About this Journal Submit a Manuscript Table of Contents
Journal of Applied Mathematics
Volume 2013 (2013), Article ID 302170, 7 pages
http://dx.doi.org/10.1155/2013/302170
Research Article

Improved Rao-Blackwellized Particle Filter by Particle Swarm Optimization

1Shandong Province Key Laboratory of Robotics and Intelligent Technology, College of Information and Electrical Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2School of Control Science and Engineering, Shandong University, Jinan 250061, China
3State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100090, China

Received 12 April 2013; Revised 22 July 2013; Accepted 30 July 2013

Academic Editor: Debasish Roy

Copyright © 2013 Zeng-Shun Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. N. Rosenbluth and A. W. Rosenbluth, “Monte carlo calculation of the average extension of molecular chains,” The Journal of Chemical Physics, vol. 23, no. 2, pp. 356–359, 1955. View at Scopus
  2. N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to nonlinear/non-gaussian Bayesian state estimation,” IEE Proceedings F, vol. 140, no. 2, pp. 107–113, 1993. View at Scopus
  3. J. MacCormick and A. Blake, “A probabilistic exclusion principle for tracking multiple objects,” in Proceedings of the 7th IEEE International Conference on Computer Vision (ICCV '99), pp. 572–578, September 1999. View at Scopus
  4. J. Carpenter and P. Clifford, “Improved particle filter for nonlinear problems,” IEE Proceedings: Radar, Sonar and Navigation, vol. 146, no. 1, pp. 2–7, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Crisan, P. del Moral, and T. Lyons, “Discrete filtering using branching and interacting particle systems,” Markov Processes and Related Fields, vol. 5, no. 3, pp. 293–318, 1999. View at Zentralblatt MATH · View at MathSciNet
  6. P. del Moral, “Nonlinear filtering: interacting particle solution,” Markov Processes and Related Fields, vol. 2, no. 4, pp. 555–579, 1996. View at Zentralblatt MATH · View at MathSciNet
  7. K. Kanazawa, D. Koller, and S. J. Russell, “Stochastic simulation algorithms for dynamic probabilistic networks,” in Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence (UAI '95), pp. 346–351, 1995.
  8. J. E. Handschin and D. Q. Mayne, “Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering,” International Journal of Control, vol. 9, no. 5, pp. 547–559, 1969. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. C. Andrieu and A. Doucet, “Particle filtering for partially observed Gaussian state space models,” Journal of the Royal Statistical Society. Series B, vol. 64, no. 4, pp. 827–836, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  10. A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequential Monte Carlo Methods in Practice, Statistics for Engineering and Information Science, Springer, New York, NY, USA, 2001. View at MathSciNet
  11. M. J. Daly, J. P. Reilly, and M. R. Morelande, “Rao-Blackwellised particle filtering for blind system identification,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '05), pp. IV321–IV324, Philadelphia, Pa, USA, March 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. Khan, T. Batch, and F. Dellaert, “A Rao-Blackwellized particle filter for eigentracking,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '04), vol. 2, pp. II980–II986, July 2004. View at Scopus
  13. G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping with Rao-Blackwellized particle filters,” IEEE Transactions on Robotics, vol. 23, no. 1, pp. 34–46, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Giremus, E. Grivel, J. Grolleau, and M. Najim, “A Rao-Blackwellized particle filter for joint channel/symbol estimation in MC-DS-CDMA systems,” IEEE Transactions on Communications, vol. 58, no. 8, pp. 2292–2304, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Särkkä, A. Vehtari, and J. Lampinen, “Rao-Blackwellized particle filter for multiple target tracking,” Information Fusion, vol. 8, no. 1, pp. 2–15, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Sajeeb, C. S. Manohar, and D. Roy, “Rao-Blackwellization with substructuring for state and parameter estimations of a class of nonlinear dynamical systems,” International Journal of Engineering Under Uncertainty: Hazards, Assessment and Mitigation, vol. 1, no. 1-2, 2009.
  17. M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking,” IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Casella and C. P. Robert, “Rao-blackwellisation of sampling schemes,” Biometrika, vol. 83, no. 1, pp. 81–94, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  19. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948, IEEE Service Center, Perth, Australia, December 1995. View at Scopus
  20. R. A. Krohling, “Gaussian swarm: a novel particle swarm optimization algorithm,” in Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems (CIS '04), pp. 372–376, Singapore, December 2004. View at Scopus
  21. R. Poli, J. Kennedy, and T. Balckwell, “Particle swarm optimization,” Swarm Intelligence, vol. 1, pp. 33–57, 2007.
  22. Z.-S. Zhao, J.-Z. Wang, X.-Z. Cheng, and Y.-J. Qi, “Particle swarm optimized particle filter and its application in visual tracking,” in Proceedings of the 6th International Conference on Natural Computation (ICNC '10), pp. 2673–2676, August 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Zhao, J. Wang, Q. Tian, and M. Cao, “Particle swarm-differential evolution cooperative optimized particle filter,” in Proceedings of the International Conference on Intelligent Control and Information Processing (ICICIP '10), pp. 485–490, August 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Li, J. Liang, and J. Hu, “A multi-swarm cooperative hybrid particle swarm optimizer,” in Proceedings of the 6th International Conference on Natural Computation (ICNC '10), vol. 5, pp. 2535–2539, August 2010. View at Publisher · View at Google Scholar · View at Scopus