,β„πœ•πœ“20=ξ‚΅β„πœ•π‘‘22π‘šΞ”βˆ’π‘‰(π‘₯)βˆ’π‘”π‘›||Ξ¨||2βˆ’π‘”π‘ ξ‚€||πœ“1||2+||πœ“βˆ’1||2ξ‚ξ‚Άπœ“10βˆ’2π‘”π‘ ξ€·πœ“11πœ“1βˆ’1πœ“10βˆ’πœ“2βˆ’1πœ“21πœ“10+πœ“11πœ“2βˆ’1πœ“20+πœ“21πœ“1βˆ’1πœ“20ξ€Έ,β„πœ•πœ“1βˆ’1=ξ‚΅βˆ’β„πœ•π‘‘22π‘šΞ”+𝑉(π‘₯)+𝑔𝑛||Ξ¨||2+𝑔𝑠||πœ“βˆ’1||2+||πœ“0||2βˆ’||πœ“1||2ξ‚ξ‚Άπœ“2βˆ’1+𝑔𝑠2πœ“11πœ“10πœ“20βˆ’πœ“21ξ€·πœ“10ξ€Έ2+πœ“21ξ€·πœ“20ξ€Έ2,β„πœ•πœ“2βˆ’1=ξ‚΅β„πœ•π‘‘22π‘šΞ”βˆ’π‘‰(π‘₯)βˆ’π‘”π‘›||Ξ¨||2βˆ’π‘”π‘ ξ‚€||πœ“βˆ’1||2+||πœ“0||2βˆ’||πœ“1||2ξ‚ξ‚Άπœ“1βˆ’1βˆ’π‘”π‘ ξ‚€2πœ“21πœ“10πœ“20+πœ“11ξ€·πœ“10ξ€Έ2βˆ’πœ“11ξ€·πœ“20ξ€Έ2.(3.3) On the other hand, it is easy to check that ξ€·πœ“π›ΏπΉ1,πœ“2ξ€Έπ›Ώπœ“21=1β„βˆ’β„ξ‚Έξ‚΅22π‘šΞ”+𝑉(π‘₯)+𝑔𝑛||Ξ¨||2+𝑔𝑠||πœ“1||2+||πœ“0||2βˆ’||πœ“βˆ’1||2ξ‚ξ‚Άπœ“21+𝑔𝑠2πœ“1βˆ’1πœ“10πœ“20βˆ’πœ“2βˆ’1ξ€·πœ“10ξ€Έ2+πœ“2βˆ’1ξ€·πœ“20ξ€Έ2,ξ€·πœ“π›ΏπΉ1,πœ“2ξ€Έπ›Ώπœ“11=1β„βˆ’β„ξ‚Έξ‚΅22π‘šΞ”+𝑉(π‘₯)+𝑔𝑛||Ξ¨||2+𝑔𝑠||πœ“1||2+||πœ“0||2βˆ’||πœ“βˆ’1||2ξ‚ξ‚Άπœ“11+𝑔𝑠2πœ“2βˆ’1πœ“10πœ“20+πœ“1βˆ’1ξ€·πœ“10ξ€Έ2βˆ’πœ“1βˆ’1ξ€·πœ“20ξ€Έ2,ξ€·πœ“π›ΏπΉ1,πœ“2ξ€Έπ›Ώπœ“20=1β„βˆ’β„ξ‚Έξ‚΅22π‘šΞ”+𝑉(π‘₯)+𝑔𝑛||Ξ¨||2+𝑔𝑠||πœ“1||2+||πœ“βˆ’1||2ξ‚ξ‚Άπœ“20+2π‘”π‘ ξ€·πœ“11πœ“2βˆ’1πœ“10+πœ“1βˆ’1πœ“21πœ“10βˆ’πœ“11πœ“1βˆ’1πœ“20+πœ“21πœ“2βˆ’1πœ“20ξ€Έξ‚Ή,ξ€·πœ“π›ΏπΉ1,πœ“2ξ€Έπ›Ώπœ“10=1β„βˆ’β„ξ‚Έξ‚΅22π‘šΞ”+𝑉(π‘₯)+𝑔𝑛||Ξ¨||2+𝑔𝑠||πœ“1||2+||πœ“βˆ’1||2ξ‚ξ‚Άπœ“10+2π‘”π‘ ξ€·πœ“11πœ“1βˆ’1πœ“10βˆ’πœ“2βˆ’1πœ“21πœ“10+πœ“11πœ“2βˆ’1πœ“20+πœ“21πœ“1βˆ’1πœ“20ξ€Έξ‚Ή,ξ€·πœ“π›ΏπΉ1,πœ“2ξ€Έπ›Ώπœ“2βˆ’1=1β„βˆ’β„ξ‚Έξ‚΅22π‘šΞ”+𝑉(π‘₯)+𝑔𝑛||Ξ¨||2+𝑔𝑠||πœ“βˆ’1||2+||πœ“0||2βˆ’||πœ“1||2ξ‚ξ‚Άπœ“2βˆ’1+𝑔𝑠2πœ“11πœ“10πœ“20βˆ’πœ“21ξ€·πœ“10ξ€Έ2+πœ“21ξ€·πœ“20ξ€Έ2,ξ€·πœ“π›ΏπΉ1,πœ“2ξ€Έπ›Ώπœ“1βˆ’1=1β„βˆ’β„ξ‚Έξ‚΅22π‘šΞ”+𝑉(π‘₯)+𝑔𝑛||Ξ¨||2+𝑔𝑠||πœ“βˆ’1||2+||πœ“0||2βˆ’||πœ“1||2ξ‚ξ‚Άπœ“1βˆ’1+𝑔𝑠2πœ“21πœ“10πœ“20+πœ“11ξ€·πœ“10ξ€Έ2βˆ’πœ“11ξ€·πœ“20ξ€Έ2.(3.4) Consequently, GP equation (2.1) is equivalent to (3.1).

4. Infinite Dimensional Hamilton System

In this section, we consider the following infinite-dimensional Hamilton system𝑑𝑒𝑑𝑑=βˆ’π·π‘£πΉ(𝑒,𝑣),𝑑𝑣𝑑𝑑=𝐷𝑒𝐹(𝑒,𝑣),𝑒(0)=πœ‘,𝑣(0)=πœ“,(𝑒,𝑣)βˆˆπ‘‹1×𝑋2ξ€Έ(4.1) where π‘‹βŠ‚π‘‹π‘–βŠ‚π»(𝑖=1,2) is dense, 𝑋 is linear space, 𝑋1,𝑋2 is reflexive Banach space, 𝐻 is Hilbert space, πΉβˆΆπ‘‹1×𝑋2→𝑅1  is 𝐢1 functional, and 𝐷𝐹=(𝐷𝑒𝐹,𝐷𝑣𝐹) is derived operator.

Remark 4.1. Infinite-dimensional Hamilton system (4.1) not only has some kind of beauty in its own form, but also many equations can be written as (4.1). For example, SchΓΆdinger equation, Weyl equations, and Dirac equations can be written as (4.1). Hence, it is worth to study the infinite-dimensional Hamilton system (4.1), also see [21].

Definition 4.2. One says (𝑒,𝑣)βˆˆπ‘‹1×𝑋2 is a weak solution of Hamilton system (4.1), providedβŸ¨π‘’,Μƒπ‘’βŸ©π»Μƒ+βŸ¨π‘£,π‘£βŸ©π»=ξ€œπ‘‘0ξ€ΊβŸ¨π·π‘’ΜƒπΉ(𝑒,𝑣),π‘£βŸ©βˆ’βŸ¨π·π‘£ξ€»πΉ(𝑒,𝑣),Μƒπ‘’βŸ©π‘‘π‘‘+βŸ¨πœ‘,Μƒπ‘’βŸ©π»Μƒ+βŸ¨πœ“,π‘£βŸ©π»,(4.2) for every Μƒπ‘’βˆˆπ‘‹2,Μƒπ‘£βˆˆπ‘‹1.
Let πΉβˆΆπ‘‹1×𝑋2→𝑅1 satisfy ||||||||(𝑒,𝑣)𝑋1×𝑋2⟢∞⟺𝐹(𝑒,𝑣)⟢∞(orβˆ’πΉ(𝑒,𝑣)⟢∞).(4.3) Then we have the following existence theorem.

Theorem 4.3 (see [21]). Assume that 𝐹 satisfies condition (4.3) and π·πΉβˆΆπ‘‹1×𝑋2β†’(𝑋1×𝑋2)βˆ— is weakly continuous, then for any (πœ‘,πœ“)βˆˆπ‘‹1×𝑋2, there exists one global weak solution of equation (4.1) (𝑒,𝑣)βˆˆπΏβˆžξ€·(0,∞),𝑋1×𝑋2ξ€Έ.(4.4) Furthermore, 𝐹(𝑒,𝑣) is a conservative quantity for weak solution (𝑒,𝑣), that is, 𝐹(𝑒(𝑑),𝑣(𝑑))=𝐹(πœ‘,πœ“),βˆ€π‘‘>0.(4.5)

Proof. We prove the existence of global solution for (4.1) in 𝐿∞((0,∞),𝑋1×𝑋2) by standard Galerkin method. Choose ξ€½π‘’π‘˜ξ€Ύβˆ£π‘˜=1,2,β€¦βŠ‚π‘‹(4.6) as orthonormal basis of space 𝐻. Set 𝑋𝑛,𝑋𝑛 as follows: 𝑋𝑛=ξƒ―π‘›ξ“π‘˜=1π›Όπ‘˜π‘’π‘˜βˆ£π›Όπ‘˜βˆˆπ‘…1ξƒ°,𝑋,1β‰€π‘˜β‰€π‘›π‘›=ξƒ―π‘›ξ“π‘˜=1π›½π‘˜(𝑑)π‘’π‘˜βˆ£π›½π‘˜(β‹…)∈𝐢1[ξƒ°.0,∞),1β‰€π‘˜β‰€π‘›(4.7)
Consider the ordinary equations as follows: 𝑑π‘₯π‘˜(𝑑)=ξ«π‘‘π‘‘βˆ’π·π‘£πΉξ€·π‘’π‘›,𝑣𝑛,π‘’π‘˜ξ¬,π‘‘π‘¦π‘˜(𝑑)=𝐷𝑑𝑑𝑒𝐹𝑒𝑛,𝑣𝑛,π‘’π‘˜ξ¬,π‘₯π‘˜(0)=βŸ¨πœ‘,π‘’π‘˜βŸ©π»,π‘¦π‘˜(0)=βŸ¨πœ“,π‘’π‘˜βŸ©π»,(π‘˜=1,…,𝑛),(4.8) where 𝑒𝑛=βˆ‘π‘›π‘˜=1π‘₯π‘˜(𝑑)π‘’π‘˜,𝑣𝑛=βˆ‘π‘›π‘˜=1π‘¦π‘˜(𝑑)π‘’π‘˜.
By the theory of ordinary equations, there exists only one local solution of (4.8): ξ€½π‘₯1(𝑑),𝑦1(𝑑),…,π‘₯𝑛(𝑑),𝑦𝑛(𝑑),0β‰€π‘‘β‰€πœ.(4.9)
From (4.8) we can obtain the equality βŸ¨π‘’π‘›,Μƒπ‘’π‘›βŸ©π»+βŸ¨π‘£π‘›,Μƒπ‘£π‘›βŸ©π»=ξ€œπ‘‘0𝐷𝑒𝐹𝑒𝑛,𝑣𝑛,Μƒπ‘£π‘›ξ¬βˆ’ξ«π·π‘£πΉξ€·π‘’π‘›,𝑣𝑛,̃𝑒𝑛𝑑𝑑+βŸ¨πœ‘,Μƒπ‘’π‘›βŸ©π»Μƒπ‘£+βŸ¨πœ“,π‘›βŸ©π»(4.10) holds true for any ̃𝑒𝑛,Μƒπ‘£π‘›βˆˆπ‘‹π‘›. Moreover, equality ξ€œπ‘‘0𝑑𝑒𝑛𝑑𝑑,̃𝑒𝑛𝐻+𝑑𝑣𝑛,Μƒπ‘£π‘‘π‘‘π‘›ξƒ’π»ξ‚Ήξ€œπ‘‘π‘‘=𝑑0𝐷𝑒𝐹𝑒𝑛,𝑣𝑛,Μƒπ‘£π‘›ξ¬βˆ’ξ«π·π‘£πΉξ€·π‘’π‘›,𝑣𝑛,̃𝑒𝑛𝑑𝑑(4.11) holds true for any ̃𝑒𝑛,Μƒπ‘£π‘›βˆˆξ‚π‘‹π‘›.
Putting (̃𝑒𝑛,̃𝑣𝑛)=(βˆ’π‘‘π‘£π‘›/𝑑𝑑,𝑑𝑒𝑛/𝑑𝑑) in (4.11), we obtain that ξ€œ0=𝑑0𝐷𝑒𝐹𝑒𝑛,𝑣𝑛,𝑑𝑒𝑛+𝐷𝑑𝑑𝑣𝐹𝑒𝑛,𝑣𝑛,𝑑𝑣𝑛=ξ€œπ‘‘π‘‘ξƒ’ξ‚Ήπ‘‘π‘‘π‘‘0𝑑𝐹𝑒𝑑𝑑𝑛,𝑣𝑛𝑑𝑑,(4.12) which implies 𝐹𝑒𝑛,π‘£π‘›ξ€Έξ€·πœ‘=𝐹𝑛,πœ“π‘›ξ€Έ,(4.13) where πœ‘π‘›=π‘›ξ“π‘˜=1βŸ¨πœ‘,π‘’π‘˜βŸ©π»π‘’π‘˜,πœ“π‘›=π‘›ξ“π‘˜=1βŸ¨πœ“,π‘’π‘˜βŸ©π»π‘’π‘˜.(4.14)
From (4.3) and (4.10), we deduce that {(𝑒𝑛,𝑣𝑛)}βˆžπ‘›=1 is bounded in 𝐿∞((0,∞),𝑋1×𝑋2). Therefore there exists a subsequence; we still write it as {(𝑒𝑛,𝑣𝑛)}βˆžπ‘›=1, such that 𝑒𝑛,𝑣𝑛⇀(𝑒,𝑣)in𝑋1×𝑋2,a.e.π‘‘βˆˆ(0,∞).(4.15)
According to π·πΉβˆΆπ‘‹1×𝑋2β†’(𝑋1×𝑋2)βˆ— being weakly continuous and (4.10), (4.15), we know the following equality βŸ¨π‘’,Μƒπ‘’βŸ©π»Μƒ+βŸ¨π‘£,π‘£βŸ©π»=ξ€œπ‘‘0ξ€ΊβŸ¨π·π‘’ΜƒπΉ(𝑒,𝑣),π‘£βŸ©βˆ’βŸ¨π·π‘£ξ€»πΉ(𝑒,𝑣),Μƒπ‘’βŸ©π‘‘π‘‘+βŸ¨πœ‘,Μƒπ‘’βŸ©π»Μƒ+βŸ¨πœ“,π‘£βŸ©π»(4.16) holds true for any ̃⋃̃𝑒,π‘£βˆˆβˆžπ‘›=1𝑋𝑛. Since β‹ƒβˆžπ‘›=1𝑋𝑛 is dense in 𝑋1 and 𝑋2, equality (4.16) holds true for all Μƒ(̃𝑒,𝑣)βˆˆπ‘‹1×𝑋2, which implies that (𝑒,𝑣)∈𝐿∞((0,∞),𝑋1×𝑋2) is a global weak solution of (4.1).
Next, we prove 𝐹(𝑒,𝑣) is a conservative quantity for weak solution (𝑒,𝑣). From (4.16), for all β„Ž>0 we have βŸ¨π‘’(𝑑+β„Ž)βˆ’π‘’(𝑑),Μƒπ‘’βŸ©π»Μƒ+βŸ¨π‘£(𝑑+β„Ž)βˆ’π‘£(𝑑),π‘£βŸ©π»=ξ€œπ‘‘π‘‘+β„Žξ€ΊβŸ¨π·π‘’ΜƒπΉ(𝑒(𝜏),𝑣(𝜏)),π‘£βŸ©βˆ’βŸ¨π·π‘£ξ€»πΉ(𝑒(𝜏),𝑣(𝜏)),Μƒπ‘’βŸ©π‘‘πœ.(4.17) Putting ̃𝑒=βˆ’Ξ”β„ŽΜƒπ‘£=βˆ’(𝑣(𝑑+β„Ž)βˆ’π‘£(𝑑)),𝑣=Ξ”β„Žπ‘’=𝑒(𝑑+β„Ž)βˆ’π‘’(𝑑)(4.18) in (4.17), we obtain that 10=β„Žξ€œπ‘‘π‘‘+β„Žξ€ΊβŸ¨π·π‘’πΉ(𝑒(𝜏),𝑣(𝜏)),Ξ”β„Žπ‘’βŸ©+βŸ¨π·π‘£πΉ(𝑒(𝜏),𝑣(𝜏)),Ξ”β„Žξ€»π‘£βŸ©π‘‘πœ=𝐹(𝑒(𝑑+β„Ž),𝑣(𝑑+β„Ž))βˆ’πΉ(𝑒(𝑑),𝑣(𝑑)).(4.19) Therefore, 𝐹(𝑒,𝑣) is a conservative quantity for weak solution (𝑒,𝑣). The proof is completed.

Theorem 4.4 (see [21]). Let 𝑋1,𝑋2 be Hilbert space and πΉβˆΆπ‘‹1×𝑋2→𝑅  be 𝐢1 functional. Then a 𝐢1 functional πΊβˆΆπ‘‹1×𝑋2→𝑅 is a conservative quantity for the infinite-dimensional Hamilton system (4.1) if and only if the following equality 𝛿𝐺(𝑒,𝑣),𝛿𝑒𝛿𝐹(𝑒,𝑣)𝛿𝑣𝑋1×𝑋2=𝛿𝐺(𝑒,𝑣),𝛿𝑣𝛿𝐹(𝑒,𝑣)𝛿𝑒𝑋1×𝑋2(4.20) holds true for any (𝑒,𝑣)βˆˆπ‘‹1×𝑋2.

Proof. Let (𝑒,𝑣) be a solution of (4.1). Then we have 𝑑𝑑𝑑𝐺(𝑒,𝑣)=𝛿𝐺(𝑒,𝑣),𝛿𝑒𝑑𝑒𝑑𝑑𝑋1×𝑋2+𝛿𝐺(𝑒,𝑣),𝛿𝑣𝑑𝑣𝑑𝑑𝑋1×𝑋2=βˆ’π›ΏπΊ(𝑒,𝑣),𝛿𝑒𝛿𝐹(𝑒,𝑣)ξƒ’+𝛿𝑣𝛿𝐺(𝑒,𝑣),𝛿𝑣𝛿𝐹(𝑒,𝑣)ξƒ’,𝛿𝑒(4.21) which imply that (𝑑/𝑑𝑑)𝐺(𝑒,𝑣)=0 if and only if equality (4.20) holds true. The proof is completed.

5. The Existence of Global Solution of Spinor BEC

In this section we consider the Gross-Pitaevskii equation of spinor BEC (2.10) under the Dirichlet boundary condition, to wit the following initial boundary problem:π‘–β„πœ•Ξ¨=π›Ώπœ•π‘‘π›ΏΞ¨βˆ—πΈξ€·Ξ¨,Ξ¨βˆ—ξ€ΈΞ¨||,π‘₯∈Ω,πœ•Ξ©=0,Ξ¨(π‘₯,0)=Ξ¨0(π‘₯),(5.1) where Ξ©βŠ‚π‘…π‘›(1≀𝑛≀3) is a domain. When Ξ©=𝑅𝑛, then (5.1) become Cauchy problem. By applying Theorem 4.3, we can obtain the following theorem.

Theorem 5.1. Assume that π‘‰βˆˆπΏ2(Ξ©) and 𝑔𝑛>max{0,βˆ’2𝑔𝑠}, then for any Ξ¨0∈𝐻1(Ξ©,π’ž3), there exists one global weak solution of problem (5.1) Ψ∈𝐢0ξ€·[0,∞),𝐿2ξ€·Ξ©,π’ž3ξ€Έξ€Έβˆ©πΏβˆžξ€·(0,∞),𝐻1ξ€·Ξ©,π’ž3.ξ€Έξ€Έ(5.2)

Remark 5.2. If 𝑔𝑠=0, then (5.1) reduce to the GP equation of BEC. Theorem 5.1 is also consistent with the experiments in repulsive case. In the situation of repulsive interaction, solutions to the GP equation of BEC are well defined for all times [12, 13, 20], which corresponds to the emergence of the BEC.

Proof. Let 𝐻=𝐿2(Ξ©,𝑅6),𝐻1=𝐻1(Ξ©,𝑅6). Firstly, we need to verify condition (4.3) in Theorem 4.3. From Section 2, we know that πΉξ€·πœ“1,πœ“2ξ€Έ=1ξ€œ2ℏΩℏ2||||2π‘šβˆ‡Ξ¨2||Ξ¨||+𝑉(π‘₯)2+12𝑔𝑛||Ξ¨||4+12𝑔𝑠||Ξ¨βˆ—||𝑆Ψ2𝑑π‘₯,(5.3) where Ξ¨=(πœ“1,πœ“0,πœ“βˆ’1),πœ“π‘˜=πœ“1π‘˜+π‘–πœ“2π‘˜(π‘˜=1,0,βˆ’1), and ||Ξ¨βˆ—||𝑆Ψ2=||πœ“1||4+||πœ“βˆ’1||4||πœ“βˆ’21||2||πœ“βˆ’1||2||πœ“+20||2||πœ“1||2||πœ“+20||2||πœ“βˆ’1||2+2πœ“20πœ“βˆ—1πœ“βˆ—βˆ’1+2πœ“βˆ—02πœ“1πœ“βˆ’1ξ‚€||πœ“β‰€21||4+||πœ“0||4+||πœ“βˆ’1||4.(5.4) Hence, when 𝑔𝑛>max{0,βˆ’2𝑔𝑠}, we have ξ€œΞ©π‘”π‘›||Ξ¨||4+𝑔𝑠||Ξ¨βˆ—||𝑆Ψ2ξ€œπ‘‘π‘₯β‰₯πœ†Ξ©||Ξ¨||4𝑑π‘₯,(5.5) where πœ†=π‘”π‘›βˆ’max{0,βˆ’2𝑔𝑠}>0. Therefore, we deduce πΉξ€·πœ“1,πœ“2ξ€Έβ€–β€–ξ€·πœ“βŸΆβˆžβŸΊ1,πœ“2‖‖𝐻1⟢∞,(5.6) which implies that condition (4.3) holds true.
Next we need to verify the continuous condition in Theorem 4.3. Let operator 𝐷𝐹:𝐻1→𝐻1 be defined by Ψ=1𝐷𝐹(Ξ¨),β„ξ€œΞ©ξ‚Έβ„2Ψ2π‘šβˆ‡Ξ¨β‹…βˆ‡Ξ¨+𝑉(π‘₯)Ξ¨β‹…+𝑔𝑛||Ξ¨||2Ψ⋅Ψ+π‘”π‘ ξ€·Ξ¨βˆ—ξ€Έξ‚Ξ¨π‘†Ξ¨βˆ—π‘†ξ‚Ξ¨ξ‚Ήπ‘‘π‘₯.(5.7) For any ξ‚Ξ¨βˆˆπΆβˆž0(Ξ©,𝑅6) and Ψ𝑛⇀Φ in 𝐻1, we have limπ‘›β†’βˆžξ‚¬ξ€·Ξ¨π·πΉπ‘›ξ€Έ,Ψ=Ψ.𝐷𝐹(Ξ¦),(5.8) Since 𝐢∞0(Ξ©,𝑅6) is dense in 𝐻1, equality (5.8) holds true for all ξ‚Ξ¨βˆˆπ»1, which implies that 𝐷𝐹∢𝐻1→𝐻1 is weakly continuous.
Therefore, according to Theorem 4.3, there exists a global weak solution of (5.1). The proof is completed.

6. The Conservative Quantities of Spinor BEC

In this section we will discuss the conservative quantities of spinor BEC. Let 𝐸 be defined as ((2.3), 𝑁,𝑀 as follows:ξ€œπ‘=Ω||πœ“1||2+||πœ“0||2+||πœ“βˆ’1||2ξ‚„ξ€œπ‘‘π‘₯,𝑀=Ω||πœ“1||2βˆ’||πœ“βˆ’1||2𝑑π‘₯.(6.1) Then by using the same method as the proof of Theorem 4.4, we will prove the following theorem.

Theorem 6.1. Hamilton energy 𝐸, the total particle number 𝑁, and magnetization intensity 𝑀 are conservative quantities for problem (5.1).

Proof. Firstly, from (3.1) and (3.2) we can get 1ξ€·2ℏ𝑑𝐸Ψ,Ξ¨βˆ—ξ€Έ=ξ€·πœ“π‘‘π‘‘π‘‘πΉ1,πœ“2ξ€Έ=ξ„”ξ€·πœ“π‘‘π‘‘π›ΏπΉ1,πœ“2ξ€Έπ›Ώπœ“1,πœ•πœ“1ξ„•+ξ„”ξ€·πœ“πœ•π‘‘π›ΏπΉ1,πœ“2ξ€Έπ›Ώπœ“2,πœ•πœ“2ξ„•=ξ“πœ•π‘‘π‘˜=1,0,βˆ’1ξ€·πœ“ξƒ¬ξ„”π›ΏπΉ1,πœ“2ξ€Έπ›Ώπœ“1π‘˜,πœ•πœ“1π‘˜ξ„•+ξ„”ξ€·πœ“πœ•π‘‘π›ΏπΉ1,πœ“2ξ€Έπ›Ώπœ“2π‘˜,πœ•πœ“2π‘˜=ξ“πœ•π‘‘ξ„•ξƒ­π‘˜=1,0,βˆ’1βˆ’ξƒ¬ξ„”πœ•πœ“2π‘˜,πœ•π‘‘πœ•πœ“1π‘˜ξ„•+ξ„”πœ•π‘‘πœ•πœ“1π‘˜,πœ•π‘‘πœ•πœ“2π‘˜πœ•π‘‘ξ„•ξƒ­=0,(6.2) which imply that the energy 𝐸 is a conservative quantity for problem (5.1).
Secondly, by using (3.3) we can get the following equalities: 𝑑𝑁=π‘‘π‘‘π‘‘ξ€œπ‘‘π‘‘Ξ©ξ“π‘˜=1,0,βˆ’1||πœ“1π‘˜||2+||πœ“2π‘˜||2ξ‚„ξ€œπ‘‘π‘₯=2Ξ©ξ“π‘˜=1,0,βˆ’1ξƒ¬πœ“1π‘˜πœ•πœ“1π‘˜πœ•π‘‘+πœ“2π‘˜πœ•πœ“2π‘˜ξƒ­πœ•π‘‘π‘‘π‘₯=0,(6.3) which imply that the total particle number 𝑁 is a conservative quantity for problem (5.1).
At last, we show 𝑀 is a conservative quantity for problem (5.1). Let 𝑋1=𝑋2=𝐻1(Ξ©,𝑅3), then πΈβˆΆπ‘‹1×𝑋2βŸΆπ‘…1definedby(2.3),π‘€βˆΆπ‘‹1×𝑋2βŸΆπ‘…1definedby(6.1)(6.4) are both functional. Let πœ“1=(πœ“11,πœ“10,πœ“1βˆ’1),πœ“2=(πœ“21,πœ“20,πœ“2βˆ’1). It is easy to check that π›Ώπ‘€π›Ώπœ“1=ξ€·2πœ“11,0,βˆ’2πœ“1βˆ’1ξ€Έ,π›Ώπ‘€π›Ώπœ“2=ξ€·2πœ“21,0,βˆ’2πœ“2βˆ’1ξ€Έ,π›ΏπΈπ›Ώπœ“1=ξƒ©π›ΏπΈπ›Ώπœ“11,π›ΏπΈπ›Ώπœ“10,π›ΏπΈπ›Ώπœ“1βˆ’1ξƒͺ,π›ΏπΈπ›Ώπœ“2=ξƒ©π›ΏπΈπ›Ώπœ“21,π›ΏπΈπ›Ώπœ“20,π›ΏπΈπ›Ώπœ“2βˆ’1ξƒͺ.(6.5) From ((2.3) and (2.7), we have π›ΏπΈπ›Ώπœ“21=ξ‚Έβˆ’β„22π‘šΞ”+𝑉(π‘₯)+𝑔𝑛||Ξ¨||2+𝑔𝑠||πœ“1||2+||πœ“0||2βˆ’||πœ“βˆ’1||2ξ‚ξ‚Ήπœ“21+𝑔𝑠2πœ“1βˆ’1πœ“10πœ“20βˆ’πœ“2βˆ’1ξ€·πœ“10ξ€Έ2+πœ“2βˆ’1ξ€·πœ“20ξ€Έ2,π›ΏπΈπ›Ώπœ“11=ξ‚Έβˆ’β„22π‘šΞ”+𝑉(π‘₯)+𝑔𝑛||Ξ¨||2+𝑔𝑠||πœ“1||2+||πœ“0||2βˆ’||πœ“βˆ’1||2ξ‚ξ‚Ήπœ“11+𝑔𝑠2πœ“2βˆ’1πœ“10πœ“20+πœ“1βˆ’1ξ€·πœ“10ξ€Έ2βˆ’πœ“1βˆ’1ξ€·πœ“20ξ€Έ2,π›ΏπΈπ›Ώπœ“2βˆ’1=ξ‚Έβˆ’β„22π‘šΞ”+𝑉(π‘₯)+𝑔𝑛||Ξ¨||2+𝑔𝑠||πœ“βˆ’1||2+||πœ“0||2βˆ’||πœ“1||2ξ‚ξ‚Ήπœ“2βˆ’1+𝑔𝑠2πœ“11πœ“10πœ“20βˆ’πœ“21ξ€·πœ“10ξ€Έ2+πœ“21ξ€·πœ“20ξ€Έ2,π›ΏπΈπ›Ώπœ“1βˆ’1=ξ‚Έβˆ’β„22π‘šΞ”+𝑉(π‘₯)+𝑔𝑛||Ξ¨||2+𝑔𝑠||πœ“βˆ’1||2+||πœ“0||2βˆ’||πœ“1||2ξ‚ξ‚Ήπœ“1βˆ’1+𝑔𝑠2πœ“21πœ“10πœ“20+πœ“11ξ€·πœ“10ξ€Έ2βˆ’πœ“11ξ€·πœ“20ξ€Έ2.(6.6) Combining (6.5), (6.6) with (3.1), (3.2), we can get following equalities: 𝑑𝑀=ξ„”ξ€·πœ“π‘‘π‘‘π›Ώπ‘€1,πœ“2ξ€Έπ›Ώπœ“1,πœ•πœ“1ξ„•πœ•π‘‘π‘‹1×𝑋2+ξ„”ξ€·πœ“π›Ώπ‘€1,πœ“2ξ€Έπ›Ώπœ“2,πœ•πœ“2ξ„•πœ•π‘‘π‘‹1×𝑋2=ξ„”ξ€·πœ“π›Ώπ‘€1,πœ“2ξ€Έπ›Ώπœ“1,π›ΏπΉπ›Ώπœ“2𝑋1×𝑋2βˆ’ξ„”ξ€·πœ“π›Ώπ‘€1,πœ“2ξ€Έπ›Ώπœ“2,π›ΏπΉπ›Ώπœ“1𝑋1×𝑋2=1ξ€œ2ℏΩ2ξƒ¬πœ“11πœ•πΈπœ•πœ“21βˆ’πœ“1βˆ’1πœ•πΈπœ•πœ“2βˆ’1βˆ’πœ“21πœ•πΈπœ•πœ“11+πœ“2βˆ’1πœ•πΈπœ•πœ“1βˆ’1ξƒ­=𝑔𝑑π‘₯π‘ β„ξ€œΞ©ξƒ¬πœ“11ξ‚€2πœ“1βˆ’1πœ“10πœ“20βˆ’πœ“2βˆ’1ξ‚€ξ€·πœ“10ξ€Έ2βˆ’ξ€·πœ“20ξ€Έ2ξ‚ξ‚βˆ’πœ“1βˆ’1ξ‚€2πœ“11πœ“10πœ“20βˆ’πœ“21ξ‚€ξ€·πœ“10ξ€Έ2βˆ’ξ€·πœ“20ξ€Έ2ξ‚ξ‚βˆ’πœ“21ξ‚€2πœ“2βˆ’1πœ“10πœ“20+πœ“1βˆ’1ξ‚€ξ€·πœ“10ξ€Έ2βˆ’ξ€·πœ“20ξ€Έ2+πœ“2βˆ’1ξ‚€2πœ“21πœ“10πœ“20+πœ“11ξ‚€ξ€·πœ“10ξ€Έ2βˆ’ξ€·πœ“20ξ€Έ2𝑑π‘₯=0,(6.7) which imply that the magnetization intensity 𝑀 is a conservative quantity for problem (5.1). The proof is completed.

Acknowledgments

The authors would like to thank anonymous reviewers for their careful reading and many valuable comments that greatly improved the presentation of this paper. This work is supported by NSFC 11171236.