About this Journal Submit a Manuscript Table of Contents
Journal of Applied Mathematics
Volume 2013 (2013), Article ID 219486, 7 pages
http://dx.doi.org/10.1155/2013/219486
Research Article

New Analytical and Numerical Solutions for Mixed Convection Boundary-Layer Nanofluid Flow along an Inclined Plate Embedded in a Porous Medium

1Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
2Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt
3Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia

Received 17 July 2013; Accepted 23 August 2013

Academic Editor: Mohamed Fathy El-Amin

Copyright © 2013 Emad H. Aly and Abdelhalim Ebaid. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” in Proceedings of the ASME International Mechanical Engineering Congress and Exposition, pp. 99–105, ASME, San Francisco, Calif, USA, 1995.
  2. S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspensions,” Applied Physics Letters, vol. 79, no. 14, pp. 2252–2254, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, “Alterlation of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (Dispersion of g-Al2O3SiO2, and TiO2 ultra-fine particles),” Netsu Bussei, vol. 7, pp. 227–233, 1993. View at Publisher · View at Google Scholar
  4. S. Lee, S. U.-S. Choi, S. Li, and J. A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles,” Journal of Heat Transfer, vol. 121, no. 2, pp. 280–288, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. A. V. Kuznetsov and D. A. Nield, “Natural convective boundary-layer flow of a nanofluid past a vertical plate,” International Journal of Thermal Sciences, vol. 49, no. 2, pp. 243–247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. W. A. Khan and I. Pop, “Boundary-layer flow of a nanofluid past a stretching sheet,” International Journal of Heat and Mass Transfer, vol. 53, no. 11-12, pp. 2477–2483, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  7. N. Bachok, A. Ishak, and I. Pop, “Boundary-layer flow of nanofluids over a moving surface in a flowing fluid,” International Journal of Thermal Sciences, vol. 49, no. 9, pp. 1663–1668, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. E. H. Aly and A. Ebaid, “New exact solutions for boundary-layer flow of a nanofluid past a stretching sheet,” Journal of Computational and Theoretical Nanoscience, vol. 10, no. 4, pp. 2591–2594, 2013. View at Publisher · View at Google Scholar
  9. J.-H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257–262, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. J.-H. He, “A coupling method of a homotopy technique and a perturbation technique for non-linear problems,” International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37–43, 2000. View at Publisher · View at Google Scholar · View at MathSciNet
  11. J.-H. He, “Homotopy perturbation method: a new nonlinear analytical technique,” Applied Mathematics and Computation, vol. 135, no. 1, pp. 73–79, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. J.-H. He, “Comparison of homotopy perturbation method and homotopy analysis method,” Applied Mathematics and Computation, vol. 156, no. 2, pp. 527–539, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. J.-H. He, “Asymptotology by homotopy perturbation method,” Applied Mathematics and Computation, vol. 156, no. 3, pp. 591–596, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. J.-H. He, “Homotopy perturbation method for solving boundary value problems,” Physics Letters A, vol. 350, no. 1-2, pp. 87–88, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. J.-H. He, “Application of homotopy perturbation method to nonlinear wave equations,” Chaos, Solitons and Fractals, vol. 26, no. 3, pp. 695–700, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  16. P. D. Ariel, “The three-dimensional flow past a stretching sheet and the homotopy perturbation method,” Computers & Mathematics with Applications, vol. 54, no. 7-8, pp. 920–925, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. S. Pamuk and N. Pamuk, “He's homotopy perturbation method for continuous population models for single and interacting species,” Computers & Mathematics with Applications, vol. 59, no. 2, pp. 612–621, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. H. Aminikhah, “The combined Laplace transform and new homotopy perturbation methods for stiff systems of ODEs,” Applied Mathematical Modelling, vol. 36, no. 8, pp. 3638–3644, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. A. H. Nayfeh, Perturbation Methods, John Wiley & Sons, New York, NY, USA, 1973. View at MathSciNet
  20. E. H. Aly, M. Benlahsen, and M. Guedda, “Similarity solutions of a MHD boundary-layer flow past a continuous moving surface,” International Journal of Engineering Science, vol. 45, no. 2-8, pp. 486–503, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. M. Guedda, E. H. Aly, and A. Ouahsine, “Analytical and ChPDM analysis of MHD mixed convection over a vertical flat plate embedded in a porous medium filled with water at 4C,” Applied Mathematical Modelling, vol. 35, no. 10, pp. 5182–5197, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. E. H. Aly and A. Ebaid, “On the exact analytical and numerical solutions of nano boundary-layer fluid flows,” Abstract and Applied Analysis, vol. 2012, Article ID 415431, 22 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  23. R. A. van Gorder, E. Sweet, and K. Vajravelu, “Nano boundary layers over stretching surfaces,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 6, pp. 1494–1500, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  24. P. Rana, R. Bhargava, and O. A. Bég, “Numerical solution for mixed convection boundary layer flow of a nanofluid along an inclined plate embedded in a porous medium,” Computers & Mathematics with Applications, vol. 64, no. 9, pp. 2816–2832, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  25. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, NY, USA, 4th edition, 1972.
  26. E. M. E. Elbarbary and S. M. El-Sayed, “Higher order pseudospectral differentiation matrices,” Applied Numerical Mathematics, vol. 55, no. 4, pp. 425–438, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet